4714 lines
115 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/fsnotify.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/writeback.h>
#include <linux/compat.h>
#include <linux/security.h>
#include <linux/xattr.h>
#include <linux/mm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/uuid.h>
#include <linux/btrfs.h>
#include <linux/uaccess.h>
#include <linux/iversion.h>
#include <linux/fileattr.h>
btrfs: initial fsverity support Add support for fsverity in btrfs. To support the generic interface in fs/verity, we add two new item types in the fs tree for inodes with verity enabled. One stores the per-file verity descriptor and btrfs verity item and the other stores the Merkle tree data itself. Verity checking is done in end_page_read just before a page is marked uptodate. This naturally handles a variety of edge cases like holes, preallocated extents, and inline extents. Some care needs to be taken to not try to verity pages past the end of the file, which are accessed by the generic buffered file reading code under some circumstances like reading to the end of the last page and trying to read again. Direct IO on a verity file falls back to buffered reads. Verity relies on PageChecked for the Merkle tree data itself to avoid re-walking up shared paths in the tree. For this reason, we need to cache the Merkle tree data. Since the file is immutable after verity is turned on, we can cache it at an index past EOF. Use the new inode ro_flags to store verity on the inode item, so that we can enable verity on a file, then rollback to an older kernel and still mount the file system and read the file. Since we can't safely write the file anymore without ruining the invariants of the Merkle tree, we mark a ro_compat flag on the file system when a file has verity enabled. Acked-by: Eric Biggers <ebiggers@google.com> Co-developed-by: Chris Mason <clm@fb.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 13:01:49 -07:00
#include <linux/fsverity.h>
btrfs: add BTRFS_IOC_ENCODED_READ ioctl There are 4 main cases: 1. Inline extents: we copy the data straight out of the extent buffer. 2. Hole/preallocated extents: we fill in zeroes. 3. Regular, uncompressed extents: we read the sectors we need directly from disk. 4. Regular, compressed extents: we read the entire compressed extent from disk and indicate what subset of the decompressed extent is in the file. This initial implementation simplifies a few things that can be improved in the future: - Cases 1, 3, and 4 allocate temporary memory to read into before copying out to userspace. - We don't do read repair, because it turns out that read repair is currently broken for compressed data. - We hold the inode lock during the operation. Note that we don't need to hold the mmap lock. We may race with btrfs_page_mkwrite() and read the old data from before the page was dirtied: btrfs_page_mkwrite btrfs_encoded_read --------------------------------------------------- (enter) (enter) btrfs_wait_ordered_range lock_extent_bits btrfs_page_set_dirty unlock_extent_cached (exit) lock_extent_bits read extent (dirty page hasn't been flushed, so this is the old data) unlock_extent_cached (exit) we read the old data from before the page was dirtied. But, that's true even if we were to hold the mmap lock: btrfs_page_mkwrite btrfs_encoded_read ------------------------------------------------------------------- (enter) (enter) btrfs_inode_lock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) (blocked) btrfs_wait_ordered_range lock_extent_bits read extent (page hasn't been dirtied, so this is the old data) unlock_extent_cached btrfs_inode_unlock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) returns lock_extent_bits btrfs_page_set_dirty unlock_extent_cached In other words, this is inherently racy, so it's fine that we return the old data in this tiny window. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-09 17:59:07 -07:00
#include <linux/sched/xacct.h>
#include "ctree.h"
#include "disk-io.h"
#include "export.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "print-tree.h"
#include "volumes.h"
#include "locking.h"
#include "backref.h"
#include "rcu-string.h"
#include "send.h"
#include "dev-replace.h"
Btrfs: add support for inode properties This change adds infrastructure to allow for generic properties for inodes. Properties are name/value pairs that can be associated with inodes for different purposes. They are stored as xattrs with the prefix "btrfs." Properties can be inherited - this means when a directory inode has inheritable properties set, these are added to new inodes created under that directory. Further, subvolumes can also have properties associated with them, and they can be inherited from their parent subvolume. Naturally, directory properties have priority over subvolume properties (in practice a subvolume property is just a regular property associated with the root inode, objectid 256, of the subvolume's fs tree). This change also adds one specific property implementation, named "compression", whose values can be "lzo" or "zlib" and it's an inheritable property. The corresponding changes to btrfs-progs were also implemented. A patch with xfstests for this feature will follow once there's agreement on this change/feature. Further, the script at the bottom of this commit message was used to do some benchmarks to measure any performance penalties of this feature. Basically the tests correspond to: Test 1 - create a filesystem and mount it with compress-force=lzo, then sequentially create N files of 64Kb each, measure how long it took to create the files, unmount the filesystem, mount the filesystem and perform an 'ls -lha' against the test directory holding the N files, and report the time the command took. Test 2 - create a filesystem and don't use any compression option when mounting it - instead set the compression property of the subvolume's root to 'lzo'. Then create N files of 64Kb, and report the time it took. The unmount the filesystem, mount it again and perform an 'ls -lha' like in the former test. This means every single file ends up with a property (xattr) associated to it. Test 3 - same as test 2, but uses 4 properties - 3 are duplicates of the compression property, have no real effect other than adding more work when inheriting properties and taking more btree leaf space. Test 4 - same as test 3 but with 10 properties per file. Results (in seconds, and averages of 5 runs each), for different N numbers of files follow. * Without properties (test 1) file creation time ls -lha time 10 000 files 3.49 0.76 100 000 files 47.19 8.37 1 000 000 files 518.51 107.06 * With 1 property (compression property set to lzo - test 2) file creation time ls -lha time 10 000 files 3.63 0.93 100 000 files 48.56 9.74 1 000 000 files 537.72 125.11 * With 4 properties (test 3) file creation time ls -lha time 10 000 files 3.94 1.20 100 000 files 52.14 11.48 1 000 000 files 572.70 142.13 * With 10 properties (test 4) file creation time ls -lha time 10 000 files 4.61 1.35 100 000 files 58.86 13.83 1 000 000 files 656.01 177.61 The increased latencies with properties are essencialy because of: *) When creating an inode, we now synchronously write 1 more item (an xattr item) for each property inherited from the parent dir (or subvolume). This could be done in an asynchronous way such as we do for dir intex items (delayed-inode.c), which could help reduce the file creation latency; *) With properties, we now have larger fs trees. For this particular test each xattr item uses 75 bytes of leaf space in the fs tree. This could be less by using a new item for xattr items, instead of the current btrfs_dir_item, since we could cut the 'location' and 'type' fields (saving 18 bytes) and maybe 'transid' too (saving a total of 26 bytes per xattr item) from the btrfs_dir_item type. Also tried batching the xattr insertions (ignoring proper hash collision handling, since it didn't exist) when creating files that inherit properties from their parent inode/subvolume, but the end results were (surprisingly) essentially the same. Test script: $ cat test.pl #!/usr/bin/perl -w use strict; use Time::HiRes qw(time); use constant NUM_FILES => 10_000; use constant FILE_SIZES => (64 * 1024); use constant DEV => '/dev/sdb4'; use constant MNT_POINT => '/home/fdmanana/btrfs-tests/dev'; use constant TEST_DIR => (MNT_POINT . '/testdir'); system("mkfs.btrfs", "-l", "16384", "-f", DEV) == 0 or die "mkfs.btrfs failed!"; # following line for testing without properties #system("mount", "-o", "compress-force=lzo", DEV, MNT_POINT) == 0 or die "mount failed!"; # following 2 lines for testing with properties system("mount", DEV, MNT_POINT) == 0 or die "mount failed!"; system("btrfs", "prop", "set", MNT_POINT, "compression", "lzo") == 0 or die "set prop failed!"; system("mkdir", TEST_DIR) == 0 or die "mkdir failed!"; my ($t1, $t2); $t1 = time(); for (my $i = 1; $i <= NUM_FILES; $i++) { my $p = TEST_DIR . '/file_' . $i; open(my $f, '>', $p) or die "Error opening file!"; $f->autoflush(1); for (my $j = 0; $j < FILE_SIZES; $j += 4096) { print $f ('A' x 4096) or die "Error writing to file!"; } close($f); } $t2 = time(); print "Time to create " . NUM_FILES . ": " . ($t2 - $t1) . " seconds.\n"; system("umount", DEV) == 0 or die "umount failed!"; system("mount", DEV, MNT_POINT) == 0 or die "mount failed!"; $t1 = time(); system("bash -c 'ls -lha " . TEST_DIR . " > /dev/null'") == 0 or die "ls failed!"; $t2 = time(); print "Time to ls -lha all files: " . ($t2 - $t1) . " seconds.\n"; system("umount", DEV) == 0 or die "umount failed!"; Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:47:46 +00:00
#include "props.h"
#include "sysfs.h"
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-13 17:30:47 -07:00
#include "qgroup.h"
Btrfs: fix unreplayable log after snapshot delete + parent dir fsync If we delete a snapshot, fsync its parent directory and crash/power fail before the next transaction commit, on the next mount when we attempt to replay the log tree of the root containing the parent directory we will fail and prevent the filesystem from mounting, which is solvable by wiping out the log trees with the btrfs-zero-log tool but very inconvenient as we will lose any data and metadata fsynced before the parent directory was fsynced. For example: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt $ mkdir /mnt/testdir $ btrfs subvolume snapshot /mnt /mnt/testdir/snap $ btrfs subvolume delete /mnt/testdir/snap $ xfs_io -c "fsync" /mnt/testdir < crash / power failure and reboot > $ mount /dev/sdc /mnt mount: mount(2) failed: No such file or directory And in dmesg/syslog we get the following message and trace: [192066.361162] BTRFS info (device dm-0): failed to delete reference to snap, inode 257 parent 257 [192066.363010] ------------[ cut here ]------------ [192066.365268] WARNING: CPU: 4 PID: 5130 at fs/btrfs/inode.c:3986 __btrfs_unlink_inode+0x17a/0x354 [btrfs]() [192066.367250] BTRFS: Transaction aborted (error -2) [192066.368401] Modules linked in: btrfs dm_flakey dm_mod ppdev sha256_generic xor raid6_pq hmac drbg ansi_cprng aesni_intel acpi_cpufreq tpm_tis aes_x86_64 tpm ablk_helper evdev cryptd sg parport_pc i2c_piix4 psmouse lrw parport i2c_core pcspkr gf128mul processor serio_raw glue_helper button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs] [192066.377154] CPU: 4 PID: 5130 Comm: mount Tainted: G W 4.4.0-rc6-btrfs-next-20+ #1 [192066.378875] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [192066.380889] 0000000000000000 ffff880143923670 ffffffff81257570 ffff8801439236b8 [192066.382561] ffff8801439236a8 ffffffff8104ec07 ffffffffa039dc2c 00000000fffffffe [192066.384191] ffff8801ed31d000 ffff8801b9fc9c88 ffff8801086875e0 ffff880143923710 [192066.385827] Call Trace: [192066.386373] [<ffffffff81257570>] dump_stack+0x4e/0x79 [192066.387387] [<ffffffff8104ec07>] warn_slowpath_common+0x99/0xb2 [192066.388429] [<ffffffffa039dc2c>] ? __btrfs_unlink_inode+0x17a/0x354 [btrfs] [192066.389236] [<ffffffff8104ec68>] warn_slowpath_fmt+0x48/0x50 [192066.389884] [<ffffffffa039dc2c>] __btrfs_unlink_inode+0x17a/0x354 [btrfs] [192066.390621] [<ffffffff81184b55>] ? iput+0xb0/0x266 [192066.391200] [<ffffffffa039ea25>] btrfs_unlink_inode+0x1c/0x3d [btrfs] [192066.391930] [<ffffffffa03ca623>] check_item_in_log+0x1fe/0x29b [btrfs] [192066.392715] [<ffffffffa03ca827>] replay_dir_deletes+0x167/0x1cf [btrfs] [192066.393510] [<ffffffffa03cccc7>] replay_one_buffer+0x417/0x570 [btrfs] [192066.394241] [<ffffffffa03ca164>] walk_up_log_tree+0x10e/0x1dc [btrfs] [192066.394958] [<ffffffffa03cac72>] walk_log_tree+0xa5/0x190 [btrfs] [192066.395628] [<ffffffffa03ce8b8>] btrfs_recover_log_trees+0x239/0x32c [btrfs] [192066.396790] [<ffffffffa03cc8b0>] ? replay_one_extent+0x50a/0x50a [btrfs] [192066.397891] [<ffffffffa0394041>] open_ctree+0x1d8b/0x2167 [btrfs] [192066.398897] [<ffffffffa03706e1>] btrfs_mount+0x5ef/0x729 [btrfs] [192066.399823] [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf [192066.400739] [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3 [192066.401700] [<ffffffff811714b9>] mount_fs+0x67/0x131 [192066.402482] [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde [192066.403930] [<ffffffffa03702bd>] btrfs_mount+0x1cb/0x729 [btrfs] [192066.404831] [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf [192066.405726] [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3 [192066.406621] [<ffffffff811714b9>] mount_fs+0x67/0x131 [192066.407401] [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde [192066.408247] [<ffffffff8118ae36>] do_mount+0x893/0x9d2 [192066.409047] [<ffffffff8113009b>] ? strndup_user+0x3f/0x8c [192066.409842] [<ffffffff8118b187>] SyS_mount+0x75/0xa1 [192066.410621] [<ffffffff8147e517>] entry_SYSCALL_64_fastpath+0x12/0x6b [192066.411572] ---[ end trace 2de42126c1e0a0f0 ]--- [192066.412344] BTRFS: error (device dm-0) in __btrfs_unlink_inode:3986: errno=-2 No such entry [192066.413748] BTRFS: error (device dm-0) in btrfs_replay_log:2464: errno=-2 No such entry (Failed to recover log tree) [192066.415458] BTRFS error (device dm-0): cleaner transaction attach returned -30 [192066.444613] BTRFS: open_ctree failed This happens because when we are replaying the log and processing the directory entry pointing to the snapshot in the subvolume tree, we treat its btrfs_dir_item item as having a location with a key type matching BTRFS_INODE_ITEM_KEY, which is wrong because the type matches BTRFS_ROOT_ITEM_KEY and therefore must be processed differently, as the object id refers to a root number and not to an inode in the root containing the parent directory. So fix this by triggering a transaction commit if an fsync against the parent directory is requested after deleting a snapshot. This is the simplest approach for a rare use case. Some alternative that avoids the transaction commit would require more code to explicitly delete the snapshot at log replay time (factoring out common code from ioctl.c: btrfs_ioctl_snap_destroy()), special care at fsync time to remove the log tree of the snapshot's root from the log root of the root of tree roots, amongst other steps. A test case for xfstests that triggers the issue follows. seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { _cleanup_flakey cd / rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter . ./common/dmflakey # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch _require_dm_target flakey _require_metadata_journaling $SCRATCH_DEV rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 _init_flakey _mount_flakey # Create a snapshot at the root of our filesystem (mount point path), delete it, # fsync the mount point path, crash and mount to replay the log. This should # succeed and after the filesystem is mounted the snapshot should not be visible # anymore. _run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/snap1 _run_btrfs_util_prog subvolume delete $SCRATCH_MNT/snap1 $XFS_IO_PROG -c "fsync" $SCRATCH_MNT _flakey_drop_and_remount [ -e $SCRATCH_MNT/snap1 ] && \ echo "Snapshot snap1 still exists after log replay" # Similar scenario as above, but this time the snapshot is created inside a # directory and not directly under the root (mount point path). mkdir $SCRATCH_MNT/testdir _run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/testdir/snap2 _run_btrfs_util_prog subvolume delete $SCRATCH_MNT/testdir/snap2 $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir _flakey_drop_and_remount [ -e $SCRATCH_MNT/testdir/snap2 ] && \ echo "Snapshot snap2 still exists after log replay" _unmount_flakey echo "Silence is golden" status=0 exit Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Chris Mason <clm@fb.com>
2016-02-10 10:42:25 +00:00
#include "tree-log.h"
#include "compression.h"
#include "space-info.h"
#include "delalloc-space.h"
#include "block-group.h"
#include "subpage.h"
#include "fs.h"
#include "accessors.h"
#include "extent-tree.h"
#include "root-tree.h"
#include "defrag.h"
#include "dir-item.h"
#include "uuid-tree.h"
#include "ioctl.h"
#include "file.h"
#include "scrub.h"
#include "super.h"
#ifdef CONFIG_64BIT
/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
* structures are incorrect, as the timespec structure from userspace
* is 4 bytes too small. We define these alternatives here to teach
* the kernel about the 32-bit struct packing.
*/
struct btrfs_ioctl_timespec_32 {
__u64 sec;
__u32 nsec;
} __attribute__ ((__packed__));
struct btrfs_ioctl_received_subvol_args_32 {
char uuid[BTRFS_UUID_SIZE]; /* in */
__u64 stransid; /* in */
__u64 rtransid; /* out */
struct btrfs_ioctl_timespec_32 stime; /* in */
struct btrfs_ioctl_timespec_32 rtime; /* out */
__u64 flags; /* in */
__u64 reserved[16]; /* in */
} __attribute__ ((__packed__));
#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
struct btrfs_ioctl_received_subvol_args_32)
#endif
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_send_args_32 {
__s64 send_fd; /* in */
__u64 clone_sources_count; /* in */
compat_uptr_t clone_sources; /* in */
__u64 parent_root; /* in */
__u64 flags; /* in */
__u32 version; /* in */
__u8 reserved[28]; /* in */
} __attribute__ ((__packed__));
#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
struct btrfs_ioctl_send_args_32)
btrfs: add BTRFS_IOC_ENCODED_READ ioctl There are 4 main cases: 1. Inline extents: we copy the data straight out of the extent buffer. 2. Hole/preallocated extents: we fill in zeroes. 3. Regular, uncompressed extents: we read the sectors we need directly from disk. 4. Regular, compressed extents: we read the entire compressed extent from disk and indicate what subset of the decompressed extent is in the file. This initial implementation simplifies a few things that can be improved in the future: - Cases 1, 3, and 4 allocate temporary memory to read into before copying out to userspace. - We don't do read repair, because it turns out that read repair is currently broken for compressed data. - We hold the inode lock during the operation. Note that we don't need to hold the mmap lock. We may race with btrfs_page_mkwrite() and read the old data from before the page was dirtied: btrfs_page_mkwrite btrfs_encoded_read --------------------------------------------------- (enter) (enter) btrfs_wait_ordered_range lock_extent_bits btrfs_page_set_dirty unlock_extent_cached (exit) lock_extent_bits read extent (dirty page hasn't been flushed, so this is the old data) unlock_extent_cached (exit) we read the old data from before the page was dirtied. But, that's true even if we were to hold the mmap lock: btrfs_page_mkwrite btrfs_encoded_read ------------------------------------------------------------------- (enter) (enter) btrfs_inode_lock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) (blocked) btrfs_wait_ordered_range lock_extent_bits read extent (page hasn't been dirtied, so this is the old data) unlock_extent_cached btrfs_inode_unlock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) returns lock_extent_bits btrfs_page_set_dirty unlock_extent_cached In other words, this is inherently racy, so it's fine that we return the old data in this tiny window. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-09 17:59:07 -07:00
struct btrfs_ioctl_encoded_io_args_32 {
compat_uptr_t iov;
compat_ulong_t iovcnt;
__s64 offset;
__u64 flags;
__u64 len;
__u64 unencoded_len;
__u64 unencoded_offset;
__u32 compression;
__u32 encryption;
__u8 reserved[64];
};
#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
struct btrfs_ioctl_encoded_io_args_32)
#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
struct btrfs_ioctl_encoded_io_args_32)
#endif
/* Mask out flags that are inappropriate for the given type of inode. */
static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
unsigned int flags)
{
if (S_ISDIR(inode->i_mode))
return flags;
else if (S_ISREG(inode->i_mode))
return flags & ~FS_DIRSYNC_FL;
else
return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
}
/*
* Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
* ioctl.
*/
btrfs: add ro compat flags to inodes Currently, inode flags are fully backwards incompatible in btrfs. If we introduce a new inode flag, then tree-checker will detect it and fail. This can even cause us to fail to mount entirely. To make it possible to introduce new flags which can be read-only compatible, like VERITY, we add new ro flags to btrfs without treating them quite so harshly in tree-checker. A read-only file system can survive an unexpected flag, and can be mounted. As for the implementation, it unfortunately gets a little complicated. The on-disk representation of the inode, btrfs_inode_item, has an __le64 for flags but the in-memory representation, btrfs_inode, uses a u32. David Sterba had the nice idea that we could reclaim those wasted 32 bits on disk and use them for the new ro_compat flags. It turns out that the tree-checker code which checks for unknown flags is broken, and ignores the upper 32 bits we are hoping to use. The issue is that the flags use the literal 1 rather than 1ULL, so the flags are signed ints, and one of them is specifically (1 << 31). As a result, the mask which ORs the flags is a negative integer on machines where int is 32 bit twos complement. When tree-checker evaluates the expression: btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK) The mask is something like 0x80000abc, which gets promoted to u64 with sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves all the upper bits zeroed, and we can't detect unexpected flags. This suggests that we can't use those bits after all. Luckily, we have good reason to believe that they are zero anyway. Inode flags are metadata, which is always checksummed, so any bit flips that would introduce 1s would cause a checksum failure anyway (excluding the improbable case of the checksum getting corrupted exactly badly). Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit inode flag should preserve its value and not add leading zeroes (at least for twos complement). The only place that flag (BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in the root item, and indeed for that inode we see 0xffffffff80000000 as the flags on disk. However, that inode is never seen by tree checker, nor is it used in a context where verity might be meaningful. Theoretically, a future ro flag might cause trouble on that inode, so we should proactively clean up that mess before it does. With the introduction of the new ro flags, keep two separate unsigned masks and check them against the appropriate u32. Since we no longer run afoul of sign extension, this also stops writing out 0xffffffff80000000 in root_item inodes going forward. Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 13:01:48 -07:00
static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
{
unsigned int iflags = 0;
btrfs: add ro compat flags to inodes Currently, inode flags are fully backwards incompatible in btrfs. If we introduce a new inode flag, then tree-checker will detect it and fail. This can even cause us to fail to mount entirely. To make it possible to introduce new flags which can be read-only compatible, like VERITY, we add new ro flags to btrfs without treating them quite so harshly in tree-checker. A read-only file system can survive an unexpected flag, and can be mounted. As for the implementation, it unfortunately gets a little complicated. The on-disk representation of the inode, btrfs_inode_item, has an __le64 for flags but the in-memory representation, btrfs_inode, uses a u32. David Sterba had the nice idea that we could reclaim those wasted 32 bits on disk and use them for the new ro_compat flags. It turns out that the tree-checker code which checks for unknown flags is broken, and ignores the upper 32 bits we are hoping to use. The issue is that the flags use the literal 1 rather than 1ULL, so the flags are signed ints, and one of them is specifically (1 << 31). As a result, the mask which ORs the flags is a negative integer on machines where int is 32 bit twos complement. When tree-checker evaluates the expression: btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK) The mask is something like 0x80000abc, which gets promoted to u64 with sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves all the upper bits zeroed, and we can't detect unexpected flags. This suggests that we can't use those bits after all. Luckily, we have good reason to believe that they are zero anyway. Inode flags are metadata, which is always checksummed, so any bit flips that would introduce 1s would cause a checksum failure anyway (excluding the improbable case of the checksum getting corrupted exactly badly). Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit inode flag should preserve its value and not add leading zeroes (at least for twos complement). The only place that flag (BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in the root item, and indeed for that inode we see 0xffffffff80000000 as the flags on disk. However, that inode is never seen by tree checker, nor is it used in a context where verity might be meaningful. Theoretically, a future ro flag might cause trouble on that inode, so we should proactively clean up that mess before it does. With the introduction of the new ro flags, keep two separate unsigned masks and check them against the appropriate u32. Since we no longer run afoul of sign extension, this also stops writing out 0xffffffff80000000 in root_item inodes going forward. Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 13:01:48 -07:00
u32 flags = binode->flags;
btrfs: initial fsverity support Add support for fsverity in btrfs. To support the generic interface in fs/verity, we add two new item types in the fs tree for inodes with verity enabled. One stores the per-file verity descriptor and btrfs verity item and the other stores the Merkle tree data itself. Verity checking is done in end_page_read just before a page is marked uptodate. This naturally handles a variety of edge cases like holes, preallocated extents, and inline extents. Some care needs to be taken to not try to verity pages past the end of the file, which are accessed by the generic buffered file reading code under some circumstances like reading to the end of the last page and trying to read again. Direct IO on a verity file falls back to buffered reads. Verity relies on PageChecked for the Merkle tree data itself to avoid re-walking up shared paths in the tree. For this reason, we need to cache the Merkle tree data. Since the file is immutable after verity is turned on, we can cache it at an index past EOF. Use the new inode ro_flags to store verity on the inode item, so that we can enable verity on a file, then rollback to an older kernel and still mount the file system and read the file. Since we can't safely write the file anymore without ruining the invariants of the Merkle tree, we mark a ro_compat flag on the file system when a file has verity enabled. Acked-by: Eric Biggers <ebiggers@google.com> Co-developed-by: Chris Mason <clm@fb.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 13:01:49 -07:00
u32 ro_flags = binode->ro_flags;
if (flags & BTRFS_INODE_SYNC)
iflags |= FS_SYNC_FL;
if (flags & BTRFS_INODE_IMMUTABLE)
iflags |= FS_IMMUTABLE_FL;
if (flags & BTRFS_INODE_APPEND)
iflags |= FS_APPEND_FL;
if (flags & BTRFS_INODE_NODUMP)
iflags |= FS_NODUMP_FL;
if (flags & BTRFS_INODE_NOATIME)
iflags |= FS_NOATIME_FL;
if (flags & BTRFS_INODE_DIRSYNC)
iflags |= FS_DIRSYNC_FL;
if (flags & BTRFS_INODE_NODATACOW)
iflags |= FS_NOCOW_FL;
btrfs: initial fsverity support Add support for fsverity in btrfs. To support the generic interface in fs/verity, we add two new item types in the fs tree for inodes with verity enabled. One stores the per-file verity descriptor and btrfs verity item and the other stores the Merkle tree data itself. Verity checking is done in end_page_read just before a page is marked uptodate. This naturally handles a variety of edge cases like holes, preallocated extents, and inline extents. Some care needs to be taken to not try to verity pages past the end of the file, which are accessed by the generic buffered file reading code under some circumstances like reading to the end of the last page and trying to read again. Direct IO on a verity file falls back to buffered reads. Verity relies on PageChecked for the Merkle tree data itself to avoid re-walking up shared paths in the tree. For this reason, we need to cache the Merkle tree data. Since the file is immutable after verity is turned on, we can cache it at an index past EOF. Use the new inode ro_flags to store verity on the inode item, so that we can enable verity on a file, then rollback to an older kernel and still mount the file system and read the file. Since we can't safely write the file anymore without ruining the invariants of the Merkle tree, we mark a ro_compat flag on the file system when a file has verity enabled. Acked-by: Eric Biggers <ebiggers@google.com> Co-developed-by: Chris Mason <clm@fb.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 13:01:49 -07:00
if (ro_flags & BTRFS_INODE_RO_VERITY)
iflags |= FS_VERITY_FL;
if (flags & BTRFS_INODE_NOCOMPRESS)
iflags |= FS_NOCOMP_FL;
else if (flags & BTRFS_INODE_COMPRESS)
iflags |= FS_COMPR_FL;
return iflags;
}
/*
* Update inode->i_flags based on the btrfs internal flags.
*/
void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
{
struct btrfs_inode *binode = BTRFS_I(inode);
unsigned int new_fl = 0;
if (binode->flags & BTRFS_INODE_SYNC)
new_fl |= S_SYNC;
if (binode->flags & BTRFS_INODE_IMMUTABLE)
new_fl |= S_IMMUTABLE;
if (binode->flags & BTRFS_INODE_APPEND)
new_fl |= S_APPEND;
if (binode->flags & BTRFS_INODE_NOATIME)
new_fl |= S_NOATIME;
if (binode->flags & BTRFS_INODE_DIRSYNC)
new_fl |= S_DIRSYNC;
btrfs: initial fsverity support Add support for fsverity in btrfs. To support the generic interface in fs/verity, we add two new item types in the fs tree for inodes with verity enabled. One stores the per-file verity descriptor and btrfs verity item and the other stores the Merkle tree data itself. Verity checking is done in end_page_read just before a page is marked uptodate. This naturally handles a variety of edge cases like holes, preallocated extents, and inline extents. Some care needs to be taken to not try to verity pages past the end of the file, which are accessed by the generic buffered file reading code under some circumstances like reading to the end of the last page and trying to read again. Direct IO on a verity file falls back to buffered reads. Verity relies on PageChecked for the Merkle tree data itself to avoid re-walking up shared paths in the tree. For this reason, we need to cache the Merkle tree data. Since the file is immutable after verity is turned on, we can cache it at an index past EOF. Use the new inode ro_flags to store verity on the inode item, so that we can enable verity on a file, then rollback to an older kernel and still mount the file system and read the file. Since we can't safely write the file anymore without ruining the invariants of the Merkle tree, we mark a ro_compat flag on the file system when a file has verity enabled. Acked-by: Eric Biggers <ebiggers@google.com> Co-developed-by: Chris Mason <clm@fb.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 13:01:49 -07:00
if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
new_fl |= S_VERITY;
set_mask_bits(&inode->i_flags,
btrfs: initial fsverity support Add support for fsverity in btrfs. To support the generic interface in fs/verity, we add two new item types in the fs tree for inodes with verity enabled. One stores the per-file verity descriptor and btrfs verity item and the other stores the Merkle tree data itself. Verity checking is done in end_page_read just before a page is marked uptodate. This naturally handles a variety of edge cases like holes, preallocated extents, and inline extents. Some care needs to be taken to not try to verity pages past the end of the file, which are accessed by the generic buffered file reading code under some circumstances like reading to the end of the last page and trying to read again. Direct IO on a verity file falls back to buffered reads. Verity relies on PageChecked for the Merkle tree data itself to avoid re-walking up shared paths in the tree. For this reason, we need to cache the Merkle tree data. Since the file is immutable after verity is turned on, we can cache it at an index past EOF. Use the new inode ro_flags to store verity on the inode item, so that we can enable verity on a file, then rollback to an older kernel and still mount the file system and read the file. Since we can't safely write the file anymore without ruining the invariants of the Merkle tree, we mark a ro_compat flag on the file system when a file has verity enabled. Acked-by: Eric Biggers <ebiggers@google.com> Co-developed-by: Chris Mason <clm@fb.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 13:01:49 -07:00
S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
S_VERITY, new_fl);
}
/*
* Check if @flags are a supported and valid set of FS_*_FL flags and that
* the old and new flags are not conflicting
*/
static int check_fsflags(unsigned int old_flags, unsigned int flags)
{
if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
FS_NOATIME_FL | FS_NODUMP_FL | \
FS_SYNC_FL | FS_DIRSYNC_FL | \
FS_NOCOMP_FL | FS_COMPR_FL |
FS_NOCOW_FL))
return -EOPNOTSUPP;
/* COMPR and NOCOMP on new/old are valid */
if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
return -EINVAL;
if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
return -EINVAL;
/* NOCOW and compression options are mutually exclusive */
if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
return -EINVAL;
if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
return -EINVAL;
return 0;
}
static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
unsigned int flags)
{
if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
return -EPERM;
return 0;
}
/*
* Set flags/xflags from the internal inode flags. The remaining items of
* fsxattr are zeroed.
*/
int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
{
struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
btrfs: add ro compat flags to inodes Currently, inode flags are fully backwards incompatible in btrfs. If we introduce a new inode flag, then tree-checker will detect it and fail. This can even cause us to fail to mount entirely. To make it possible to introduce new flags which can be read-only compatible, like VERITY, we add new ro flags to btrfs without treating them quite so harshly in tree-checker. A read-only file system can survive an unexpected flag, and can be mounted. As for the implementation, it unfortunately gets a little complicated. The on-disk representation of the inode, btrfs_inode_item, has an __le64 for flags but the in-memory representation, btrfs_inode, uses a u32. David Sterba had the nice idea that we could reclaim those wasted 32 bits on disk and use them for the new ro_compat flags. It turns out that the tree-checker code which checks for unknown flags is broken, and ignores the upper 32 bits we are hoping to use. The issue is that the flags use the literal 1 rather than 1ULL, so the flags are signed ints, and one of them is specifically (1 << 31). As a result, the mask which ORs the flags is a negative integer on machines where int is 32 bit twos complement. When tree-checker evaluates the expression: btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK) The mask is something like 0x80000abc, which gets promoted to u64 with sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves all the upper bits zeroed, and we can't detect unexpected flags. This suggests that we can't use those bits after all. Luckily, we have good reason to believe that they are zero anyway. Inode flags are metadata, which is always checksummed, so any bit flips that would introduce 1s would cause a checksum failure anyway (excluding the improbable case of the checksum getting corrupted exactly badly). Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit inode flag should preserve its value and not add leading zeroes (at least for twos complement). The only place that flag (BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in the root item, and indeed for that inode we see 0xffffffff80000000 as the flags on disk. However, that inode is never seen by tree checker, nor is it used in a context where verity might be meaningful. Theoretically, a future ro flag might cause trouble on that inode, so we should proactively clean up that mess before it does. With the introduction of the new ro flags, keep two separate unsigned masks and check them against the appropriate u32. Since we no longer run afoul of sign extension, this also stops writing out 0xffffffff80000000 in root_item inodes going forward. Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 13:01:48 -07:00
fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
return 0;
}
int btrfs_fileattr_set(struct mnt_idmap *idmap,
struct dentry *dentry, struct fileattr *fa)
{
struct inode *inode = d_inode(dentry);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_inode *binode = BTRFS_I(inode);
struct btrfs_root *root = binode->root;
struct btrfs_trans_handle *trans;
unsigned int fsflags, old_fsflags;
int ret;
const char *comp = NULL;
u32 binode_flags;
if (btrfs_root_readonly(root))
return -EROFS;
if (fileattr_has_fsx(fa))
return -EOPNOTSUPP;
fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
btrfs: add ro compat flags to inodes Currently, inode flags are fully backwards incompatible in btrfs. If we introduce a new inode flag, then tree-checker will detect it and fail. This can even cause us to fail to mount entirely. To make it possible to introduce new flags which can be read-only compatible, like VERITY, we add new ro flags to btrfs without treating them quite so harshly in tree-checker. A read-only file system can survive an unexpected flag, and can be mounted. As for the implementation, it unfortunately gets a little complicated. The on-disk representation of the inode, btrfs_inode_item, has an __le64 for flags but the in-memory representation, btrfs_inode, uses a u32. David Sterba had the nice idea that we could reclaim those wasted 32 bits on disk and use them for the new ro_compat flags. It turns out that the tree-checker code which checks for unknown flags is broken, and ignores the upper 32 bits we are hoping to use. The issue is that the flags use the literal 1 rather than 1ULL, so the flags are signed ints, and one of them is specifically (1 << 31). As a result, the mask which ORs the flags is a negative integer on machines where int is 32 bit twos complement. When tree-checker evaluates the expression: btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK) The mask is something like 0x80000abc, which gets promoted to u64 with sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves all the upper bits zeroed, and we can't detect unexpected flags. This suggests that we can't use those bits after all. Luckily, we have good reason to believe that they are zero anyway. Inode flags are metadata, which is always checksummed, so any bit flips that would introduce 1s would cause a checksum failure anyway (excluding the improbable case of the checksum getting corrupted exactly badly). Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit inode flag should preserve its value and not add leading zeroes (at least for twos complement). The only place that flag (BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in the root item, and indeed for that inode we see 0xffffffff80000000 as the flags on disk. However, that inode is never seen by tree checker, nor is it used in a context where verity might be meaningful. Theoretically, a future ro flag might cause trouble on that inode, so we should proactively clean up that mess before it does. With the introduction of the new ro flags, keep two separate unsigned masks and check them against the appropriate u32. Since we no longer run afoul of sign extension, this also stops writing out 0xffffffff80000000 in root_item inodes going forward. Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 13:01:48 -07:00
old_fsflags = btrfs_inode_flags_to_fsflags(binode);
ret = check_fsflags(old_fsflags, fsflags);
if (ret)
return ret;
ret = check_fsflags_compatible(fs_info, fsflags);
if (ret)
return ret;
binode_flags = binode->flags;
if (fsflags & FS_SYNC_FL)
binode_flags |= BTRFS_INODE_SYNC;
else
binode_flags &= ~BTRFS_INODE_SYNC;
if (fsflags & FS_IMMUTABLE_FL)
binode_flags |= BTRFS_INODE_IMMUTABLE;
else
binode_flags &= ~BTRFS_INODE_IMMUTABLE;
if (fsflags & FS_APPEND_FL)
binode_flags |= BTRFS_INODE_APPEND;
else
binode_flags &= ~BTRFS_INODE_APPEND;
if (fsflags & FS_NODUMP_FL)
binode_flags |= BTRFS_INODE_NODUMP;
else
binode_flags &= ~BTRFS_INODE_NODUMP;
if (fsflags & FS_NOATIME_FL)
binode_flags |= BTRFS_INODE_NOATIME;
else
binode_flags &= ~BTRFS_INODE_NOATIME;
/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
if (!fa->flags_valid) {
/* 1 item for the inode */
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans))
return PTR_ERR(trans);
goto update_flags;
}
if (fsflags & FS_DIRSYNC_FL)
binode_flags |= BTRFS_INODE_DIRSYNC;
else
binode_flags &= ~BTRFS_INODE_DIRSYNC;
if (fsflags & FS_NOCOW_FL) {
if (S_ISREG(inode->i_mode)) {
btrfs: allow setting NOCOW for a zero sized file via ioctl Hi, the patch si simple, but it has user visible impact and I'm not quite sure how to resolve it. In short, $subj says it, chattr -C supports it and we want to use it. The conditions that acutally allow to change the NOCOW flag are clear. What if I try to set the flag on a file that is not empty? Options: 1) whole ioctl will fail, EINVAL 2.1) ioctl will succeed, the NOCOW flag will be silently removed, but the file will stay COW-ed and checksummed 2.2) ioctl will succeed, flag will not be removed and a syslog message will warn that the COW flag has not been changed 2.2.1) dtto, no syslog message Man page of chattr states that "If it is set on a file which already has data blocks, it is undefined when the blocks assigned to the file will be fully stable." Yes, it's undefined and with current implementation it'll never happen. So from this end, the user cannot expect anything. I'm trying to find a reasonable behaviour, so that a command like 'chattr -R -aijS +C' to tweak a broad set of flags in a deep directory does not fail unnecessarily and does not pollute the log. My personal preference is 2.2.1, but my dev's oppinion is skewed, not counting the fact that I know the code and otherwise would look there before consulting the documentation. The patch implements 2.2.1. david -------------8<------------------- From: David Sterba <dsterba@suse.cz> It's safe to turn off checksums for a zero sized file. http://thread.gmane.org/gmane.comp.file-systems.btrfs/18030 "We cannot switch on NODATASUM for a file that already has extents that are checksummed. The invariant here is that either all the extents or none are checksummed. Theoretically it's possible to add/remove all checksums from a given file, but it's a potentially longtime operation, the file has to be in some intermediate state where the checksums partially exist but have to be ignored (for the csum->nocsum) until the file is fully converted, this brings more special cases to extent handling, it has to survive power failure and remain consistent, and probably needs to be restarted after next mount." Signed-off-by: David Sterba <dsterba@suse.cz>
2012-09-07 05:56:55 -06:00
/*
* It's safe to turn csums off here, no extents exist.
* Otherwise we want the flag to reflect the real COW
* status of the file and will not set it.
*/
if (inode->i_size == 0)
binode_flags |= BTRFS_INODE_NODATACOW |
BTRFS_INODE_NODATASUM;
btrfs: allow setting NOCOW for a zero sized file via ioctl Hi, the patch si simple, but it has user visible impact and I'm not quite sure how to resolve it. In short, $subj says it, chattr -C supports it and we want to use it. The conditions that acutally allow to change the NOCOW flag are clear. What if I try to set the flag on a file that is not empty? Options: 1) whole ioctl will fail, EINVAL 2.1) ioctl will succeed, the NOCOW flag will be silently removed, but the file will stay COW-ed and checksummed 2.2) ioctl will succeed, flag will not be removed and a syslog message will warn that the COW flag has not been changed 2.2.1) dtto, no syslog message Man page of chattr states that "If it is set on a file which already has data blocks, it is undefined when the blocks assigned to the file will be fully stable." Yes, it's undefined and with current implementation it'll never happen. So from this end, the user cannot expect anything. I'm trying to find a reasonable behaviour, so that a command like 'chattr -R -aijS +C' to tweak a broad set of flags in a deep directory does not fail unnecessarily and does not pollute the log. My personal preference is 2.2.1, but my dev's oppinion is skewed, not counting the fact that I know the code and otherwise would look there before consulting the documentation. The patch implements 2.2.1. david -------------8<------------------- From: David Sterba <dsterba@suse.cz> It's safe to turn off checksums for a zero sized file. http://thread.gmane.org/gmane.comp.file-systems.btrfs/18030 "We cannot switch on NODATASUM for a file that already has extents that are checksummed. The invariant here is that either all the extents or none are checksummed. Theoretically it's possible to add/remove all checksums from a given file, but it's a potentially longtime operation, the file has to be in some intermediate state where the checksums partially exist but have to be ignored (for the csum->nocsum) until the file is fully converted, this brings more special cases to extent handling, it has to survive power failure and remain consistent, and probably needs to be restarted after next mount." Signed-off-by: David Sterba <dsterba@suse.cz>
2012-09-07 05:56:55 -06:00
} else {
binode_flags |= BTRFS_INODE_NODATACOW;
btrfs: allow setting NOCOW for a zero sized file via ioctl Hi, the patch si simple, but it has user visible impact and I'm not quite sure how to resolve it. In short, $subj says it, chattr -C supports it and we want to use it. The conditions that acutally allow to change the NOCOW flag are clear. What if I try to set the flag on a file that is not empty? Options: 1) whole ioctl will fail, EINVAL 2.1) ioctl will succeed, the NOCOW flag will be silently removed, but the file will stay COW-ed and checksummed 2.2) ioctl will succeed, flag will not be removed and a syslog message will warn that the COW flag has not been changed 2.2.1) dtto, no syslog message Man page of chattr states that "If it is set on a file which already has data blocks, it is undefined when the blocks assigned to the file will be fully stable." Yes, it's undefined and with current implementation it'll never happen. So from this end, the user cannot expect anything. I'm trying to find a reasonable behaviour, so that a command like 'chattr -R -aijS +C' to tweak a broad set of flags in a deep directory does not fail unnecessarily and does not pollute the log. My personal preference is 2.2.1, but my dev's oppinion is skewed, not counting the fact that I know the code and otherwise would look there before consulting the documentation. The patch implements 2.2.1. david -------------8<------------------- From: David Sterba <dsterba@suse.cz> It's safe to turn off checksums for a zero sized file. http://thread.gmane.org/gmane.comp.file-systems.btrfs/18030 "We cannot switch on NODATASUM for a file that already has extents that are checksummed. The invariant here is that either all the extents or none are checksummed. Theoretically it's possible to add/remove all checksums from a given file, but it's a potentially longtime operation, the file has to be in some intermediate state where the checksums partially exist but have to be ignored (for the csum->nocsum) until the file is fully converted, this brings more special cases to extent handling, it has to survive power failure and remain consistent, and probably needs to be restarted after next mount." Signed-off-by: David Sterba <dsterba@suse.cz>
2012-09-07 05:56:55 -06:00
}
} else {
/*
* Revert back under same assumptions as above
btrfs: allow setting NOCOW for a zero sized file via ioctl Hi, the patch si simple, but it has user visible impact and I'm not quite sure how to resolve it. In short, $subj says it, chattr -C supports it and we want to use it. The conditions that acutally allow to change the NOCOW flag are clear. What if I try to set the flag on a file that is not empty? Options: 1) whole ioctl will fail, EINVAL 2.1) ioctl will succeed, the NOCOW flag will be silently removed, but the file will stay COW-ed and checksummed 2.2) ioctl will succeed, flag will not be removed and a syslog message will warn that the COW flag has not been changed 2.2.1) dtto, no syslog message Man page of chattr states that "If it is set on a file which already has data blocks, it is undefined when the blocks assigned to the file will be fully stable." Yes, it's undefined and with current implementation it'll never happen. So from this end, the user cannot expect anything. I'm trying to find a reasonable behaviour, so that a command like 'chattr -R -aijS +C' to tweak a broad set of flags in a deep directory does not fail unnecessarily and does not pollute the log. My personal preference is 2.2.1, but my dev's oppinion is skewed, not counting the fact that I know the code and otherwise would look there before consulting the documentation. The patch implements 2.2.1. david -------------8<------------------- From: David Sterba <dsterba@suse.cz> It's safe to turn off checksums for a zero sized file. http://thread.gmane.org/gmane.comp.file-systems.btrfs/18030 "We cannot switch on NODATASUM for a file that already has extents that are checksummed. The invariant here is that either all the extents or none are checksummed. Theoretically it's possible to add/remove all checksums from a given file, but it's a potentially longtime operation, the file has to be in some intermediate state where the checksums partially exist but have to be ignored (for the csum->nocsum) until the file is fully converted, this brings more special cases to extent handling, it has to survive power failure and remain consistent, and probably needs to be restarted after next mount." Signed-off-by: David Sterba <dsterba@suse.cz>
2012-09-07 05:56:55 -06:00
*/
if (S_ISREG(inode->i_mode)) {
btrfs: allow setting NOCOW for a zero sized file via ioctl Hi, the patch si simple, but it has user visible impact and I'm not quite sure how to resolve it. In short, $subj says it, chattr -C supports it and we want to use it. The conditions that acutally allow to change the NOCOW flag are clear. What if I try to set the flag on a file that is not empty? Options: 1) whole ioctl will fail, EINVAL 2.1) ioctl will succeed, the NOCOW flag will be silently removed, but the file will stay COW-ed and checksummed 2.2) ioctl will succeed, flag will not be removed and a syslog message will warn that the COW flag has not been changed 2.2.1) dtto, no syslog message Man page of chattr states that "If it is set on a file which already has data blocks, it is undefined when the blocks assigned to the file will be fully stable." Yes, it's undefined and with current implementation it'll never happen. So from this end, the user cannot expect anything. I'm trying to find a reasonable behaviour, so that a command like 'chattr -R -aijS +C' to tweak a broad set of flags in a deep directory does not fail unnecessarily and does not pollute the log. My personal preference is 2.2.1, but my dev's oppinion is skewed, not counting the fact that I know the code and otherwise would look there before consulting the documentation. The patch implements 2.2.1. david -------------8<------------------- From: David Sterba <dsterba@suse.cz> It's safe to turn off checksums for a zero sized file. http://thread.gmane.org/gmane.comp.file-systems.btrfs/18030 "We cannot switch on NODATASUM for a file that already has extents that are checksummed. The invariant here is that either all the extents or none are checksummed. Theoretically it's possible to add/remove all checksums from a given file, but it's a potentially longtime operation, the file has to be in some intermediate state where the checksums partially exist but have to be ignored (for the csum->nocsum) until the file is fully converted, this brings more special cases to extent handling, it has to survive power failure and remain consistent, and probably needs to be restarted after next mount." Signed-off-by: David Sterba <dsterba@suse.cz>
2012-09-07 05:56:55 -06:00
if (inode->i_size == 0)
binode_flags &= ~(BTRFS_INODE_NODATACOW |
BTRFS_INODE_NODATASUM);
btrfs: allow setting NOCOW for a zero sized file via ioctl Hi, the patch si simple, but it has user visible impact and I'm not quite sure how to resolve it. In short, $subj says it, chattr -C supports it and we want to use it. The conditions that acutally allow to change the NOCOW flag are clear. What if I try to set the flag on a file that is not empty? Options: 1) whole ioctl will fail, EINVAL 2.1) ioctl will succeed, the NOCOW flag will be silently removed, but the file will stay COW-ed and checksummed 2.2) ioctl will succeed, flag will not be removed and a syslog message will warn that the COW flag has not been changed 2.2.1) dtto, no syslog message Man page of chattr states that "If it is set on a file which already has data blocks, it is undefined when the blocks assigned to the file will be fully stable." Yes, it's undefined and with current implementation it'll never happen. So from this end, the user cannot expect anything. I'm trying to find a reasonable behaviour, so that a command like 'chattr -R -aijS +C' to tweak a broad set of flags in a deep directory does not fail unnecessarily and does not pollute the log. My personal preference is 2.2.1, but my dev's oppinion is skewed, not counting the fact that I know the code and otherwise would look there before consulting the documentation. The patch implements 2.2.1. david -------------8<------------------- From: David Sterba <dsterba@suse.cz> It's safe to turn off checksums for a zero sized file. http://thread.gmane.org/gmane.comp.file-systems.btrfs/18030 "We cannot switch on NODATASUM for a file that already has extents that are checksummed. The invariant here is that either all the extents or none are checksummed. Theoretically it's possible to add/remove all checksums from a given file, but it's a potentially longtime operation, the file has to be in some intermediate state where the checksums partially exist but have to be ignored (for the csum->nocsum) until the file is fully converted, this brings more special cases to extent handling, it has to survive power failure and remain consistent, and probably needs to be restarted after next mount." Signed-off-by: David Sterba <dsterba@suse.cz>
2012-09-07 05:56:55 -06:00
} else {
binode_flags &= ~BTRFS_INODE_NODATACOW;
btrfs: allow setting NOCOW for a zero sized file via ioctl Hi, the patch si simple, but it has user visible impact and I'm not quite sure how to resolve it. In short, $subj says it, chattr -C supports it and we want to use it. The conditions that acutally allow to change the NOCOW flag are clear. What if I try to set the flag on a file that is not empty? Options: 1) whole ioctl will fail, EINVAL 2.1) ioctl will succeed, the NOCOW flag will be silently removed, but the file will stay COW-ed and checksummed 2.2) ioctl will succeed, flag will not be removed and a syslog message will warn that the COW flag has not been changed 2.2.1) dtto, no syslog message Man page of chattr states that "If it is set on a file which already has data blocks, it is undefined when the blocks assigned to the file will be fully stable." Yes, it's undefined and with current implementation it'll never happen. So from this end, the user cannot expect anything. I'm trying to find a reasonable behaviour, so that a command like 'chattr -R -aijS +C' to tweak a broad set of flags in a deep directory does not fail unnecessarily and does not pollute the log. My personal preference is 2.2.1, but my dev's oppinion is skewed, not counting the fact that I know the code and otherwise would look there before consulting the documentation. The patch implements 2.2.1. david -------------8<------------------- From: David Sterba <dsterba@suse.cz> It's safe to turn off checksums for a zero sized file. http://thread.gmane.org/gmane.comp.file-systems.btrfs/18030 "We cannot switch on NODATASUM for a file that already has extents that are checksummed. The invariant here is that either all the extents or none are checksummed. Theoretically it's possible to add/remove all checksums from a given file, but it's a potentially longtime operation, the file has to be in some intermediate state where the checksums partially exist but have to be ignored (for the csum->nocsum) until the file is fully converted, this brings more special cases to extent handling, it has to survive power failure and remain consistent, and probably needs to be restarted after next mount." Signed-off-by: David Sterba <dsterba@suse.cz>
2012-09-07 05:56:55 -06:00
}
}
/*
* The COMPRESS flag can only be changed by users, while the NOCOMPRESS
* flag may be changed automatically if compression code won't make
* things smaller.
*/
if (fsflags & FS_NOCOMP_FL) {
binode_flags &= ~BTRFS_INODE_COMPRESS;
binode_flags |= BTRFS_INODE_NOCOMPRESS;
} else if (fsflags & FS_COMPR_FL) {
Btrfs: add support for inode properties This change adds infrastructure to allow for generic properties for inodes. Properties are name/value pairs that can be associated with inodes for different purposes. They are stored as xattrs with the prefix "btrfs." Properties can be inherited - this means when a directory inode has inheritable properties set, these are added to new inodes created under that directory. Further, subvolumes can also have properties associated with them, and they can be inherited from their parent subvolume. Naturally, directory properties have priority over subvolume properties (in practice a subvolume property is just a regular property associated with the root inode, objectid 256, of the subvolume's fs tree). This change also adds one specific property implementation, named "compression", whose values can be "lzo" or "zlib" and it's an inheritable property. The corresponding changes to btrfs-progs were also implemented. A patch with xfstests for this feature will follow once there's agreement on this change/feature. Further, the script at the bottom of this commit message was used to do some benchmarks to measure any performance penalties of this feature. Basically the tests correspond to: Test 1 - create a filesystem and mount it with compress-force=lzo, then sequentially create N files of 64Kb each, measure how long it took to create the files, unmount the filesystem, mount the filesystem and perform an 'ls -lha' against the test directory holding the N files, and report the time the command took. Test 2 - create a filesystem and don't use any compression option when mounting it - instead set the compression property of the subvolume's root to 'lzo'. Then create N files of 64Kb, and report the time it took. The unmount the filesystem, mount it again and perform an 'ls -lha' like in the former test. This means every single file ends up with a property (xattr) associated to it. Test 3 - same as test 2, but uses 4 properties - 3 are duplicates of the compression property, have no real effect other than adding more work when inheriting properties and taking more btree leaf space. Test 4 - same as test 3 but with 10 properties per file. Results (in seconds, and averages of 5 runs each), for different N numbers of files follow. * Without properties (test 1) file creation time ls -lha time 10 000 files 3.49 0.76 100 000 files 47.19 8.37 1 000 000 files 518.51 107.06 * With 1 property (compression property set to lzo - test 2) file creation time ls -lha time 10 000 files 3.63 0.93 100 000 files 48.56 9.74 1 000 000 files 537.72 125.11 * With 4 properties (test 3) file creation time ls -lha time 10 000 files 3.94 1.20 100 000 files 52.14 11.48 1 000 000 files 572.70 142.13 * With 10 properties (test 4) file creation time ls -lha time 10 000 files 4.61 1.35 100 000 files 58.86 13.83 1 000 000 files 656.01 177.61 The increased latencies with properties are essencialy because of: *) When creating an inode, we now synchronously write 1 more item (an xattr item) for each property inherited from the parent dir (or subvolume). This could be done in an asynchronous way such as we do for dir intex items (delayed-inode.c), which could help reduce the file creation latency; *) With properties, we now have larger fs trees. For this particular test each xattr item uses 75 bytes of leaf space in the fs tree. This could be less by using a new item for xattr items, instead of the current btrfs_dir_item, since we could cut the 'location' and 'type' fields (saving 18 bytes) and maybe 'transid' too (saving a total of 26 bytes per xattr item) from the btrfs_dir_item type. Also tried batching the xattr insertions (ignoring proper hash collision handling, since it didn't exist) when creating files that inherit properties from their parent inode/subvolume, but the end results were (surprisingly) essentially the same. Test script: $ cat test.pl #!/usr/bin/perl -w use strict; use Time::HiRes qw(time); use constant NUM_FILES => 10_000; use constant FILE_SIZES => (64 * 1024); use constant DEV => '/dev/sdb4'; use constant MNT_POINT => '/home/fdmanana/btrfs-tests/dev'; use constant TEST_DIR => (MNT_POINT . '/testdir'); system("mkfs.btrfs", "-l", "16384", "-f", DEV) == 0 or die "mkfs.btrfs failed!"; # following line for testing without properties #system("mount", "-o", "compress-force=lzo", DEV, MNT_POINT) == 0 or die "mount failed!"; # following 2 lines for testing with properties system("mount", DEV, MNT_POINT) == 0 or die "mount failed!"; system("btrfs", "prop", "set", MNT_POINT, "compression", "lzo") == 0 or die "set prop failed!"; system("mkdir", TEST_DIR) == 0 or die "mkdir failed!"; my ($t1, $t2); $t1 = time(); for (my $i = 1; $i <= NUM_FILES; $i++) { my $p = TEST_DIR . '/file_' . $i; open(my $f, '>', $p) or die "Error opening file!"; $f->autoflush(1); for (my $j = 0; $j < FILE_SIZES; $j += 4096) { print $f ('A' x 4096) or die "Error writing to file!"; } close($f); } $t2 = time(); print "Time to create " . NUM_FILES . ": " . ($t2 - $t1) . " seconds.\n"; system("umount", DEV) == 0 or die "umount failed!"; system("mount", DEV, MNT_POINT) == 0 or die "mount failed!"; $t1 = time(); system("bash -c 'ls -lha " . TEST_DIR . " > /dev/null'") == 0 or die "ls failed!"; $t2 = time(); print "Time to ls -lha all files: " . ($t2 - $t1) . " seconds.\n"; system("umount", DEV) == 0 or die "umount failed!"; Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:47:46 +00:00
if (IS_SWAPFILE(inode))
return -ETXTBSY;
binode_flags |= BTRFS_INODE_COMPRESS;
binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
Btrfs: add support for inode properties This change adds infrastructure to allow for generic properties for inodes. Properties are name/value pairs that can be associated with inodes for different purposes. They are stored as xattrs with the prefix "btrfs." Properties can be inherited - this means when a directory inode has inheritable properties set, these are added to new inodes created under that directory. Further, subvolumes can also have properties associated with them, and they can be inherited from their parent subvolume. Naturally, directory properties have priority over subvolume properties (in practice a subvolume property is just a regular property associated with the root inode, objectid 256, of the subvolume's fs tree). This change also adds one specific property implementation, named "compression", whose values can be "lzo" or "zlib" and it's an inheritable property. The corresponding changes to btrfs-progs were also implemented. A patch with xfstests for this feature will follow once there's agreement on this change/feature. Further, the script at the bottom of this commit message was used to do some benchmarks to measure any performance penalties of this feature. Basically the tests correspond to: Test 1 - create a filesystem and mount it with compress-force=lzo, then sequentially create N files of 64Kb each, measure how long it took to create the files, unmount the filesystem, mount the filesystem and perform an 'ls -lha' against the test directory holding the N files, and report the time the command took. Test 2 - create a filesystem and don't use any compression option when mounting it - instead set the compression property of the subvolume's root to 'lzo'. Then create N files of 64Kb, and report the time it took. The unmount the filesystem, mount it again and perform an 'ls -lha' like in the former test. This means every single file ends up with a property (xattr) associated to it. Test 3 - same as test 2, but uses 4 properties - 3 are duplicates of the compression property, have no real effect other than adding more work when inheriting properties and taking more btree leaf space. Test 4 - same as test 3 but with 10 properties per file. Results (in seconds, and averages of 5 runs each), for different N numbers of files follow. * Without properties (test 1) file creation time ls -lha time 10 000 files 3.49 0.76 100 000 files 47.19 8.37 1 000 000 files 518.51 107.06 * With 1 property (compression property set to lzo - test 2) file creation time ls -lha time 10 000 files 3.63 0.93 100 000 files 48.56 9.74 1 000 000 files 537.72 125.11 * With 4 properties (test 3) file creation time ls -lha time 10 000 files 3.94 1.20 100 000 files 52.14 11.48 1 000 000 files 572.70 142.13 * With 10 properties (test 4) file creation time ls -lha time 10 000 files 4.61 1.35 100 000 files 58.86 13.83 1 000 000 files 656.01 177.61 The increased latencies with properties are essencialy because of: *) When creating an inode, we now synchronously write 1 more item (an xattr item) for each property inherited from the parent dir (or subvolume). This could be done in an asynchronous way such as we do for dir intex items (delayed-inode.c), which could help reduce the file creation latency; *) With properties, we now have larger fs trees. For this particular test each xattr item uses 75 bytes of leaf space in the fs tree. This could be less by using a new item for xattr items, instead of the current btrfs_dir_item, since we could cut the 'location' and 'type' fields (saving 18 bytes) and maybe 'transid' too (saving a total of 26 bytes per xattr item) from the btrfs_dir_item type. Also tried batching the xattr insertions (ignoring proper hash collision handling, since it didn't exist) when creating files that inherit properties from their parent inode/subvolume, but the end results were (surprisingly) essentially the same. Test script: $ cat test.pl #!/usr/bin/perl -w use strict; use Time::HiRes qw(time); use constant NUM_FILES => 10_000; use constant FILE_SIZES => (64 * 1024); use constant DEV => '/dev/sdb4'; use constant MNT_POINT => '/home/fdmanana/btrfs-tests/dev'; use constant TEST_DIR => (MNT_POINT . '/testdir'); system("mkfs.btrfs", "-l", "16384", "-f", DEV) == 0 or die "mkfs.btrfs failed!"; # following line for testing without properties #system("mount", "-o", "compress-force=lzo", DEV, MNT_POINT) == 0 or die "mount failed!"; # following 2 lines for testing with properties system("mount", DEV, MNT_POINT) == 0 or die "mount failed!"; system("btrfs", "prop", "set", MNT_POINT, "compression", "lzo") == 0 or die "set prop failed!"; system("mkdir", TEST_DIR) == 0 or die "mkdir failed!"; my ($t1, $t2); $t1 = time(); for (my $i = 1; $i <= NUM_FILES; $i++) { my $p = TEST_DIR . '/file_' . $i; open(my $f, '>', $p) or die "Error opening file!"; $f->autoflush(1); for (my $j = 0; $j < FILE_SIZES; $j += 4096) { print $f ('A' x 4096) or die "Error writing to file!"; } close($f); } $t2 = time(); print "Time to create " . NUM_FILES . ": " . ($t2 - $t1) . " seconds.\n"; system("umount", DEV) == 0 or die "umount failed!"; system("mount", DEV, MNT_POINT) == 0 or die "mount failed!"; $t1 = time(); system("bash -c 'ls -lha " . TEST_DIR . " > /dev/null'") == 0 or die "ls failed!"; $t2 = time(); print "Time to ls -lha all files: " . ($t2 - $t1) . " seconds.\n"; system("umount", DEV) == 0 or die "umount failed!"; Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:47:46 +00:00
comp = btrfs_compress_type2str(fs_info->compress_type);
if (!comp || comp[0] == 0)
comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
} else {
binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
}
/*
* 1 for inode item
* 2 for properties
*/
trans = btrfs_start_transaction(root, 3);
if (IS_ERR(trans))
return PTR_ERR(trans);
if (comp) {
ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
strlen(comp), 0);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_end_trans;
}
} else {
ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
0, 0);
if (ret && ret != -ENODATA) {
btrfs_abort_transaction(trans, ret);
goto out_end_trans;
}
}
update_flags:
binode->flags = binode_flags;
btrfs_sync_inode_flags_to_i_flags(inode);
inode_inc_iversion(inode);
inode->i_ctime = current_time(inode);
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
out_end_trans:
btrfs_end_transaction(trans);
return ret;
}
/*
* Start exclusive operation @type, return true on success
*/
bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation type)
{
bool ret = false;
spin_lock(&fs_info->super_lock);
if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
fs_info->exclusive_operation = type;
ret = true;
}
spin_unlock(&fs_info->super_lock);
return ret;
}
/*
* Conditionally allow to enter the exclusive operation in case it's compatible
* with the running one. This must be paired with btrfs_exclop_start_unlock and
* btrfs_exclop_finish.
*
* Compatibility:
* - the same type is already running
* - when trying to add a device and balance has been paused
* - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
* must check the condition first that would allow none -> @type
*/
bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation type)
{
spin_lock(&fs_info->super_lock);
if (fs_info->exclusive_operation == type ||
(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
type == BTRFS_EXCLOP_DEV_ADD))
return true;
spin_unlock(&fs_info->super_lock);
return false;
}
void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
{
spin_unlock(&fs_info->super_lock);
}
void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
{
spin_lock(&fs_info->super_lock);
WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
spin_unlock(&fs_info->super_lock);
sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
}
void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation op)
{
switch (op) {
case BTRFS_EXCLOP_BALANCE_PAUSED:
spin_lock(&fs_info->super_lock);
ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
btrfs: fix assertion of exclop condition when starting balance Balance as exclusive state is compatible with paused balance and device add, which makes some things more complicated. The assertion of valid states when starting from paused balance needs to take into account two more states, the combinations can be hit when there are several threads racing to start balance and device add. This won't typically happen when the commands are started from command line. Scenario 1: With exclusive_operation state == BTRFS_EXCLOP_NONE. Concurrently adding multiple devices to the same mount point and btrfs_exclop_finish executed finishes before assertion in btrfs_exclop_balance, exclusive_operation will changed to BTRFS_EXCLOP_NONE state which lead to assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD, in fs/btrfs/ioctl.c:456 Call Trace: <TASK> btrfs_exclop_balance+0x13c/0x310 ? memdup_user+0xab/0xc0 ? PTR_ERR+0x17/0x20 btrfs_ioctl_add_dev+0x2ee/0x320 btrfs_ioctl+0x9d5/0x10d0 ? btrfs_ioctl_encoded_write+0xb80/0xb80 __x64_sys_ioctl+0x197/0x210 do_syscall_64+0x3c/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd Scenario 2: With exclusive_operation state == BTRFS_EXCLOP_BALANCE_PAUSED. Concurrently adding multiple devices to the same mount point and btrfs_exclop_balance executed finish before the latter thread execute assertion in btrfs_exclop_balance, exclusive_operation will changed to BTRFS_EXCLOP_BALANCE_PAUSED state which lead to assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || fs_info->exclusive_operation == BTRFS_EXCLOP_NONE, fs/btrfs/ioctl.c:458 Call Trace: <TASK> btrfs_exclop_balance+0x240/0x410 ? memdup_user+0xab/0xc0 ? PTR_ERR+0x17/0x20 btrfs_ioctl_add_dev+0x2ee/0x320 btrfs_ioctl+0x9d5/0x10d0 ? btrfs_ioctl_encoded_write+0xb80/0xb80 __x64_sys_ioctl+0x197/0x210 do_syscall_64+0x3c/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd An example of the failed assertion is below, which shows that the paused balance is also needed to be checked. root@syzkaller:/home/xsk# ./repro Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 [ 416.611428][ T7970] BTRFS info (device loop0): fs_info exclusive_operation: 0 Failed to add device /dev/vda, errno 14 [ 416.613973][ T7971] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.615456][ T7972] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.617528][ T7973] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.618359][ T7974] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.622589][ T7975] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.624034][ T7976] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.626420][ T7977] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.627643][ T7978] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.629006][ T7979] BTRFS info (device loop0): fs_info exclusive_operation: 3 [ 416.630298][ T7980] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 [ 416.632787][ T7981] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.634282][ T7982] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.636202][ T7983] BTRFS info (device loop0): fs_info exclusive_operation: 3 [ 416.637012][ T7984] BTRFS info (device loop0): fs_info exclusive_operation: 1 Failed to add device /dev/vda, errno 14 [ 416.637759][ T7984] assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || fs_info->exclusive_operation == BTRFS_EXCLOP_NONE, in fs/btrfs/ioctl.c:458 [ 416.639845][ T7984] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [ 416.640485][ T7984] CPU: 0 PID: 7984 Comm: repro Not tainted 6.2.0 #7 [ 416.641172][ T7984] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 416.642090][ T7984] RIP: 0010:btrfs_assertfail+0x2c/0x2e [ 416.644423][ T7984] RSP: 0018:ffffc90003ea7e28 EFLAGS: 00010282 [ 416.645018][ T7984] RAX: 00000000000000cc RBX: 0000000000000000 RCX: 0000000000000000 [ 416.645763][ T7984] RDX: ffff88801d030000 RSI: ffffffff81637e7c RDI: fffff520007d4fb7 [ 416.646554][ T7984] RBP: ffffffff8a533de0 R08: 00000000000000cc R09: 0000000000000000 [ 416.647299][ T7984] R10: 0000000000000001 R11: 0000000000000001 R12: ffffffff8a533da0 [ 416.648041][ T7984] R13: 00000000000001ca R14: 000000005000940a R15: 0000000000000000 [ 416.648785][ T7984] FS: 00007fa2985d4640(0000) GS:ffff88802cc00000(0000) knlGS:0000000000000000 [ 416.649616][ T7984] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 416.650238][ T7984] CR2: 0000000000000000 CR3: 0000000018e5e000 CR4: 0000000000750ef0 [ 416.650980][ T7984] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 416.651725][ T7984] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 416.652502][ T7984] PKRU: 55555554 [ 416.652888][ T7984] Call Trace: [ 416.653241][ T7984] <TASK> [ 416.653527][ T7984] btrfs_exclop_balance+0x240/0x410 [ 416.654036][ T7984] ? memdup_user+0xab/0xc0 [ 416.654465][ T7984] ? PTR_ERR+0x17/0x20 [ 416.654874][ T7984] btrfs_ioctl_add_dev+0x2ee/0x320 [ 416.655380][ T7984] btrfs_ioctl+0x9d5/0x10d0 [ 416.655822][ T7984] ? btrfs_ioctl_encoded_write+0xb80/0xb80 [ 416.656400][ T7984] __x64_sys_ioctl+0x197/0x210 [ 416.656874][ T7984] do_syscall_64+0x3c/0xb0 [ 416.657346][ T7984] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 416.657922][ T7984] RIP: 0033:0x4546af [ 416.660170][ T7984] RSP: 002b:00007fa2985d4150 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [ 416.660972][ T7984] RAX: ffffffffffffffda RBX: 00007fa2985d4640 RCX: 00000000004546af [ 416.661714][ T7984] RDX: 0000000000000000 RSI: 000000005000940a RDI: 0000000000000003 [ 416.662449][ T7984] RBP: 00007fa2985d41d0 R08: 0000000000000000 R09: 00007ffee37a4c4f [ 416.663195][ T7984] R10: 0000000000000000 R11: 0000000000000246 R12: 00007fa2985d4640 [ 416.663951][ T7984] R13: 0000000000000009 R14: 000000000041b320 R15: 00007fa297dd4000 [ 416.664703][ T7984] </TASK> [ 416.665040][ T7984] Modules linked in: [ 416.665590][ T7984] ---[ end trace 0000000000000000 ]--- [ 416.666176][ T7984] RIP: 0010:btrfs_assertfail+0x2c/0x2e [ 416.668775][ T7984] RSP: 0018:ffffc90003ea7e28 EFLAGS: 00010282 [ 416.669425][ T7984] RAX: 00000000000000cc RBX: 0000000000000000 RCX: 0000000000000000 [ 416.670235][ T7984] RDX: ffff88801d030000 RSI: ffffffff81637e7c RDI: fffff520007d4fb7 [ 416.671050][ T7984] RBP: ffffffff8a533de0 R08: 00000000000000cc R09: 0000000000000000 [ 416.671867][ T7984] R10: 0000000000000001 R11: 0000000000000001 R12: ffffffff8a533da0 [ 416.672685][ T7984] R13: 00000000000001ca R14: 000000005000940a R15: 0000000000000000 [ 416.673501][ T7984] FS: 00007fa2985d4640(0000) GS:ffff88802cc00000(0000) knlGS:0000000000000000 [ 416.674425][ T7984] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 416.675114][ T7984] CR2: 0000000000000000 CR3: 0000000018e5e000 CR4: 0000000000750ef0 [ 416.675933][ T7984] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 416.676760][ T7984] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Link: https://lore.kernel.org/linux-btrfs/20230324031611.98986-1-xiaoshoukui@gmail.com/ CC: stable@vger.kernel.org # 6.1+ Signed-off-by: xiaoshoukui <xiaoshoukui@ruijie.com.cn> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-13 05:55:07 -04:00
fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
spin_unlock(&fs_info->super_lock);
break;
case BTRFS_EXCLOP_BALANCE:
spin_lock(&fs_info->super_lock);
ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
spin_unlock(&fs_info->super_lock);
break;
default:
btrfs_warn(fs_info,
"invalid exclop balance operation %d requested", op);
}
}
static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
{
return put_user(inode->i_generation, arg);
}
static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_device *device;
struct fstrim_range range;
u64 minlen = ULLONG_MAX;
u64 num_devices = 0;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
/*
* btrfs_trim_block_group() depends on space cache, which is not
* available in zoned filesystem. So, disallow fitrim on a zoned
* filesystem for now.
*/
if (btrfs_is_zoned(fs_info))
return -EOPNOTSUPP;
/*
* If the fs is mounted with nologreplay, which requires it to be
* mounted in RO mode as well, we can not allow discard on free space
* inside block groups, because log trees refer to extents that are not
* pinned in a block group's free space cache (pinning the extents is
* precisely the first phase of replaying a log tree).
*/
if (btrfs_test_opt(fs_info, NOLOGREPLAY))
return -EROFS;
rcu_read_lock();
list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
dev_list) {
if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
continue;
num_devices++;
minlen = min_t(u64, bdev_discard_granularity(device->bdev),
minlen);
}
rcu_read_unlock();
if (!num_devices)
return -EOPNOTSUPP;
if (copy_from_user(&range, arg, sizeof(range)))
return -EFAULT;
/*
* NOTE: Don't truncate the range using super->total_bytes. Bytenr of
* block group is in the logical address space, which can be any
* sectorsize aligned bytenr in the range [0, U64_MAX].
*/
if (range.len < fs_info->sb->s_blocksize)
return -EINVAL;
range.minlen = max(range.minlen, minlen);
ret = btrfs_trim_fs(fs_info, &range);
if (ret < 0)
return ret;
if (copy_to_user(arg, &range, sizeof(range)))
return -EFAULT;
return 0;
}
int __pure btrfs_is_empty_uuid(u8 *uuid)
{
int i;
for (i = 0; i < BTRFS_UUID_SIZE; i++) {
if (uuid[i])
return 0;
}
return 1;
}
/*
* Calculate the number of transaction items to reserve for creating a subvolume
* or snapshot, not including the inode, directory entries, or parent directory.
*/
static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
{
/*
* 1 to add root block
* 1 to add root item
* 1 to add root ref
* 1 to add root backref
* 1 to add UUID item
* 1 to add qgroup info
* 1 to add qgroup limit
*
* Ideally the last two would only be accounted if qgroups are enabled,
* but that can change between now and the time we would insert them.
*/
unsigned int num_items = 7;
if (inherit) {
/* 2 to add qgroup relations for each inherited qgroup */
num_items += 2 * inherit->num_qgroups;
}
return num_items;
}
static noinline int create_subvol(struct mnt_idmap *idmap,
struct inode *dir, struct dentry *dentry,
struct btrfs_qgroup_inherit *inherit)
{
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
struct btrfs_trans_handle *trans;
struct btrfs_key key;
struct btrfs_root_item *root_item;
struct btrfs_inode_item *inode_item;
struct extent_buffer *leaf;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_root *new_root;
struct btrfs_block_rsv block_rsv;
vfs: change inode times to use struct timespec64 struct timespec is not y2038 safe. Transition vfs to use y2038 safe struct timespec64 instead. The change was made with the help of the following cocinelle script. This catches about 80% of the changes. All the header file and logic changes are included in the first 5 rules. The rest are trivial substitutions. I avoid changing any of the function signatures or any other filesystem specific data structures to keep the patch simple for review. The script can be a little shorter by combining different cases. But, this version was sufficient for my usecase. virtual patch @ depends on patch @ identifier now; @@ - struct timespec + struct timespec64 current_time ( ... ) { - struct timespec now = current_kernel_time(); + struct timespec64 now = current_kernel_time64(); ... - return timespec_trunc( + return timespec64_trunc( ... ); } @ depends on patch @ identifier xtime; @@ struct \( iattr \| inode \| kstat \) { ... - struct timespec xtime; + struct timespec64 xtime; ... } @ depends on patch @ identifier t; @@ struct inode_operations { ... int (*update_time) (..., - struct timespec t, + struct timespec64 t, ...); ... } @ depends on patch @ identifier t; identifier fn_update_time =~ "update_time$"; @@ fn_update_time (..., - struct timespec *t, + struct timespec64 *t, ...) { ... } @ depends on patch @ identifier t; @@ lease_get_mtime( ... , - struct timespec *t + struct timespec64 *t ) { ... } @te depends on patch forall@ identifier ts; local idexpression struct inode *inode_node; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn_update_time =~ "update_time$"; identifier fn; expression e, E3; local idexpression struct inode *node1; local idexpression struct inode *node2; local idexpression struct iattr *attr1; local idexpression struct iattr *attr2; local idexpression struct iattr attr; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; @@ ( ( - struct timespec ts; + struct timespec64 ts; | - struct timespec ts = current_time(inode_node); + struct timespec64 ts = current_time(inode_node); ) <+... when != ts ( - timespec_equal(&inode_node->i_xtime, &ts) + timespec64_equal(&inode_node->i_xtime, &ts) | - timespec_equal(&ts, &inode_node->i_xtime) + timespec64_equal(&ts, &inode_node->i_xtime) | - timespec_compare(&inode_node->i_xtime, &ts) + timespec64_compare(&inode_node->i_xtime, &ts) | - timespec_compare(&ts, &inode_node->i_xtime) + timespec64_compare(&ts, &inode_node->i_xtime) | ts = current_time(e) | fn_update_time(..., &ts,...) | inode_node->i_xtime = ts | node1->i_xtime = ts | ts = inode_node->i_xtime | <+... attr1->ia_xtime ...+> = ts | ts = attr1->ia_xtime | ts.tv_sec | ts.tv_nsec | btrfs_set_stack_timespec_sec(..., ts.tv_sec) | btrfs_set_stack_timespec_nsec(..., ts.tv_nsec) | - ts = timespec64_to_timespec( + ts = ... -) | - ts = ktime_to_timespec( + ts = ktime_to_timespec64( ...) | - ts = E3 + ts = timespec_to_timespec64(E3) | - ktime_get_real_ts(&ts) + ktime_get_real_ts64(&ts) | fn(..., - ts + timespec64_to_timespec(ts) ,...) ) ...+> ( <... when != ts - return ts; + return timespec64_to_timespec(ts); ...> ) | - timespec_equal(&node1->i_xtime1, &node2->i_xtime2) + timespec64_equal(&node1->i_xtime2, &node2->i_xtime2) | - timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2) + timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2) | - timespec_compare(&node1->i_xtime1, &node2->i_xtime2) + timespec64_compare(&node1->i_xtime1, &node2->i_xtime2) | node1->i_xtime1 = - timespec_trunc(attr1->ia_xtime1, + timespec64_trunc(attr1->ia_xtime1, ...) | - attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2, + attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2, ...) | - ktime_get_real_ts(&attr1->ia_xtime1) + ktime_get_real_ts64(&attr1->ia_xtime1) | - ktime_get_real_ts(&attr.ia_xtime1) + ktime_get_real_ts64(&attr.ia_xtime1) ) @ depends on patch @ struct inode *node; struct iattr *attr; identifier fn; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; expression e; @@ ( - fn(node->i_xtime); + fn(timespec64_to_timespec(node->i_xtime)); | fn(..., - node->i_xtime); + timespec64_to_timespec(node->i_xtime)); | - e = fn(attr->ia_xtime); + e = fn(timespec64_to_timespec(attr->ia_xtime)); ) @ depends on patch forall @ struct inode *node; struct iattr *attr; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); fn (..., - &attr->ia_xtime, + &ts, ...); ) ...+> } @ depends on patch forall @ struct inode *node; struct iattr *attr; struct kstat *stat; identifier ia_xtime =~ "^ia_[acm]time$"; identifier i_xtime =~ "^i_[acm]time$"; identifier xtime =~ "^[acm]time$"; identifier fn, ret; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime); + &ts); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime); + &ts); | + ts = timespec64_to_timespec(stat->xtime); ret = fn (..., - &stat->xtime); + &ts); ) ...+> } @ depends on patch @ struct inode *node; struct inode *node2; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier i_xtime3 =~ "^i_[acm]time$"; struct iattr *attrp; struct iattr *attrp2; struct iattr attr ; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; struct kstat *stat; struct kstat stat1; struct timespec64 ts; identifier xtime =~ "^[acmb]time$"; expression e; @@ ( ( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ; | node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | stat->xtime = node2->i_xtime1; | stat1.xtime = node2->i_xtime1; | ( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ; | ( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2; | - e = node->i_xtime1; + e = timespec64_to_timespec( node->i_xtime1 ); | - e = attrp->ia_xtime1; + e = timespec64_to_timespec( attrp->ia_xtime1 ); | node->i_xtime1 = current_time(...); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | - node->i_xtime1 = e; + node->i_xtime1 = timespec_to_timespec64(e); ) Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com> Cc: <anton@tuxera.com> Cc: <balbi@kernel.org> Cc: <bfields@fieldses.org> Cc: <darrick.wong@oracle.com> Cc: <dhowells@redhat.com> Cc: <dsterba@suse.com> Cc: <dwmw2@infradead.org> Cc: <hch@lst.de> Cc: <hirofumi@mail.parknet.co.jp> Cc: <hubcap@omnibond.com> Cc: <jack@suse.com> Cc: <jaegeuk@kernel.org> Cc: <jaharkes@cs.cmu.edu> Cc: <jslaby@suse.com> Cc: <keescook@chromium.org> Cc: <mark@fasheh.com> Cc: <miklos@szeredi.hu> Cc: <nico@linaro.org> Cc: <reiserfs-devel@vger.kernel.org> Cc: <richard@nod.at> Cc: <sage@redhat.com> Cc: <sfrench@samba.org> Cc: <swhiteho@redhat.com> Cc: <tj@kernel.org> Cc: <trond.myklebust@primarydata.com> Cc: <tytso@mit.edu> Cc: <viro@zeniv.linux.org.uk>
2018-05-08 19:36:02 -07:00
struct timespec64 cur_time = current_time(dir);
struct btrfs_new_inode_args new_inode_args = {
.dir = dir,
.dentry = dentry,
.subvol = true,
};
unsigned int trans_num_items;
int ret;
dev_t anon_dev;
u64 objectid;
root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
if (!root_item)
return -ENOMEM;
ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
if (ret)
goto out_root_item;
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 10:17:36 +08:00
/*
* Don't create subvolume whose level is not zero. Or qgroup will be
* screwed up since it assumes subvolume qgroup's level to be 0.
*/
if (btrfs_qgroup_level(objectid)) {
ret = -ENOSPC;
goto out_root_item;
}
ret = get_anon_bdev(&anon_dev);
if (ret < 0)
goto out_root_item;
new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
if (!new_inode_args.inode) {
ret = -ENOMEM;
goto out_anon_dev;
}
ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
if (ret)
goto out_inode;
trans_num_items += create_subvol_num_items(inherit);
btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
trans_num_items, false);
if (ret)
goto out_new_inode_args;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
btrfs: qgroup: fix qgroup meta rsv leak for subvolume operations [BUG] When quota is enabled for TEST_DEV, generic/013 sometimes fails like this: generic/013 14s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//generic/013.dmesg) And with the following metadata leak: BTRFS warning (device dm-3): qgroup 0/1370 has unreleased space, type 2 rsv 49152 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 47912 at fs/btrfs/disk-io.c:4078 close_ctree+0x1dc/0x323 [btrfs] Call Trace: btrfs_put_super+0x15/0x17 [btrfs] generic_shutdown_super+0x72/0x110 kill_anon_super+0x18/0x30 btrfs_kill_super+0x17/0x30 [btrfs] deactivate_locked_super+0x3b/0xa0 deactivate_super+0x40/0x50 cleanup_mnt+0x135/0x190 __cleanup_mnt+0x12/0x20 task_work_run+0x64/0xb0 __prepare_exit_to_usermode+0x1bc/0x1c0 __syscall_return_slowpath+0x47/0x230 do_syscall_64+0x64/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace a6cfd45ba80e4e06 ]--- BTRFS error (device dm-3): qgroup reserved space leaked BTRFS info (device dm-3): disk space caching is enabled BTRFS info (device dm-3): has skinny extents [CAUSE] The qgroup preallocated meta rsv operations of that offending root are: btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072 btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072 btrfs_subvolume_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=49152 btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072 btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072 It's pretty obvious that, we reserve qgroup meta rsv in btrfs_subvolume_reserve_metadata(), but doesn't have corresponding release/convert calls in btrfs_subvolume_release_metadata(). This leads to the leakage. [FIX] To fix this bug, we should follow what we're doing in btrfs_delalloc_reserve_metadata(), where we reserve qgroup space, and add it to block_rsv->qgroup_rsv_reserved. And free the qgroup reserved metadata space when releasing the block_rsv. To do this, we need to change the btrfs_subvolume_release_metadata() to accept btrfs_root, and record the qgroup_to_release number, and call btrfs_qgroup_convert_reserved_meta() for it. Fixes: 733e03a0b26a ("btrfs: qgroup: Split meta rsv type into meta_prealloc and meta_pertrans") CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-24 14:46:10 +08:00
btrfs_subvolume_release_metadata(root, &block_rsv);
goto out_new_inode_args;
}
trans->block_rsv = &block_rsv;
trans->bytes_reserved = block_rsv.size;
ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
if (ret)
goto out;
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
BTRFS_NESTING_NORMAL);
if (IS_ERR(leaf)) {
ret = PTR_ERR(leaf);
goto out;
}
btrfs_mark_buffer_dirty(leaf);
inode_item = &root_item->inode;
btrfs_set_stack_inode_generation(inode_item, 1);
btrfs_set_stack_inode_size(inode_item, 3);
btrfs_set_stack_inode_nlink(inode_item, 1);
btrfs_set_stack_inode_nbytes(inode_item,
fs_info->nodesize);
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
btrfs_set_root_flags(root_item, 0);
btrfs_set_root_limit(root_item, 0);
btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
btrfs_set_root_bytenr(root_item, leaf->start);
btrfs_set_root_generation(root_item, trans->transid);
btrfs_set_root_level(root_item, 0);
btrfs_set_root_refs(root_item, 1);
btrfs_set_root_used(root_item, leaf->len);
btrfs_set_root_last_snapshot(root_item, 0);
btrfs_set_root_generation_v2(root_item,
btrfs_root_generation(root_item));
generate_random_guid(root_item->uuid);
btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
root_item->ctime = root_item->otime;
btrfs_set_root_ctransid(root_item, trans->transid);
btrfs_set_root_otransid(root_item, trans->transid);
btrfs_tree_unlock(leaf);
btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
key.objectid = objectid;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 10:45:14 -04:00
key.offset = 0;
key.type = BTRFS_ROOT_ITEM_KEY;
ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
root_item);
btrfs: fix metadata extent leak after failure to create subvolume When creating a subvolume we allocate an extent buffer for its root node after starting a transaction. We setup a root item for the subvolume that points to that extent buffer and then attempt to insert the root item into the root tree - however if that fails, due to ENOMEM for example, we do not free the extent buffer previously allocated and we do not abort the transaction (as at that point we did nothing that can not be undone). This means that we effectively do not return the metadata extent back to the free space cache/tree and we leave a delayed reference for it which causes a metadata extent item to be added to the extent tree, in the next transaction commit, without having backreferences. When this happens 'btrfs check' reports the following: $ btrfs check /dev/sdi Opening filesystem to check... Checking filesystem on /dev/sdi UUID: dce2cb9d-025f-4b05-a4bf-cee0ad3785eb [1/7] checking root items [2/7] checking extents ref mismatch on [30425088 16384] extent item 1, found 0 backref 30425088 root 256 not referenced back 0x564a91c23d70 incorrect global backref count on 30425088 found 1 wanted 0 backpointer mismatch on [30425088 16384] owner ref check failed [30425088 16384] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space cache [4/7] checking fs roots [5/7] checking only csums items (without verifying data) [6/7] checking root refs [7/7] checking quota groups skipped (not enabled on this FS) found 212992 bytes used, error(s) found total csum bytes: 0 total tree bytes: 131072 total fs tree bytes: 32768 total extent tree bytes: 16384 btree space waste bytes: 124669 file data blocks allocated: 65536 referenced 65536 So fix this by freeing the metadata extent if btrfs_insert_root() returns an error. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-20 10:55:12 +01:00
if (ret) {
/*
* Since we don't abort the transaction in this case, free the
* tree block so that we don't leak space and leave the
* filesystem in an inconsistent state (an extent item in the
btrfs: fix invalid delayed ref after subvolume creation failure When creating a subvolume, at ioctl.c:create_subvol(), if we fail to insert the new root's root item into the root tree, we are freeing the metadata extent we reserved for the new root to prevent a metadata extent leak, as we don't abort the transaction at that point (since there is nothing at that point that is irreversible). However we allocated the metadata extent for the new root which we are creating for the new subvolume, so its delayed reference refers to the ID of this new root. But when we free the metadata extent we pass the root of the subvolume where the new subvolume is located to btrfs_free_tree_block() - this is incorrect because this will generate a delayed reference that refers to the ID of the parent subvolume's root, and not to ID of the new root. This results in a failure when running delayed references that leads to a transaction abort and a trace like the following: [3868.738042] RIP: 0010:__btrfs_free_extent+0x709/0x950 [btrfs] [3868.739857] Code: 68 0f 85 e6 fb ff (...) [3868.742963] RSP: 0018:ffffb0e9045cf910 EFLAGS: 00010246 [3868.743908] RAX: 00000000fffffffe RBX: 00000000fffffffe RCX: 0000000000000002 [3868.745312] RDX: 00000000fffffffe RSI: 0000000000000002 RDI: ffff90b0cd793b88 [3868.746643] RBP: 000000000e5d8000 R08: 0000000000000000 R09: ffff90b0cd793b88 [3868.747979] R10: 0000000000000002 R11: 00014ded97944d68 R12: 0000000000000000 [3868.749373] R13: ffff90b09afe4a28 R14: 0000000000000000 R15: ffff90b0cd793b88 [3868.750725] FS: 00007f281c4a8b80(0000) GS:ffff90b3ada00000(0000) knlGS:0000000000000000 [3868.752275] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [3868.753515] CR2: 00007f281c6a5000 CR3: 0000000108a42006 CR4: 0000000000370ee0 [3868.754869] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [3868.756228] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [3868.757803] Call Trace: [3868.758281] <TASK> [3868.758655] ? btrfs_merge_delayed_refs+0x178/0x1c0 [btrfs] [3868.759827] __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs] [3868.761047] btrfs_run_delayed_refs+0x86/0x210 [btrfs] [3868.762069] ? lock_acquired+0x19f/0x420 [3868.762829] btrfs_commit_transaction+0x69/0xb20 [btrfs] [3868.763860] ? _raw_spin_unlock+0x29/0x40 [3868.764614] ? btrfs_block_rsv_release+0x1c2/0x1e0 [btrfs] [3868.765870] create_subvol+0x1d8/0x9a0 [btrfs] [3868.766766] btrfs_mksubvol+0x447/0x4c0 [btrfs] [3868.767669] ? preempt_count_add+0x49/0xa0 [3868.768444] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs] [3868.769639] ? _copy_from_user+0x66/0xa0 [3868.770391] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs] [3868.771495] btrfs_ioctl+0xd1e/0x35c0 [btrfs] [3868.772364] ? __slab_free+0x10a/0x360 [3868.773198] ? rcu_read_lock_sched_held+0x12/0x60 [3868.774121] ? lock_release+0x223/0x4a0 [3868.774863] ? lock_acquired+0x19f/0x420 [3868.775634] ? rcu_read_lock_sched_held+0x12/0x60 [3868.776530] ? trace_hardirqs_on+0x1b/0xe0 [3868.777373] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [3868.778280] ? kmem_cache_free+0x321/0x3c0 [3868.779011] ? __x64_sys_ioctl+0x83/0xb0 [3868.779718] __x64_sys_ioctl+0x83/0xb0 [3868.780387] do_syscall_64+0x3b/0xc0 [3868.781059] entry_SYSCALL_64_after_hwframe+0x44/0xae [3868.781953] RIP: 0033:0x7f281c59e957 [3868.782585] Code: 3c 1c 48 f7 d8 4c (...) [3868.785867] RSP: 002b:00007ffe1f83e2b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [3868.787198] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f281c59e957 [3868.788450] RDX: 00007ffe1f83e2c0 RSI: 0000000050009418 RDI: 0000000000000003 [3868.789748] RBP: 00007ffe1f83f300 R08: 0000000000000000 R09: 00007ffe1f83fe36 [3868.791214] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000003 [3868.792468] R13: 0000000000000003 R14: 00007ffe1f83e2c0 R15: 00000000000003cc [3868.793765] </TASK> [3868.794037] irq event stamp: 0 [3868.794548] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [3868.795670] hardirqs last disabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040 [3868.797086] softirqs last enabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040 [3868.798309] softirqs last disabled at (0): [<0000000000000000>] 0x0 [3868.799284] ---[ end trace be24c7002fe27747 ]--- [3868.799928] BTRFS info (device dm-0): leaf 241188864 gen 1268 total ptrs 214 free space 469 owner 2 [3868.801133] BTRFS info (device dm-0): refs 2 lock_owner 225627 current 225627 [3868.802056] item 0 key (237436928 169 0) itemoff 16250 itemsize 33 [3868.802863] extent refs 1 gen 1265 flags 2 [3868.803447] ref#0: tree block backref root 1610 (...) [3869.064354] item 114 key (241008640 169 0) itemoff 12488 itemsize 33 [3869.065421] extent refs 1 gen 1268 flags 2 [3869.066115] ref#0: tree block backref root 1689 (...) [3869.403834] BTRFS error (device dm-0): unable to find ref byte nr 241008640 parent 0 root 1622 owner 0 offset 0 [3869.405641] BTRFS: error (device dm-0) in __btrfs_free_extent:3076: errno=-2 No such entry [3869.407138] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2159: errno=-2 No such entry Fix this by passing the new subvolume's root ID to btrfs_free_tree_block(). This requires changing the root argument of btrfs_free_tree_block() from struct btrfs_root * to a u64, since at this point during the subvolume creation we have not yet created the struct btrfs_root for the new subvolume, and btrfs_free_tree_block() only needs a root ID and nothing else from a struct btrfs_root. This was triggered by test case generic/475 from fstests. Fixes: 67addf29004c5b ("btrfs: fix metadata extent leak after failure to create subvolume") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-13 08:45:12 +00:00
* extent tree with a backreference for a root that does not
btrfs: fix warning when freeing leaf after subvolume creation failure When creating a subvolume, at ioctl.c:create_subvol(), if we fail to insert the root item for the new subvolume into the root tree, we can trigger the following warning: [78961.741046] WARNING: CPU: 0 PID: 4079814 at fs/btrfs/extent-tree.c:3357 btrfs_free_tree_block+0x2af/0x310 [btrfs] [78961.743344] Modules linked in: [78961.749440] dm_snapshot dm_thin_pool (...) [78961.773648] CPU: 0 PID: 4079814 Comm: fsstress Not tainted 5.16.0-rc4-btrfs-next-108 #1 [78961.775198] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [78961.777266] RIP: 0010:btrfs_free_tree_block+0x2af/0x310 [btrfs] [78961.778398] Code: 17 00 48 85 (...) [78961.781067] RSP: 0018:ffffaa4001657b28 EFLAGS: 00010202 [78961.781877] RAX: 0000000000000213 RBX: ffff897f8a796910 RCX: 0000000000000000 [78961.782780] RDX: 0000000000000000 RSI: 0000000011004000 RDI: 00000000ffffffff [78961.783764] RBP: ffff8981f490e800 R08: 0000000000000001 R09: 0000000000000000 [78961.784740] R10: 0000000000000000 R11: 0000000000000001 R12: ffff897fc963fcc8 [78961.785665] R13: 0000000000000001 R14: ffff898063548000 R15: ffff898063548000 [78961.786620] FS: 00007f31283c6b80(0000) GS:ffff8982ace00000(0000) knlGS:0000000000000000 [78961.787717] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [78961.788598] CR2: 00007f31285c3000 CR3: 000000023fcc8003 CR4: 0000000000370ef0 [78961.789568] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [78961.790585] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [78961.791684] Call Trace: [78961.792082] <TASK> [78961.792359] create_subvol+0x5d1/0x9a0 [btrfs] [78961.793054] btrfs_mksubvol+0x447/0x4c0 [btrfs] [78961.794009] ? preempt_count_add+0x49/0xa0 [78961.794705] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs] [78961.795712] ? _copy_from_user+0x66/0xa0 [78961.796382] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs] [78961.797392] btrfs_ioctl+0xd1e/0x35c0 [btrfs] [78961.798172] ? __slab_free+0x10a/0x360 [78961.798820] ? rcu_read_lock_sched_held+0x12/0x60 [78961.799664] ? lock_release+0x223/0x4a0 [78961.800321] ? lock_acquired+0x19f/0x420 [78961.800992] ? rcu_read_lock_sched_held+0x12/0x60 [78961.801796] ? trace_hardirqs_on+0x1b/0xe0 [78961.802495] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [78961.803358] ? kmem_cache_free+0x321/0x3c0 [78961.804071] ? __x64_sys_ioctl+0x83/0xb0 [78961.804711] __x64_sys_ioctl+0x83/0xb0 [78961.805348] do_syscall_64+0x3b/0xc0 [78961.805969] entry_SYSCALL_64_after_hwframe+0x44/0xae [78961.806830] RIP: 0033:0x7f31284bc957 [78961.807517] Code: 3c 1c 48 f7 d8 (...) This is because we are calling btrfs_free_tree_block() on an extent buffer that is dirty. Fix that by cleaning the extent buffer, with btrfs_clean_tree_block(), before freeing it. This was triggered by test case generic/475 from fstests. Fixes: 67addf29004c5b ("btrfs: fix metadata extent leak after failure to create subvolume") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-13 08:45:13 +00:00
* exists).
btrfs: fix metadata extent leak after failure to create subvolume When creating a subvolume we allocate an extent buffer for its root node after starting a transaction. We setup a root item for the subvolume that points to that extent buffer and then attempt to insert the root item into the root tree - however if that fails, due to ENOMEM for example, we do not free the extent buffer previously allocated and we do not abort the transaction (as at that point we did nothing that can not be undone). This means that we effectively do not return the metadata extent back to the free space cache/tree and we leave a delayed reference for it which causes a metadata extent item to be added to the extent tree, in the next transaction commit, without having backreferences. When this happens 'btrfs check' reports the following: $ btrfs check /dev/sdi Opening filesystem to check... Checking filesystem on /dev/sdi UUID: dce2cb9d-025f-4b05-a4bf-cee0ad3785eb [1/7] checking root items [2/7] checking extents ref mismatch on [30425088 16384] extent item 1, found 0 backref 30425088 root 256 not referenced back 0x564a91c23d70 incorrect global backref count on 30425088 found 1 wanted 0 backpointer mismatch on [30425088 16384] owner ref check failed [30425088 16384] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space cache [4/7] checking fs roots [5/7] checking only csums items (without verifying data) [6/7] checking root refs [7/7] checking quota groups skipped (not enabled on this FS) found 212992 bytes used, error(s) found total csum bytes: 0 total tree bytes: 131072 total fs tree bytes: 32768 total extent tree bytes: 16384 btree space waste bytes: 124669 file data blocks allocated: 65536 referenced 65536 So fix this by freeing the metadata extent if btrfs_insert_root() returns an error. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-20 10:55:12 +01:00
*/
btrfs: fix warning when freeing leaf after subvolume creation failure When creating a subvolume, at ioctl.c:create_subvol(), if we fail to insert the root item for the new subvolume into the root tree, we can trigger the following warning: [78961.741046] WARNING: CPU: 0 PID: 4079814 at fs/btrfs/extent-tree.c:3357 btrfs_free_tree_block+0x2af/0x310 [btrfs] [78961.743344] Modules linked in: [78961.749440] dm_snapshot dm_thin_pool (...) [78961.773648] CPU: 0 PID: 4079814 Comm: fsstress Not tainted 5.16.0-rc4-btrfs-next-108 #1 [78961.775198] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [78961.777266] RIP: 0010:btrfs_free_tree_block+0x2af/0x310 [btrfs] [78961.778398] Code: 17 00 48 85 (...) [78961.781067] RSP: 0018:ffffaa4001657b28 EFLAGS: 00010202 [78961.781877] RAX: 0000000000000213 RBX: ffff897f8a796910 RCX: 0000000000000000 [78961.782780] RDX: 0000000000000000 RSI: 0000000011004000 RDI: 00000000ffffffff [78961.783764] RBP: ffff8981f490e800 R08: 0000000000000001 R09: 0000000000000000 [78961.784740] R10: 0000000000000000 R11: 0000000000000001 R12: ffff897fc963fcc8 [78961.785665] R13: 0000000000000001 R14: ffff898063548000 R15: ffff898063548000 [78961.786620] FS: 00007f31283c6b80(0000) GS:ffff8982ace00000(0000) knlGS:0000000000000000 [78961.787717] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [78961.788598] CR2: 00007f31285c3000 CR3: 000000023fcc8003 CR4: 0000000000370ef0 [78961.789568] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [78961.790585] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [78961.791684] Call Trace: [78961.792082] <TASK> [78961.792359] create_subvol+0x5d1/0x9a0 [btrfs] [78961.793054] btrfs_mksubvol+0x447/0x4c0 [btrfs] [78961.794009] ? preempt_count_add+0x49/0xa0 [78961.794705] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs] [78961.795712] ? _copy_from_user+0x66/0xa0 [78961.796382] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs] [78961.797392] btrfs_ioctl+0xd1e/0x35c0 [btrfs] [78961.798172] ? __slab_free+0x10a/0x360 [78961.798820] ? rcu_read_lock_sched_held+0x12/0x60 [78961.799664] ? lock_release+0x223/0x4a0 [78961.800321] ? lock_acquired+0x19f/0x420 [78961.800992] ? rcu_read_lock_sched_held+0x12/0x60 [78961.801796] ? trace_hardirqs_on+0x1b/0xe0 [78961.802495] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [78961.803358] ? kmem_cache_free+0x321/0x3c0 [78961.804071] ? __x64_sys_ioctl+0x83/0xb0 [78961.804711] __x64_sys_ioctl+0x83/0xb0 [78961.805348] do_syscall_64+0x3b/0xc0 [78961.805969] entry_SYSCALL_64_after_hwframe+0x44/0xae [78961.806830] RIP: 0033:0x7f31284bc957 [78961.807517] Code: 3c 1c 48 f7 d8 (...) This is because we are calling btrfs_free_tree_block() on an extent buffer that is dirty. Fix that by cleaning the extent buffer, with btrfs_clean_tree_block(), before freeing it. This was triggered by test case generic/475 from fstests. Fixes: 67addf29004c5b ("btrfs: fix metadata extent leak after failure to create subvolume") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-13 08:45:13 +00:00
btrfs_tree_lock(leaf);
btrfs_clear_buffer_dirty(trans, leaf);
btrfs: fix warning when freeing leaf after subvolume creation failure When creating a subvolume, at ioctl.c:create_subvol(), if we fail to insert the root item for the new subvolume into the root tree, we can trigger the following warning: [78961.741046] WARNING: CPU: 0 PID: 4079814 at fs/btrfs/extent-tree.c:3357 btrfs_free_tree_block+0x2af/0x310 [btrfs] [78961.743344] Modules linked in: [78961.749440] dm_snapshot dm_thin_pool (...) [78961.773648] CPU: 0 PID: 4079814 Comm: fsstress Not tainted 5.16.0-rc4-btrfs-next-108 #1 [78961.775198] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [78961.777266] RIP: 0010:btrfs_free_tree_block+0x2af/0x310 [btrfs] [78961.778398] Code: 17 00 48 85 (...) [78961.781067] RSP: 0018:ffffaa4001657b28 EFLAGS: 00010202 [78961.781877] RAX: 0000000000000213 RBX: ffff897f8a796910 RCX: 0000000000000000 [78961.782780] RDX: 0000000000000000 RSI: 0000000011004000 RDI: 00000000ffffffff [78961.783764] RBP: ffff8981f490e800 R08: 0000000000000001 R09: 0000000000000000 [78961.784740] R10: 0000000000000000 R11: 0000000000000001 R12: ffff897fc963fcc8 [78961.785665] R13: 0000000000000001 R14: ffff898063548000 R15: ffff898063548000 [78961.786620] FS: 00007f31283c6b80(0000) GS:ffff8982ace00000(0000) knlGS:0000000000000000 [78961.787717] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [78961.788598] CR2: 00007f31285c3000 CR3: 000000023fcc8003 CR4: 0000000000370ef0 [78961.789568] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [78961.790585] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [78961.791684] Call Trace: [78961.792082] <TASK> [78961.792359] create_subvol+0x5d1/0x9a0 [btrfs] [78961.793054] btrfs_mksubvol+0x447/0x4c0 [btrfs] [78961.794009] ? preempt_count_add+0x49/0xa0 [78961.794705] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs] [78961.795712] ? _copy_from_user+0x66/0xa0 [78961.796382] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs] [78961.797392] btrfs_ioctl+0xd1e/0x35c0 [btrfs] [78961.798172] ? __slab_free+0x10a/0x360 [78961.798820] ? rcu_read_lock_sched_held+0x12/0x60 [78961.799664] ? lock_release+0x223/0x4a0 [78961.800321] ? lock_acquired+0x19f/0x420 [78961.800992] ? rcu_read_lock_sched_held+0x12/0x60 [78961.801796] ? trace_hardirqs_on+0x1b/0xe0 [78961.802495] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [78961.803358] ? kmem_cache_free+0x321/0x3c0 [78961.804071] ? __x64_sys_ioctl+0x83/0xb0 [78961.804711] __x64_sys_ioctl+0x83/0xb0 [78961.805348] do_syscall_64+0x3b/0xc0 [78961.805969] entry_SYSCALL_64_after_hwframe+0x44/0xae [78961.806830] RIP: 0033:0x7f31284bc957 [78961.807517] Code: 3c 1c 48 f7 d8 (...) This is because we are calling btrfs_free_tree_block() on an extent buffer that is dirty. Fix that by cleaning the extent buffer, with btrfs_clean_tree_block(), before freeing it. This was triggered by test case generic/475 from fstests. Fixes: 67addf29004c5b ("btrfs: fix metadata extent leak after failure to create subvolume") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-13 08:45:13 +00:00
btrfs_tree_unlock(leaf);
btrfs: fix invalid delayed ref after subvolume creation failure When creating a subvolume, at ioctl.c:create_subvol(), if we fail to insert the new root's root item into the root tree, we are freeing the metadata extent we reserved for the new root to prevent a metadata extent leak, as we don't abort the transaction at that point (since there is nothing at that point that is irreversible). However we allocated the metadata extent for the new root which we are creating for the new subvolume, so its delayed reference refers to the ID of this new root. But when we free the metadata extent we pass the root of the subvolume where the new subvolume is located to btrfs_free_tree_block() - this is incorrect because this will generate a delayed reference that refers to the ID of the parent subvolume's root, and not to ID of the new root. This results in a failure when running delayed references that leads to a transaction abort and a trace like the following: [3868.738042] RIP: 0010:__btrfs_free_extent+0x709/0x950 [btrfs] [3868.739857] Code: 68 0f 85 e6 fb ff (...) [3868.742963] RSP: 0018:ffffb0e9045cf910 EFLAGS: 00010246 [3868.743908] RAX: 00000000fffffffe RBX: 00000000fffffffe RCX: 0000000000000002 [3868.745312] RDX: 00000000fffffffe RSI: 0000000000000002 RDI: ffff90b0cd793b88 [3868.746643] RBP: 000000000e5d8000 R08: 0000000000000000 R09: ffff90b0cd793b88 [3868.747979] R10: 0000000000000002 R11: 00014ded97944d68 R12: 0000000000000000 [3868.749373] R13: ffff90b09afe4a28 R14: 0000000000000000 R15: ffff90b0cd793b88 [3868.750725] FS: 00007f281c4a8b80(0000) GS:ffff90b3ada00000(0000) knlGS:0000000000000000 [3868.752275] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [3868.753515] CR2: 00007f281c6a5000 CR3: 0000000108a42006 CR4: 0000000000370ee0 [3868.754869] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [3868.756228] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [3868.757803] Call Trace: [3868.758281] <TASK> [3868.758655] ? btrfs_merge_delayed_refs+0x178/0x1c0 [btrfs] [3868.759827] __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs] [3868.761047] btrfs_run_delayed_refs+0x86/0x210 [btrfs] [3868.762069] ? lock_acquired+0x19f/0x420 [3868.762829] btrfs_commit_transaction+0x69/0xb20 [btrfs] [3868.763860] ? _raw_spin_unlock+0x29/0x40 [3868.764614] ? btrfs_block_rsv_release+0x1c2/0x1e0 [btrfs] [3868.765870] create_subvol+0x1d8/0x9a0 [btrfs] [3868.766766] btrfs_mksubvol+0x447/0x4c0 [btrfs] [3868.767669] ? preempt_count_add+0x49/0xa0 [3868.768444] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs] [3868.769639] ? _copy_from_user+0x66/0xa0 [3868.770391] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs] [3868.771495] btrfs_ioctl+0xd1e/0x35c0 [btrfs] [3868.772364] ? __slab_free+0x10a/0x360 [3868.773198] ? rcu_read_lock_sched_held+0x12/0x60 [3868.774121] ? lock_release+0x223/0x4a0 [3868.774863] ? lock_acquired+0x19f/0x420 [3868.775634] ? rcu_read_lock_sched_held+0x12/0x60 [3868.776530] ? trace_hardirqs_on+0x1b/0xe0 [3868.777373] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [3868.778280] ? kmem_cache_free+0x321/0x3c0 [3868.779011] ? __x64_sys_ioctl+0x83/0xb0 [3868.779718] __x64_sys_ioctl+0x83/0xb0 [3868.780387] do_syscall_64+0x3b/0xc0 [3868.781059] entry_SYSCALL_64_after_hwframe+0x44/0xae [3868.781953] RIP: 0033:0x7f281c59e957 [3868.782585] Code: 3c 1c 48 f7 d8 4c (...) [3868.785867] RSP: 002b:00007ffe1f83e2b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [3868.787198] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f281c59e957 [3868.788450] RDX: 00007ffe1f83e2c0 RSI: 0000000050009418 RDI: 0000000000000003 [3868.789748] RBP: 00007ffe1f83f300 R08: 0000000000000000 R09: 00007ffe1f83fe36 [3868.791214] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000003 [3868.792468] R13: 0000000000000003 R14: 00007ffe1f83e2c0 R15: 00000000000003cc [3868.793765] </TASK> [3868.794037] irq event stamp: 0 [3868.794548] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [3868.795670] hardirqs last disabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040 [3868.797086] softirqs last enabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040 [3868.798309] softirqs last disabled at (0): [<0000000000000000>] 0x0 [3868.799284] ---[ end trace be24c7002fe27747 ]--- [3868.799928] BTRFS info (device dm-0): leaf 241188864 gen 1268 total ptrs 214 free space 469 owner 2 [3868.801133] BTRFS info (device dm-0): refs 2 lock_owner 225627 current 225627 [3868.802056] item 0 key (237436928 169 0) itemoff 16250 itemsize 33 [3868.802863] extent refs 1 gen 1265 flags 2 [3868.803447] ref#0: tree block backref root 1610 (...) [3869.064354] item 114 key (241008640 169 0) itemoff 12488 itemsize 33 [3869.065421] extent refs 1 gen 1268 flags 2 [3869.066115] ref#0: tree block backref root 1689 (...) [3869.403834] BTRFS error (device dm-0): unable to find ref byte nr 241008640 parent 0 root 1622 owner 0 offset 0 [3869.405641] BTRFS: error (device dm-0) in __btrfs_free_extent:3076: errno=-2 No such entry [3869.407138] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2159: errno=-2 No such entry Fix this by passing the new subvolume's root ID to btrfs_free_tree_block(). This requires changing the root argument of btrfs_free_tree_block() from struct btrfs_root * to a u64, since at this point during the subvolume creation we have not yet created the struct btrfs_root for the new subvolume, and btrfs_free_tree_block() only needs a root ID and nothing else from a struct btrfs_root. This was triggered by test case generic/475 from fstests. Fixes: 67addf29004c5b ("btrfs: fix metadata extent leak after failure to create subvolume") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-13 08:45:12 +00:00
btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
btrfs: fix metadata extent leak after failure to create subvolume When creating a subvolume we allocate an extent buffer for its root node after starting a transaction. We setup a root item for the subvolume that points to that extent buffer and then attempt to insert the root item into the root tree - however if that fails, due to ENOMEM for example, we do not free the extent buffer previously allocated and we do not abort the transaction (as at that point we did nothing that can not be undone). This means that we effectively do not return the metadata extent back to the free space cache/tree and we leave a delayed reference for it which causes a metadata extent item to be added to the extent tree, in the next transaction commit, without having backreferences. When this happens 'btrfs check' reports the following: $ btrfs check /dev/sdi Opening filesystem to check... Checking filesystem on /dev/sdi UUID: dce2cb9d-025f-4b05-a4bf-cee0ad3785eb [1/7] checking root items [2/7] checking extents ref mismatch on [30425088 16384] extent item 1, found 0 backref 30425088 root 256 not referenced back 0x564a91c23d70 incorrect global backref count on 30425088 found 1 wanted 0 backpointer mismatch on [30425088 16384] owner ref check failed [30425088 16384] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space cache [4/7] checking fs roots [5/7] checking only csums items (without verifying data) [6/7] checking root refs [7/7] checking quota groups skipped (not enabled on this FS) found 212992 bytes used, error(s) found total csum bytes: 0 total tree bytes: 131072 total fs tree bytes: 32768 total extent tree bytes: 16384 btree space waste bytes: 124669 file data blocks allocated: 65536 referenced 65536 So fix this by freeing the metadata extent if btrfs_insert_root() returns an error. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-20 10:55:12 +01:00
free_extent_buffer(leaf);
goto out;
btrfs: fix metadata extent leak after failure to create subvolume When creating a subvolume we allocate an extent buffer for its root node after starting a transaction. We setup a root item for the subvolume that points to that extent buffer and then attempt to insert the root item into the root tree - however if that fails, due to ENOMEM for example, we do not free the extent buffer previously allocated and we do not abort the transaction (as at that point we did nothing that can not be undone). This means that we effectively do not return the metadata extent back to the free space cache/tree and we leave a delayed reference for it which causes a metadata extent item to be added to the extent tree, in the next transaction commit, without having backreferences. When this happens 'btrfs check' reports the following: $ btrfs check /dev/sdi Opening filesystem to check... Checking filesystem on /dev/sdi UUID: dce2cb9d-025f-4b05-a4bf-cee0ad3785eb [1/7] checking root items [2/7] checking extents ref mismatch on [30425088 16384] extent item 1, found 0 backref 30425088 root 256 not referenced back 0x564a91c23d70 incorrect global backref count on 30425088 found 1 wanted 0 backpointer mismatch on [30425088 16384] owner ref check failed [30425088 16384] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space cache [4/7] checking fs roots [5/7] checking only csums items (without verifying data) [6/7] checking root refs [7/7] checking quota groups skipped (not enabled on this FS) found 212992 bytes used, error(s) found total csum bytes: 0 total tree bytes: 131072 total fs tree bytes: 32768 total extent tree bytes: 16384 btree space waste bytes: 124669 file data blocks allocated: 65536 referenced 65536 So fix this by freeing the metadata extent if btrfs_insert_root() returns an error. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-20 10:55:12 +01:00
}
free_extent_buffer(leaf);
leaf = NULL;
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 10:17:36 +08:00
new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
if (IS_ERR(new_root)) {
ret = PTR_ERR(new_root);
btrfs_abort_transaction(trans, ret);
goto out;
}
/* anon_dev is owned by new_root now. */
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 10:17:36 +08:00
anon_dev = 0;
BTRFS_I(new_inode_args.inode)->root = new_root;
/* ... and new_root is owned by new_inode_args.inode now. */
ret = btrfs_record_root_in_trans(trans, new_root);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
btrfs: move common inode creation code into btrfs_create_new_inode() All of our inode creation code paths duplicate the calls to btrfs_init_inode_security() and btrfs_add_link(). Subvolume creation additionally duplicates property inheritance and the call to btrfs_set_inode_index(). Fix this by moving the common code into btrfs_create_new_inode(). This accomplishes a few things at once: 1. It reduces code duplication. 2. It allows us to set up the inode completely before inserting the inode item, removing calls to btrfs_update_inode(). 3. It fixes a leak of an inode on disk in some error cases. For example, in btrfs_create(), if btrfs_new_inode() succeeds, then we have inserted an inode item and its inode ref. However, if something after that fails (e.g., btrfs_init_inode_security()), then we end the transaction and then decrement the link count on the inode. If the transaction is committed and the system crashes before the failed inode is deleted, then we leak that inode on disk. Instead, this refactoring aborts the transaction when we can't recover more gracefully. 4. It exposes various ways that subvolume creation diverges from mkdir in terms of inheriting flags, properties, permissions, and POSIX ACLs, a lot of which appears to be accidental. This patch explicitly does _not_ change the existing non-standard behavior, but it makes those differences more clear in the code and documents them so that we can discuss whether they should be changed. Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 18:12:35 -07:00
ret = btrfs_uuid_tree_add(trans, root_item->uuid,
BTRFS_UUID_KEY_SUBVOL, objectid);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
btrfs: move common inode creation code into btrfs_create_new_inode() All of our inode creation code paths duplicate the calls to btrfs_init_inode_security() and btrfs_add_link(). Subvolume creation additionally duplicates property inheritance and the call to btrfs_set_inode_index(). Fix this by moving the common code into btrfs_create_new_inode(). This accomplishes a few things at once: 1. It reduces code duplication. 2. It allows us to set up the inode completely before inserting the inode item, removing calls to btrfs_update_inode(). 3. It fixes a leak of an inode on disk in some error cases. For example, in btrfs_create(), if btrfs_new_inode() succeeds, then we have inserted an inode item and its inode ref. However, if something after that fails (e.g., btrfs_init_inode_security()), then we end the transaction and then decrement the link count on the inode. If the transaction is committed and the system crashes before the failed inode is deleted, then we leak that inode on disk. Instead, this refactoring aborts the transaction when we can't recover more gracefully. 4. It exposes various ways that subvolume creation diverges from mkdir in terms of inheriting flags, properties, permissions, and POSIX ACLs, a lot of which appears to be accidental. This patch explicitly does _not_ change the existing non-standard behavior, but it makes those differences more clear in the code and documents them so that we can discuss whether they should be changed. Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 18:12:35 -07:00
ret = btrfs_create_new_inode(trans, &new_inode_args);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
btrfs: move common inode creation code into btrfs_create_new_inode() All of our inode creation code paths duplicate the calls to btrfs_init_inode_security() and btrfs_add_link(). Subvolume creation additionally duplicates property inheritance and the call to btrfs_set_inode_index(). Fix this by moving the common code into btrfs_create_new_inode(). This accomplishes a few things at once: 1. It reduces code duplication. 2. It allows us to set up the inode completely before inserting the inode item, removing calls to btrfs_update_inode(). 3. It fixes a leak of an inode on disk in some error cases. For example, in btrfs_create(), if btrfs_new_inode() succeeds, then we have inserted an inode item and its inode ref. However, if something after that fails (e.g., btrfs_init_inode_security()), then we end the transaction and then decrement the link count on the inode. If the transaction is committed and the system crashes before the failed inode is deleted, then we leak that inode on disk. Instead, this refactoring aborts the transaction when we can't recover more gracefully. 4. It exposes various ways that subvolume creation diverges from mkdir in terms of inheriting flags, properties, permissions, and POSIX ACLs, a lot of which appears to be accidental. This patch explicitly does _not_ change the existing non-standard behavior, but it makes those differences more clear in the code and documents them so that we can discuss whether they should be changed. Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 18:12:35 -07:00
d_instantiate_new(dentry, new_inode_args.inode);
new_inode_args.inode = NULL;
out:
trans->block_rsv = NULL;
trans->bytes_reserved = 0;
btrfs: qgroup: fix qgroup meta rsv leak for subvolume operations [BUG] When quota is enabled for TEST_DEV, generic/013 sometimes fails like this: generic/013 14s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//generic/013.dmesg) And with the following metadata leak: BTRFS warning (device dm-3): qgroup 0/1370 has unreleased space, type 2 rsv 49152 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 47912 at fs/btrfs/disk-io.c:4078 close_ctree+0x1dc/0x323 [btrfs] Call Trace: btrfs_put_super+0x15/0x17 [btrfs] generic_shutdown_super+0x72/0x110 kill_anon_super+0x18/0x30 btrfs_kill_super+0x17/0x30 [btrfs] deactivate_locked_super+0x3b/0xa0 deactivate_super+0x40/0x50 cleanup_mnt+0x135/0x190 __cleanup_mnt+0x12/0x20 task_work_run+0x64/0xb0 __prepare_exit_to_usermode+0x1bc/0x1c0 __syscall_return_slowpath+0x47/0x230 do_syscall_64+0x64/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace a6cfd45ba80e4e06 ]--- BTRFS error (device dm-3): qgroup reserved space leaked BTRFS info (device dm-3): disk space caching is enabled BTRFS info (device dm-3): has skinny extents [CAUSE] The qgroup preallocated meta rsv operations of that offending root are: btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072 btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072 btrfs_subvolume_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=49152 btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072 btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072 It's pretty obvious that, we reserve qgroup meta rsv in btrfs_subvolume_reserve_metadata(), but doesn't have corresponding release/convert calls in btrfs_subvolume_release_metadata(). This leads to the leakage. [FIX] To fix this bug, we should follow what we're doing in btrfs_delalloc_reserve_metadata(), where we reserve qgroup space, and add it to block_rsv->qgroup_rsv_reserved. And free the qgroup reserved metadata space when releasing the block_rsv. To do this, we need to change the btrfs_subvolume_release_metadata() to accept btrfs_root, and record the qgroup_to_release number, and call btrfs_qgroup_convert_reserved_meta() for it. Fixes: 733e03a0b26a ("btrfs: qgroup: Split meta rsv type into meta_prealloc and meta_pertrans") CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-24 14:46:10 +08:00
btrfs_subvolume_release_metadata(root, &block_rsv);
if (ret)
btrfs_end_transaction(trans);
else
ret = btrfs_commit_transaction(trans);
out_new_inode_args:
btrfs_new_inode_args_destroy(&new_inode_args);
out_inode:
iput(new_inode_args.inode);
out_anon_dev:
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 10:17:36 +08:00
if (anon_dev)
free_anon_bdev(anon_dev);
out_root_item:
kfree(root_item);
return ret;
}
static int create_snapshot(struct btrfs_root *root, struct inode *dir,
struct dentry *dentry, bool readonly,
struct btrfs_qgroup_inherit *inherit)
{
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
struct inode *inode;
struct btrfs_pending_snapshot *pending_snapshot;
unsigned int trans_num_items;
struct btrfs_trans_handle *trans;
int ret;
/* We do not support snapshotting right now. */
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_warn(fs_info,
"extent tree v2 doesn't support snapshotting yet");
return -EOPNOTSUPP;
}
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
return -EINVAL;
if (atomic_read(&root->nr_swapfiles)) {
btrfs_warn(fs_info,
"cannot snapshot subvolume with active swapfile");
return -ETXTBSY;
}
pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
if (!pending_snapshot)
return -ENOMEM;
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 10:17:36 +08:00
ret = get_anon_bdev(&pending_snapshot->anon_dev);
if (ret < 0)
goto free_pending;
pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
GFP_KERNEL);
pending_snapshot->path = btrfs_alloc_path();
if (!pending_snapshot->root_item || !pending_snapshot->path) {
ret = -ENOMEM;
goto free_pending;
}
btrfs_init_block_rsv(&pending_snapshot->block_rsv,
BTRFS_BLOCK_RSV_TEMP);
/*
* 1 to add dir item
* 1 to add dir index
* 1 to update parent inode item
*/
trans_num_items = create_subvol_num_items(inherit) + 3;
ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
&pending_snapshot->block_rsv,
trans_num_items, false);
if (ret)
goto free_pending;
pending_snapshot->dentry = dentry;
pending_snapshot->root = root;
pending_snapshot->readonly = readonly;
pending_snapshot->dir = dir;
pending_snapshot->inherit = inherit;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto fail;
}
btrfs: fix use-after-free after failure to create a snapshot At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and then attach it to the transaction's list of pending snapshots. After that we call btrfs_commit_transaction(), and if that returns an error we jump to 'fail' label, where we kfree() the pending snapshot structure. This can result in a later use-after-free of the pending snapshot: 1) We allocated the pending snapshot and added it to the transaction's list of pending snapshots; 2) We call btrfs_commit_transaction(), and it fails either at the first call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups(). In both cases, we don't abort the transaction and we release our transaction handle. We jump to the 'fail' label and free the pending snapshot structure. We return with the pending snapshot still in the transaction's list; 3) Another task commits the transaction. This time there's no error at all, and then during the transaction commit it accesses a pointer to the pending snapshot structure that the snapshot creation task has already freed, resulting in a user-after-free. This issue could actually be detected by smatch, which produced the following warning: fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list So fix this by not having the snapshot creation ioctl directly add the pending snapshot to the transaction's list. Instead add the pending snapshot to the transaction handle, and then at btrfs_commit_transaction() we add the snapshot to the list only when we can guarantee that any error returned after that point will result in a transaction abort, in which case the ioctl code can safely free the pending snapshot and no one can access it anymore. CC: stable@vger.kernel.org # 5.10+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-21 15:44:39 +00:00
trans->pending_snapshot = pending_snapshot;
ret = btrfs_commit_transaction(trans);
if (ret)
goto fail;
ret = pending_snapshot->error;
if (ret)
goto fail;
ret = btrfs_orphan_cleanup(pending_snapshot->snap);
if (ret)
goto fail;
inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto fail;
}
d_instantiate(dentry, inode);
ret = 0;
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 10:17:36 +08:00
pending_snapshot->anon_dev = 0;
fail:
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 10:17:36 +08:00
/* Prevent double freeing of anon_dev */
if (ret && pending_snapshot->snap)
pending_snapshot->snap->anon_dev = 0;
btrfs_put_root(pending_snapshot->snap);
btrfs: qgroup: fix qgroup meta rsv leak for subvolume operations [BUG] When quota is enabled for TEST_DEV, generic/013 sometimes fails like this: generic/013 14s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//generic/013.dmesg) And with the following metadata leak: BTRFS warning (device dm-3): qgroup 0/1370 has unreleased space, type 2 rsv 49152 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 47912 at fs/btrfs/disk-io.c:4078 close_ctree+0x1dc/0x323 [btrfs] Call Trace: btrfs_put_super+0x15/0x17 [btrfs] generic_shutdown_super+0x72/0x110 kill_anon_super+0x18/0x30 btrfs_kill_super+0x17/0x30 [btrfs] deactivate_locked_super+0x3b/0xa0 deactivate_super+0x40/0x50 cleanup_mnt+0x135/0x190 __cleanup_mnt+0x12/0x20 task_work_run+0x64/0xb0 __prepare_exit_to_usermode+0x1bc/0x1c0 __syscall_return_slowpath+0x47/0x230 do_syscall_64+0x64/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace a6cfd45ba80e4e06 ]--- BTRFS error (device dm-3): qgroup reserved space leaked BTRFS info (device dm-3): disk space caching is enabled BTRFS info (device dm-3): has skinny extents [CAUSE] The qgroup preallocated meta rsv operations of that offending root are: btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072 btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072 btrfs_subvolume_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=49152 btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072 btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072 It's pretty obvious that, we reserve qgroup meta rsv in btrfs_subvolume_reserve_metadata(), but doesn't have corresponding release/convert calls in btrfs_subvolume_release_metadata(). This leads to the leakage. [FIX] To fix this bug, we should follow what we're doing in btrfs_delalloc_reserve_metadata(), where we reserve qgroup space, and add it to block_rsv->qgroup_rsv_reserved. And free the qgroup reserved metadata space when releasing the block_rsv. To do this, we need to change the btrfs_subvolume_release_metadata() to accept btrfs_root, and record the qgroup_to_release number, and call btrfs_qgroup_convert_reserved_meta() for it. Fixes: 733e03a0b26a ("btrfs: qgroup: Split meta rsv type into meta_prealloc and meta_pertrans") CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-24 14:46:10 +08:00
btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
free_pending:
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 10:17:36 +08:00
if (pending_snapshot->anon_dev)
free_anon_bdev(pending_snapshot->anon_dev);
kfree(pending_snapshot->root_item);
btrfs_free_path(pending_snapshot->path);
kfree(pending_snapshot);
return ret;
}
/* copy of may_delete in fs/namei.c()
* Check whether we can remove a link victim from directory dir, check
* whether the type of victim is right.
* 1. We can't do it if dir is read-only (done in permission())
* 2. We should have write and exec permissions on dir
* 3. We can't remove anything from append-only dir
* 4. We can't do anything with immutable dir (done in permission())
* 5. If the sticky bit on dir is set we should either
* a. be owner of dir, or
* b. be owner of victim, or
* c. have CAP_FOWNER capability
* 6. If the victim is append-only or immutable we can't do anything with
* links pointing to it.
* 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
* 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
* 9. We can't remove a root or mountpoint.
* 10. We don't allow removal of NFS sillyrenamed files; it's handled by
* nfs_async_unlink().
*/
static int btrfs_may_delete(struct mnt_idmap *idmap,
btrfs: allow idmapped SNAP_DESTROY ioctls Destroying subvolumes and snapshots are important features of btrfs. Both operations are available to unprivileged users if the filesystem has been mounted with the "user_subvol_rm_allowed" mount option. Allow subvolume and snapshot deletion on idmapped mounts. This is a fairly straightforward operation since all the permission checking helpers are already capable of handling idmapped mounts. So we just need to pass down the mount's userns. Subvolumes and snapshots can either be deleted by specifying their name or - if BTRFS_IOC_SNAP_DESTROY_V2 is used - by their subvolume or snapshot id if the BTRFS_SUBVOL_SPEC_BY_ID is set. This feature is blocked on idmapped mounts as this allows filesystem wide subvolume deletions and thus can escape the scope of what's exposed under the mount identified by the fd passed with the ioctl. This means that even the root or CAP_SYS_ADMIN capable user can't delete a subvolume via BTRFS_SUBVOL_SPEC_BY_ID. This is intentional. The root user is currently already subject to permission checks in btrfs_may_delete() including whether the inode's i_uid/i_gid of the directory the subvolume is located in have a mapping in the caller's idmapping. For this to fail isn't currently possible since a btrfs filesystem can't be mounted with a non-initial idmapping but it shows that even the root user would fail to delete a subvolume if the relevant inode isn't mapped in their idmapping. The idmapped mount case is the same in principle. This isn't a huge problem a root user wanting to delete arbitrary subvolumes can just always create another (even detached) mount without an idmapping attached. In addition, we will allow BTRFS_SUBVOL_SPEC_BY_ID for cases where the subvolume to delete is directly located under inode referenced by the fd passed for the ioctl() in a follow-up commit. Here is an example where a btrfs subvolume is deleted through a subvolume mount that does not expose the subvolume to be delete but it can still be deleted by using the subvolume id: /* Compile the following program as "delete_by_spec". */ #define _GNU_SOURCE #include <fcntl.h> #include <inttypes.h> #include <linux/btrfs.h> #include <stdio.h> #include <stdlib.h> #include <sys/ioctl.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> static int rm_subvolume_by_id(int fd, uint64_t subvolid) { struct btrfs_ioctl_vol_args_v2 args = {}; int ret; args.flags = BTRFS_SUBVOL_SPEC_BY_ID; args.subvolid = subvolid; ret = ioctl(fd, BTRFS_IOC_SNAP_DESTROY_V2, &args); if (ret < 0) return -1; return 0; } int main(int argc, char *argv[]) { int subvolid = 0; if (argc < 3) exit(1); fprintf(stderr, "Opening %s\n", argv[1]); int fd = open(argv[1], O_CLOEXEC | O_DIRECTORY); if (fd < 0) exit(2); subvolid = atoi(argv[2]); fprintf(stderr, "Deleting subvolume with subvolid %d\n", subvolid); int ret = rm_subvolume_by_id(fd, subvolid); if (ret < 0) exit(3); exit(0); } #include <stdio.h>" #include <stdlib.h>" #include <linux/btrfs.h" truncate -s 10G btrfs.img mkfs.btrfs btrfs.img export LOOPDEV=$(sudo losetup -f --show btrfs.img) mount ${LOOPDEV} /mnt sudo chown $(id -u):$(id -g) /mnt btrfs subvolume create /mnt/A btrfs subvolume create /mnt/B/C # Get subvolume id via: sudo btrfs subvolume show /mnt/A # Save subvolid SUBVOLID=<nr> sudo umount /mnt sudo mount ${LOOPDEV} -o subvol=B/C,user_subvol_rm_allowed /mnt ./delete_by_spec /mnt ${SUBVOLID} With idmapped mounts this can potentially be used by users to delete subvolumes/snapshots they would otherwise not have access to as the idmapping would be applied to an inode that is not exposed in the mount of the subvolume. The fact that this is a filesystem wide operation suggests it might be a good idea to expose this under a separate ioctl that clearly indicates this. In essence, the file descriptor passed with the ioctl is merely used to identify the filesystem on which to operate when BTRFS_SUBVOL_SPEC_BY_ID is used. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 12:48:53 +02:00
struct inode *dir, struct dentry *victim, int isdir)
{
int error;
if (d_really_is_negative(victim))
return -ENOENT;
BUG_ON(d_inode(victim->d_parent) != dir);
audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
if (error)
return error;
if (IS_APPEND(dir))
return -EPERM;
if (check_sticky(idmap, dir, d_inode(victim)) ||
IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
IS_SWAPFILE(d_inode(victim)))
return -EPERM;
if (isdir) {
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry) Convert the following where appropriate: (1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry). (2) S_ISREG(dentry->d_inode) to d_is_reg(dentry). (3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more complicated than it appears as some calls should be converted to d_can_lookup() instead. The difference is whether the directory in question is a real dir with a ->lookup op or whether it's a fake dir with a ->d_automount op. In some circumstances, we can subsume checks for dentry->d_inode not being NULL into this, provided we the code isn't in a filesystem that expects d_inode to be NULL if the dirent really *is* negative (ie. if we're going to use d_inode() rather than d_backing_inode() to get the inode pointer). Note that the dentry type field may be set to something other than DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS manages the fall-through from a negative dentry to a lower layer. In such a case, the dentry type of the negative union dentry is set to the same as the type of the lower dentry. However, if you know d_inode is not NULL at the call site, then you can use the d_is_xxx() functions even in a filesystem. There is one further complication: a 0,0 chardev dentry may be labelled DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was intended for special directory entry types that don't have attached inodes. The following perl+coccinelle script was used: use strict; my @callers; open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') || die "Can't grep for S_ISDIR and co. callers"; @callers = <$fd>; close($fd); unless (@callers) { print "No matches\n"; exit(0); } my @cocci = ( '@@', 'expression E;', '@@', '', '- S_ISLNK(E->d_inode->i_mode)', '+ d_is_symlink(E)', '', '@@', 'expression E;', '@@', '', '- S_ISDIR(E->d_inode->i_mode)', '+ d_is_dir(E)', '', '@@', 'expression E;', '@@', '', '- S_ISREG(E->d_inode->i_mode)', '+ d_is_reg(E)' ); my $coccifile = "tmp.sp.cocci"; open($fd, ">$coccifile") || die $coccifile; print($fd "$_\n") || die $coccifile foreach (@cocci); close($fd); foreach my $file (@callers) { chomp $file; print "Processing ", $file, "\n"; system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 || die "spatch failed"; } [AV: overlayfs parts skipped] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-29 12:02:35 +00:00
if (!d_is_dir(victim))
return -ENOTDIR;
if (IS_ROOT(victim))
return -EBUSY;
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry) Convert the following where appropriate: (1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry). (2) S_ISREG(dentry->d_inode) to d_is_reg(dentry). (3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more complicated than it appears as some calls should be converted to d_can_lookup() instead. The difference is whether the directory in question is a real dir with a ->lookup op or whether it's a fake dir with a ->d_automount op. In some circumstances, we can subsume checks for dentry->d_inode not being NULL into this, provided we the code isn't in a filesystem that expects d_inode to be NULL if the dirent really *is* negative (ie. if we're going to use d_inode() rather than d_backing_inode() to get the inode pointer). Note that the dentry type field may be set to something other than DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS manages the fall-through from a negative dentry to a lower layer. In such a case, the dentry type of the negative union dentry is set to the same as the type of the lower dentry. However, if you know d_inode is not NULL at the call site, then you can use the d_is_xxx() functions even in a filesystem. There is one further complication: a 0,0 chardev dentry may be labelled DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was intended for special directory entry types that don't have attached inodes. The following perl+coccinelle script was used: use strict; my @callers; open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') || die "Can't grep for S_ISDIR and co. callers"; @callers = <$fd>; close($fd); unless (@callers) { print "No matches\n"; exit(0); } my @cocci = ( '@@', 'expression E;', '@@', '', '- S_ISLNK(E->d_inode->i_mode)', '+ d_is_symlink(E)', '', '@@', 'expression E;', '@@', '', '- S_ISDIR(E->d_inode->i_mode)', '+ d_is_dir(E)', '', '@@', 'expression E;', '@@', '', '- S_ISREG(E->d_inode->i_mode)', '+ d_is_reg(E)' ); my $coccifile = "tmp.sp.cocci"; open($fd, ">$coccifile") || die $coccifile; print($fd "$_\n") || die $coccifile foreach (@cocci); close($fd); foreach my $file (@callers) { chomp $file; print "Processing ", $file, "\n"; system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 || die "spatch failed"; } [AV: overlayfs parts skipped] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-29 12:02:35 +00:00
} else if (d_is_dir(victim))
return -EISDIR;
if (IS_DEADDIR(dir))
return -ENOENT;
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
return -EBUSY;
return 0;
}
/* copy of may_create in fs/namei.c() */
static inline int btrfs_may_create(struct mnt_idmap *idmap,
struct inode *dir, struct dentry *child)
{
if (d_really_is_positive(child))
return -EEXIST;
if (IS_DEADDIR(dir))
return -ENOENT;
if (!fsuidgid_has_mapping(dir->i_sb, idmap))
return -EOVERFLOW;
return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
}
/*
* Create a new subvolume below @parent. This is largely modeled after
* sys_mkdirat and vfs_mkdir, but we only do a single component lookup
* inside this filesystem so it's quite a bit simpler.
*/
static noinline int btrfs_mksubvol(const struct path *parent,
struct mnt_idmap *idmap,
const char *name, int namelen,
struct btrfs_root *snap_src,
bool readonly,
struct btrfs_qgroup_inherit *inherit)
{
struct inode *dir = d_inode(parent->dentry);
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
struct dentry *dentry;
struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
int error;
error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
if (error == -EINTR)
return error;
dentry = lookup_one(idmap, name, parent->dentry, namelen);
error = PTR_ERR(dentry);
if (IS_ERR(dentry))
goto out_unlock;
error = btrfs_may_create(idmap, dir, dentry);
if (error)
goto out_dput;
/*
* even if this name doesn't exist, we may get hash collisions.
* check for them now when we can safely fail
*/
error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
dir->i_ino, &name_str);
if (error)
goto out_dput;
down_read(&fs_info->subvol_sem);
if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
goto out_up_read;
if (snap_src)
error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
else
error = create_subvol(idmap, dir, dentry, inherit);
if (!error)
fsnotify_mkdir(dir, dentry);
out_up_read:
up_read(&fs_info->subvol_sem);
out_dput:
dput(dentry);
out_unlock:
btrfs_inode_unlock(BTRFS_I(dir), 0);
return error;
}
static noinline int btrfs_mksnapshot(const struct path *parent,
struct mnt_idmap *idmap,
const char *name, int namelen,
struct btrfs_root *root,
bool readonly,
struct btrfs_qgroup_inherit *inherit)
{
int ret;
bool snapshot_force_cow = false;
/*
* Force new buffered writes to reserve space even when NOCOW is
* possible. This is to avoid later writeback (running dealloc) to
* fallback to COW mode and unexpectedly fail with ENOSPC.
*/
btrfs_drew_read_lock(&root->snapshot_lock);
btrfs: fix deadlock when cloning inline extents and using qgroups There are a few exceptional cases where cloning an inline extent needs to copy the inline extent data into a page of the destination inode. When this happens, we end up starting a transaction while having a dirty page for the destination inode and while having the range locked in the destination's inode iotree too. Because when reserving metadata space for a transaction we may need to flush existing delalloc in case there is not enough free space, we have a mechanism in place to prevent a deadlock, which was introduced in commit 3d45f221ce627d ("btrfs: fix deadlock when cloning inline extent and low on free metadata space"). However when using qgroups, a transaction also reserves metadata qgroup space, which can also result in flushing delalloc in case there is not enough available space at the moment. When this happens we deadlock, since flushing delalloc requires locking the file range in the inode's iotree and the range was already locked at the very beginning of the clone operation, before attempting to start the transaction. When this issue happens, stack traces like the following are reported: [72747.556262] task:kworker/u81:9 state:D stack: 0 pid: 225 ppid: 2 flags:0x00004000 [72747.556268] Workqueue: writeback wb_workfn (flush-btrfs-1142) [72747.556271] Call Trace: [72747.556273] __schedule+0x296/0x760 [72747.556277] schedule+0x3c/0xa0 [72747.556279] io_schedule+0x12/0x40 [72747.556284] __lock_page+0x13c/0x280 [72747.556287] ? generic_file_readonly_mmap+0x70/0x70 [72747.556325] extent_write_cache_pages+0x22a/0x440 [btrfs] [72747.556331] ? __set_page_dirty_nobuffers+0xe7/0x160 [72747.556358] ? set_extent_buffer_dirty+0x5e/0x80 [btrfs] [72747.556362] ? update_group_capacity+0x25/0x210 [72747.556366] ? cpumask_next_and+0x1a/0x20 [72747.556391] extent_writepages+0x44/0xa0 [btrfs] [72747.556394] do_writepages+0x41/0xd0 [72747.556398] __writeback_single_inode+0x39/0x2a0 [72747.556403] writeback_sb_inodes+0x1ea/0x440 [72747.556407] __writeback_inodes_wb+0x5f/0xc0 [72747.556410] wb_writeback+0x235/0x2b0 [72747.556414] ? get_nr_inodes+0x35/0x50 [72747.556417] wb_workfn+0x354/0x490 [72747.556420] ? newidle_balance+0x2c5/0x3e0 [72747.556424] process_one_work+0x1aa/0x340 [72747.556426] worker_thread+0x30/0x390 [72747.556429] ? create_worker+0x1a0/0x1a0 [72747.556432] kthread+0x116/0x130 [72747.556435] ? kthread_park+0x80/0x80 [72747.556438] ret_from_fork+0x1f/0x30 [72747.566958] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs] [72747.566961] Call Trace: [72747.566964] __schedule+0x296/0x760 [72747.566968] ? finish_wait+0x80/0x80 [72747.566970] schedule+0x3c/0xa0 [72747.566995] wait_extent_bit.constprop.68+0x13b/0x1c0 [btrfs] [72747.566999] ? finish_wait+0x80/0x80 [72747.567024] lock_extent_bits+0x37/0x90 [btrfs] [72747.567047] btrfs_invalidatepage+0x299/0x2c0 [btrfs] [72747.567051] ? find_get_pages_range_tag+0x2cd/0x380 [72747.567076] __extent_writepage+0x203/0x320 [btrfs] [72747.567102] extent_write_cache_pages+0x2bb/0x440 [btrfs] [72747.567106] ? update_load_avg+0x7e/0x5f0 [72747.567109] ? enqueue_entity+0xf4/0x6f0 [72747.567134] extent_writepages+0x44/0xa0 [btrfs] [72747.567137] ? enqueue_task_fair+0x93/0x6f0 [72747.567140] do_writepages+0x41/0xd0 [72747.567144] __filemap_fdatawrite_range+0xc7/0x100 [72747.567167] btrfs_run_delalloc_work+0x17/0x40 [btrfs] [72747.567195] btrfs_work_helper+0xc2/0x300 [btrfs] [72747.567200] process_one_work+0x1aa/0x340 [72747.567202] worker_thread+0x30/0x390 [72747.567205] ? create_worker+0x1a0/0x1a0 [72747.567208] kthread+0x116/0x130 [72747.567211] ? kthread_park+0x80/0x80 [72747.567214] ret_from_fork+0x1f/0x30 [72747.569686] task:fsstress state:D stack: 0 pid:841421 ppid:841417 flags:0x00000000 [72747.569689] Call Trace: [72747.569691] __schedule+0x296/0x760 [72747.569694] schedule+0x3c/0xa0 [72747.569721] try_flush_qgroup+0x95/0x140 [btrfs] [72747.569725] ? finish_wait+0x80/0x80 [72747.569753] btrfs_qgroup_reserve_data+0x34/0x50 [btrfs] [72747.569781] btrfs_check_data_free_space+0x5f/0xa0 [btrfs] [72747.569804] btrfs_buffered_write+0x1f7/0x7f0 [btrfs] [72747.569810] ? path_lookupat.isra.48+0x97/0x140 [72747.569833] btrfs_file_write_iter+0x81/0x410 [btrfs] [72747.569836] ? __kmalloc+0x16a/0x2c0 [72747.569839] do_iter_readv_writev+0x160/0x1c0 [72747.569843] do_iter_write+0x80/0x1b0 [72747.569847] vfs_writev+0x84/0x140 [72747.569869] ? btrfs_file_llseek+0x38/0x270 [btrfs] [72747.569873] do_writev+0x65/0x100 [72747.569876] do_syscall_64+0x33/0x40 [72747.569879] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [72747.569899] task:fsstress state:D stack: 0 pid:841424 ppid:841417 flags:0x00004000 [72747.569903] Call Trace: [72747.569906] __schedule+0x296/0x760 [72747.569909] schedule+0x3c/0xa0 [72747.569936] try_flush_qgroup+0x95/0x140 [btrfs] [72747.569940] ? finish_wait+0x80/0x80 [72747.569967] __btrfs_qgroup_reserve_meta+0x36/0x50 [btrfs] [72747.569989] start_transaction+0x279/0x580 [btrfs] [72747.570014] clone_copy_inline_extent+0x332/0x490 [btrfs] [72747.570041] btrfs_clone+0x5b7/0x7a0 [btrfs] [72747.570068] ? lock_extent_bits+0x64/0x90 [btrfs] [72747.570095] btrfs_clone_files+0xfc/0x150 [btrfs] [72747.570122] btrfs_remap_file_range+0x3d8/0x4a0 [btrfs] [72747.570126] do_clone_file_range+0xed/0x200 [72747.570131] vfs_clone_file_range+0x37/0x110 [72747.570134] ioctl_file_clone+0x7d/0xb0 [72747.570137] do_vfs_ioctl+0x138/0x630 [72747.570140] __x64_sys_ioctl+0x62/0xc0 [72747.570143] do_syscall_64+0x33/0x40 [72747.570146] entry_SYSCALL_64_after_hwframe+0x44/0xa9 So fix this by skipping the flush of delalloc for an inode that is flagged with BTRFS_INODE_NO_DELALLOC_FLUSH, meaning it is currently under such a special case of cloning an inline extent, when flushing delalloc during qgroup metadata reservation. The special cases for cloning inline extents were added in kernel 5.7 by by commit 05a5a7621ce66c ("Btrfs: implement full reflink support for inline extents"), while having qgroup metadata space reservation flushing delalloc when low on space was added in kernel 5.9 by commit c53e9653605dbf ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT"). So use a "Fixes:" tag for the later commit to ease stable kernel backports. Reported-by: Wang Yugui <wangyugui@e16-tech.com> Link: https://lore.kernel.org/linux-btrfs/20210421083137.31E3.409509F4@e16-tech.com/ Fixes: c53e9653605dbf ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT") CC: stable@vger.kernel.org # 5.9+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-22 12:08:05 +01:00
ret = btrfs_start_delalloc_snapshot(root, false);
if (ret)
goto out;
/*
* All previous writes have started writeback in NOCOW mode, so now
* we force future writes to fallback to COW mode during snapshot
* creation.
*/
atomic_inc(&root->snapshot_force_cow);
snapshot_force_cow = true;
btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
ret = btrfs_mksubvol(parent, idmap, name, namelen,
root, readonly, inherit);
out:
if (snapshot_force_cow)
atomic_dec(&root->snapshot_force_cow);
btrfs_drew_read_unlock(&root->snapshot_lock);
return ret;
}
/*
* Try to start exclusive operation @type or cancel it if it's running.
*
* Return:
* 0 - normal mode, newly claimed op started
* >0 - normal mode, something else is running,
* return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
* ECANCELED - cancel mode, successful cancel
* ENOTCONN - cancel mode, operation not running anymore
*/
static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation type, bool cancel)
{
if (!cancel) {
/* Start normal op */
if (!btrfs_exclop_start(fs_info, type))
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
/* Exclusive operation is now claimed */
return 0;
}
/* Cancel running op */
if (btrfs_exclop_start_try_lock(fs_info, type)) {
/*
* This blocks any exclop finish from setting it to NONE, so we
* request cancellation. Either it runs and we will wait for it,
* or it has finished and no waiting will happen.
*/
atomic_inc(&fs_info->reloc_cancel_req);
btrfs_exclop_start_unlock(fs_info);
if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
TASK_INTERRUPTIBLE);
return -ECANCELED;
}
/* Something else is running or none */
return -ENOTCONN;
}
static noinline int btrfs_ioctl_resize(struct file *file,
void __user *arg)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
u64 new_size;
u64 old_size;
u64 devid = 1;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_vol_args *vol_args;
struct btrfs_trans_handle *trans;
struct btrfs_device *device = NULL;
char *sizestr;
char *retptr;
char *devstr = NULL;
int ret = 0;
int mod = 0;
bool cancel;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
/*
* Read the arguments before checking exclusivity to be able to
* distinguish regular resize and cancel
*/
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto out_drop;
}
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
sizestr = vol_args->name;
cancel = (strcmp("cancel", sizestr) == 0);
ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
if (ret)
goto out_free;
/* Exclusive operation is now claimed */
devstr = strchr(sizestr, ':');
if (devstr) {
sizestr = devstr + 1;
*devstr = '\0';
devstr = vol_args->name;
ret = kstrtoull(devstr, 10, &devid);
if (ret)
goto out_finish;
if (!devid) {
ret = -EINVAL;
goto out_finish;
}
btrfs_info(fs_info, "resizing devid %llu", devid);
}
args.devid = devid;
device = btrfs_find_device(fs_info->fs_devices, &args);
if (!device) {
btrfs_info(fs_info, "resizer unable to find device %llu",
devid);
ret = -ENODEV;
goto out_finish;
}
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
btrfs_info(fs_info,
"resizer unable to apply on readonly device %llu",
devid);
ret = -EPERM;
goto out_finish;
}
if (!strcmp(sizestr, "max"))
new_size = bdev_nr_bytes(device->bdev);
else {
if (sizestr[0] == '-') {
mod = -1;
sizestr++;
} else if (sizestr[0] == '+') {
mod = 1;
sizestr++;
}
new_size = memparse(sizestr, &retptr);
if (*retptr != '\0' || new_size == 0) {
ret = -EINVAL;
goto out_finish;
}
}
if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
ret = -EPERM;
goto out_finish;
}
old_size = btrfs_device_get_total_bytes(device);
if (mod < 0) {
if (new_size > old_size) {
ret = -EINVAL;
goto out_finish;
}
new_size = old_size - new_size;
} else if (mod > 0) {
if (new_size > ULLONG_MAX - old_size) {
ret = -ERANGE;
goto out_finish;
}
new_size = old_size + new_size;
}
if (new_size < SZ_256M) {
ret = -EINVAL;
goto out_finish;
}
if (new_size > bdev_nr_bytes(device->bdev)) {
ret = -EFBIG;
goto out_finish;
}
new_size = round_down(new_size, fs_info->sectorsize);
if (new_size > old_size) {
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_finish;
}
ret = btrfs_grow_device(trans, device, new_size);
btrfs_commit_transaction(trans);
} else if (new_size < old_size) {
ret = btrfs_shrink_device(device, new_size);
} /* equal, nothing need to do */
if (ret == 0 && new_size != old_size)
btrfs_info_in_rcu(fs_info,
"resize device %s (devid %llu) from %llu to %llu",
btrfs_dev_name(device), device->devid,
old_size, new_size);
out_finish:
btrfs_exclop_finish(fs_info);
out_free:
kfree(vol_args);
out_drop:
mnt_drop_write_file(file);
return ret;
}
static noinline int __btrfs_ioctl_snap_create(struct file *file,
struct mnt_idmap *idmap,
const char *name, unsigned long fd, int subvol,
bool readonly,
struct btrfs_qgroup_inherit *inherit)
{
int namelen;
int ret = 0;
if (!S_ISDIR(file_inode(file)->i_mode))
return -ENOTDIR;
ret = mnt_want_write_file(file);
if (ret)
goto out;
namelen = strlen(name);
if (strchr(name, '/')) {
ret = -EINVAL;
goto out_drop_write;
}
if (name[0] == '.' &&
(namelen == 1 || (name[1] == '.' && namelen == 2))) {
ret = -EEXIST;
goto out_drop_write;
}
if (subvol) {
ret = btrfs_mksubvol(&file->f_path, idmap, name,
namelen, NULL, readonly, inherit);
} else {
struct fd src = fdget(fd);
struct inode *src_inode;
if (!src.file) {
ret = -EINVAL;
goto out_drop_write;
}
src_inode = file_inode(src.file);
if (src_inode->i_sb != file_inode(file)->i_sb) {
btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
"Snapshot src from another FS");
ret = -EXDEV;
} else if (!inode_owner_or_capable(idmap, src_inode)) {
/*
* Subvolume creation is not restricted, but snapshots
* are limited to own subvolumes only
*/
ret = -EPERM;
} else {
ret = btrfs_mksnapshot(&file->f_path, idmap,
name, namelen,
BTRFS_I(src_inode)->root,
readonly, inherit);
}
fdput(src);
}
out_drop_write:
mnt_drop_write_file(file);
out:
return ret;
}
static noinline int btrfs_ioctl_snap_create(struct file *file,
void __user *arg, int subvol)
{
struct btrfs_ioctl_vol_args *vol_args;
int ret;
if (!S_ISDIR(file_inode(file)->i_mode))
return -ENOTDIR;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
vol_args->name, vol_args->fd, subvol,
false, NULL);
kfree(vol_args);
return ret;
}
static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
void __user *arg, int subvol)
{
struct btrfs_ioctl_vol_args_v2 *vol_args;
int ret;
bool readonly = false;
struct btrfs_qgroup_inherit *inherit = NULL;
if (!S_ISDIR(file_inode(file)->i_mode))
return -ENOTDIR;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
ret = -EOPNOTSUPP;
goto free_args;
}
if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
readonly = true;
if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
u64 nums;
if (vol_args->size < sizeof(*inherit) ||
vol_args->size > PAGE_SIZE) {
ret = -EINVAL;
goto free_args;
}
inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
if (IS_ERR(inherit)) {
ret = PTR_ERR(inherit);
goto free_args;
}
if (inherit->num_qgroups > PAGE_SIZE ||
inherit->num_ref_copies > PAGE_SIZE ||
inherit->num_excl_copies > PAGE_SIZE) {
ret = -EINVAL;
goto free_inherit;
}
nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2 * inherit->num_excl_copies;
if (vol_args->size != struct_size(inherit, qgroups, nums)) {
ret = -EINVAL;
goto free_inherit;
}
}
ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
vol_args->name, vol_args->fd, subvol,
readonly, inherit);
if (ret)
goto free_inherit;
free_inherit:
kfree(inherit);
free_args:
kfree(vol_args);
return ret;
}
static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
void __user *arg)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret = 0;
u64 flags = 0;
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
return -EINVAL;
down_read(&fs_info->subvol_sem);
if (btrfs_root_readonly(root))
flags |= BTRFS_SUBVOL_RDONLY;
up_read(&fs_info->subvol_sem);
if (copy_to_user(arg, &flags, sizeof(flags)))
ret = -EFAULT;
return ret;
}
static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
u64 root_flags;
u64 flags;
int ret = 0;
if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
goto out;
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
ret = -EINVAL;
goto out_drop_write;
}
if (copy_from_user(&flags, arg, sizeof(flags))) {
ret = -EFAULT;
goto out_drop_write;
}
if (flags & ~BTRFS_SUBVOL_RDONLY) {
ret = -EOPNOTSUPP;
goto out_drop_write;
}
down_write(&fs_info->subvol_sem);
/* nothing to do */
if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
goto out_drop_sem;
root_flags = btrfs_root_flags(&root->root_item);
if (flags & BTRFS_SUBVOL_RDONLY) {
btrfs_set_root_flags(&root->root_item,
root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
} else {
/*
* Block RO -> RW transition if this subvolume is involved in
* send
*/
spin_lock(&root->root_item_lock);
if (root->send_in_progress == 0) {
btrfs_set_root_flags(&root->root_item,
root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
spin_unlock(&root->root_item_lock);
} else {
spin_unlock(&root->root_item_lock);
btrfs_warn(fs_info,
"Attempt to set subvolume %llu read-write during send",
root->root_key.objectid);
ret = -EPERM;
goto out_drop_sem;
}
}
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_reset;
}
ret = btrfs_update_root(trans, fs_info->tree_root,
&root->root_key, &root->root_item);
if (ret < 0) {
btrfs_end_transaction(trans);
goto out_reset;
}
ret = btrfs_commit_transaction(trans);
out_reset:
if (ret)
btrfs_set_root_flags(&root->root_item, root_flags);
out_drop_sem:
up_write(&fs_info->subvol_sem);
out_drop_write:
mnt_drop_write_file(file);
out:
return ret;
}
static noinline int key_in_sk(struct btrfs_key *key,
struct btrfs_ioctl_search_key *sk)
{
struct btrfs_key test;
int ret;
test.objectid = sk->min_objectid;
test.type = sk->min_type;
test.offset = sk->min_offset;
ret = btrfs_comp_cpu_keys(key, &test);
if (ret < 0)
return 0;
test.objectid = sk->max_objectid;
test.type = sk->max_type;
test.offset = sk->max_offset;
ret = btrfs_comp_cpu_keys(key, &test);
if (ret > 0)
return 0;
return 1;
}
static noinline int copy_to_sk(struct btrfs_path *path,
struct btrfs_key *key,
struct btrfs_ioctl_search_key *sk,
size_t *buf_size,
char __user *ubuf,
unsigned long *sk_offset,
int *num_found)
{
u64 found_transid;
struct extent_buffer *leaf;
struct btrfs_ioctl_search_header sh;
struct btrfs_key test;
unsigned long item_off;
unsigned long item_len;
int nritems;
int i;
int slot;
int ret = 0;
leaf = path->nodes[0];
slot = path->slots[0];
nritems = btrfs_header_nritems(leaf);
if (btrfs_header_generation(leaf) > sk->max_transid) {
i = nritems;
goto advance_key;
}
found_transid = btrfs_header_generation(leaf);
for (i = slot; i < nritems; i++) {
item_off = btrfs_item_ptr_offset(leaf, i);
item_len = btrfs_item_size(leaf, i);
btrfs_item_key_to_cpu(leaf, key, i);
if (!key_in_sk(key, sk))
continue;
if (sizeof(sh) + item_len > *buf_size) {
if (*num_found) {
ret = 1;
goto out;
}
/*
* return one empty item back for v1, which does not
* handle -EOVERFLOW
*/
*buf_size = sizeof(sh) + item_len;
item_len = 0;
ret = -EOVERFLOW;
}
if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
ret = 1;
goto out;
}
sh.objectid = key->objectid;
sh.offset = key->offset;
sh.type = key->type;
sh.len = item_len;
sh.transid = found_transid;
btrfs: fix potential deadlock in the search ioctl With the conversion of the tree locks to rwsem I got the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00165-g04ec4da5f45f-dirty #922 Not tainted ------------------------------------------------------ compsize/11122 is trying to acquire lock: ffff889fabca8768 (&mm->mmap_lock#2){++++}-{3:3}, at: __might_fault+0x3e/0x90 but task is already holding lock: ffff889fe720fe40 (btrfs-fs-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-fs-00){++++}-{3:3}: down_write_nested+0x3b/0x70 __btrfs_tree_lock+0x24/0x120 btrfs_search_slot+0x756/0x990 btrfs_lookup_inode+0x3a/0xb4 __btrfs_update_delayed_inode+0x93/0x270 btrfs_async_run_delayed_root+0x168/0x230 btrfs_work_helper+0xd4/0x570 process_one_work+0x2ad/0x5f0 worker_thread+0x3a/0x3d0 kthread+0x133/0x150 ret_from_fork+0x1f/0x30 -> #1 (&delayed_node->mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_delayed_update_inode+0x50/0x440 btrfs_update_inode+0x8a/0xf0 btrfs_dirty_inode+0x5b/0xd0 touch_atime+0xa1/0xd0 btrfs_file_mmap+0x3f/0x60 mmap_region+0x3a4/0x640 do_mmap+0x376/0x580 vm_mmap_pgoff+0xd5/0x120 ksys_mmap_pgoff+0x193/0x230 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&mm->mmap_lock#2){++++}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 copy_to_sk.isra.32+0x121/0x300 search_ioctl+0x106/0x200 btrfs_ioctl_tree_search_v2+0x7b/0xf0 btrfs_ioctl+0x106f/0x30a0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &mm->mmap_lock#2 --> &delayed_node->mutex --> btrfs-fs-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-fs-00); lock(&delayed_node->mutex); lock(btrfs-fs-00); lock(&mm->mmap_lock#2); *** DEADLOCK *** 1 lock held by compsize/11122: #0: ffff889fe720fe40 (btrfs-fs-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 stack backtrace: CPU: 17 PID: 11122 Comm: compsize Kdump: loaded Not tainted 5.8.0-rc7-00165-g04ec4da5f45f-dirty #922 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 ? __might_fault+0x3e/0x90 ? find_held_lock+0x72/0x90 __might_fault+0x68/0x90 ? __might_fault+0x3e/0x90 _copy_to_user+0x1e/0x80 copy_to_sk.isra.32+0x121/0x300 ? btrfs_search_forward+0x2a6/0x360 search_ioctl+0x106/0x200 btrfs_ioctl_tree_search_v2+0x7b/0xf0 btrfs_ioctl+0x106f/0x30a0 ? __do_sys_newfstat+0x5a/0x70 ? ksys_ioctl+0x83/0xc0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The problem is we're doing a copy_to_user() while holding tree locks, which can deadlock if we have to do a page fault for the copy_to_user(). This exists even without my locking changes, so it needs to be fixed. Rework the search ioctl to do the pre-fault and then copy_to_user_nofault for the copying. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-10 11:42:27 -04:00
/*
* Copy search result header. If we fault then loop again so we
* can fault in the pages and -EFAULT there if there's a
* problem. Otherwise we'll fault and then copy the buffer in
* properly this next time through
*/
if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
ret = 0;
goto out;
}
*sk_offset += sizeof(sh);
if (item_len) {
char __user *up = ubuf + *sk_offset;
btrfs: fix potential deadlock in the search ioctl With the conversion of the tree locks to rwsem I got the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00165-g04ec4da5f45f-dirty #922 Not tainted ------------------------------------------------------ compsize/11122 is trying to acquire lock: ffff889fabca8768 (&mm->mmap_lock#2){++++}-{3:3}, at: __might_fault+0x3e/0x90 but task is already holding lock: ffff889fe720fe40 (btrfs-fs-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-fs-00){++++}-{3:3}: down_write_nested+0x3b/0x70 __btrfs_tree_lock+0x24/0x120 btrfs_search_slot+0x756/0x990 btrfs_lookup_inode+0x3a/0xb4 __btrfs_update_delayed_inode+0x93/0x270 btrfs_async_run_delayed_root+0x168/0x230 btrfs_work_helper+0xd4/0x570 process_one_work+0x2ad/0x5f0 worker_thread+0x3a/0x3d0 kthread+0x133/0x150 ret_from_fork+0x1f/0x30 -> #1 (&delayed_node->mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_delayed_update_inode+0x50/0x440 btrfs_update_inode+0x8a/0xf0 btrfs_dirty_inode+0x5b/0xd0 touch_atime+0xa1/0xd0 btrfs_file_mmap+0x3f/0x60 mmap_region+0x3a4/0x640 do_mmap+0x376/0x580 vm_mmap_pgoff+0xd5/0x120 ksys_mmap_pgoff+0x193/0x230 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&mm->mmap_lock#2){++++}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 copy_to_sk.isra.32+0x121/0x300 search_ioctl+0x106/0x200 btrfs_ioctl_tree_search_v2+0x7b/0xf0 btrfs_ioctl+0x106f/0x30a0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &mm->mmap_lock#2 --> &delayed_node->mutex --> btrfs-fs-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-fs-00); lock(&delayed_node->mutex); lock(btrfs-fs-00); lock(&mm->mmap_lock#2); *** DEADLOCK *** 1 lock held by compsize/11122: #0: ffff889fe720fe40 (btrfs-fs-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 stack backtrace: CPU: 17 PID: 11122 Comm: compsize Kdump: loaded Not tainted 5.8.0-rc7-00165-g04ec4da5f45f-dirty #922 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 ? __might_fault+0x3e/0x90 ? find_held_lock+0x72/0x90 __might_fault+0x68/0x90 ? __might_fault+0x3e/0x90 _copy_to_user+0x1e/0x80 copy_to_sk.isra.32+0x121/0x300 ? btrfs_search_forward+0x2a6/0x360 search_ioctl+0x106/0x200 btrfs_ioctl_tree_search_v2+0x7b/0xf0 btrfs_ioctl+0x106f/0x30a0 ? __do_sys_newfstat+0x5a/0x70 ? ksys_ioctl+0x83/0xc0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The problem is we're doing a copy_to_user() while holding tree locks, which can deadlock if we have to do a page fault for the copy_to_user(). This exists even without my locking changes, so it needs to be fixed. Rework the search ioctl to do the pre-fault and then copy_to_user_nofault for the copying. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-10 11:42:27 -04:00
/*
* Copy the item, same behavior as above, but reset the
* * sk_offset so we copy the full thing again.
*/
if (read_extent_buffer_to_user_nofault(leaf, up,
item_off, item_len)) {
ret = 0;
*sk_offset -= sizeof(sh);
goto out;
}
*sk_offset += item_len;
}
(*num_found)++;
if (ret) /* -EOVERFLOW from above */
goto out;
if (*num_found >= sk->nr_items) {
ret = 1;
goto out;
}
}
advance_key:
ret = 0;
test.objectid = sk->max_objectid;
test.type = sk->max_type;
test.offset = sk->max_offset;
if (btrfs_comp_cpu_keys(key, &test) >= 0)
ret = 1;
else if (key->offset < (u64)-1)
key->offset++;
else if (key->type < (u8)-1) {
key->offset = 0;
key->type++;
} else if (key->objectid < (u64)-1) {
key->offset = 0;
key->type = 0;
key->objectid++;
} else
ret = 1;
out:
/*
* 0: all items from this leaf copied, continue with next
* 1: * more items can be copied, but unused buffer is too small
* * all items were found
* Either way, it will stops the loop which iterates to the next
* leaf
* -EOVERFLOW: item was to large for buffer
* -EFAULT: could not copy extent buffer back to userspace
*/
return ret;
}
static noinline int search_ioctl(struct inode *inode,
struct btrfs_ioctl_search_key *sk,
size_t *buf_size,
char __user *ubuf)
{
struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
struct btrfs_root *root;
struct btrfs_key key;
struct btrfs_path *path;
int ret;
int num_found = 0;
unsigned long sk_offset = 0;
if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
*buf_size = sizeof(struct btrfs_ioctl_search_header);
return -EOVERFLOW;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
if (sk->tree_id == 0) {
/* search the root of the inode that was passed */
root = btrfs_grab_root(BTRFS_I(inode)->root);
} else {
root = btrfs_get_fs_root(info, sk->tree_id, true);
if (IS_ERR(root)) {
btrfs_free_path(path);
return PTR_ERR(root);
}
}
key.objectid = sk->min_objectid;
key.type = sk->min_type;
key.offset = sk->min_offset;
while (1) {
ret = -EFAULT;
/*
* Ensure that the whole user buffer is faulted in at sub-page
* granularity, otherwise the loop may live-lock.
*/
if (fault_in_subpage_writeable(ubuf + sk_offset,
*buf_size - sk_offset))
btrfs: fix potential deadlock in the search ioctl With the conversion of the tree locks to rwsem I got the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00165-g04ec4da5f45f-dirty #922 Not tainted ------------------------------------------------------ compsize/11122 is trying to acquire lock: ffff889fabca8768 (&mm->mmap_lock#2){++++}-{3:3}, at: __might_fault+0x3e/0x90 but task is already holding lock: ffff889fe720fe40 (btrfs-fs-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-fs-00){++++}-{3:3}: down_write_nested+0x3b/0x70 __btrfs_tree_lock+0x24/0x120 btrfs_search_slot+0x756/0x990 btrfs_lookup_inode+0x3a/0xb4 __btrfs_update_delayed_inode+0x93/0x270 btrfs_async_run_delayed_root+0x168/0x230 btrfs_work_helper+0xd4/0x570 process_one_work+0x2ad/0x5f0 worker_thread+0x3a/0x3d0 kthread+0x133/0x150 ret_from_fork+0x1f/0x30 -> #1 (&delayed_node->mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_delayed_update_inode+0x50/0x440 btrfs_update_inode+0x8a/0xf0 btrfs_dirty_inode+0x5b/0xd0 touch_atime+0xa1/0xd0 btrfs_file_mmap+0x3f/0x60 mmap_region+0x3a4/0x640 do_mmap+0x376/0x580 vm_mmap_pgoff+0xd5/0x120 ksys_mmap_pgoff+0x193/0x230 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&mm->mmap_lock#2){++++}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 copy_to_sk.isra.32+0x121/0x300 search_ioctl+0x106/0x200 btrfs_ioctl_tree_search_v2+0x7b/0xf0 btrfs_ioctl+0x106f/0x30a0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &mm->mmap_lock#2 --> &delayed_node->mutex --> btrfs-fs-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-fs-00); lock(&delayed_node->mutex); lock(btrfs-fs-00); lock(&mm->mmap_lock#2); *** DEADLOCK *** 1 lock held by compsize/11122: #0: ffff889fe720fe40 (btrfs-fs-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 stack backtrace: CPU: 17 PID: 11122 Comm: compsize Kdump: loaded Not tainted 5.8.0-rc7-00165-g04ec4da5f45f-dirty #922 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 ? __might_fault+0x3e/0x90 ? find_held_lock+0x72/0x90 __might_fault+0x68/0x90 ? __might_fault+0x3e/0x90 _copy_to_user+0x1e/0x80 copy_to_sk.isra.32+0x121/0x300 ? btrfs_search_forward+0x2a6/0x360 search_ioctl+0x106/0x200 btrfs_ioctl_tree_search_v2+0x7b/0xf0 btrfs_ioctl+0x106f/0x30a0 ? __do_sys_newfstat+0x5a/0x70 ? ksys_ioctl+0x83/0xc0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The problem is we're doing a copy_to_user() while holding tree locks, which can deadlock if we have to do a page fault for the copy_to_user(). This exists even without my locking changes, so it needs to be fixed. Rework the search ioctl to do the pre-fault and then copy_to_user_nofault for the copying. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-10 11:42:27 -04:00
break;
ret = btrfs_search_forward(root, &key, path, sk->min_transid);
if (ret != 0) {
if (ret > 0)
ret = 0;
goto err;
}
ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
&sk_offset, &num_found);
btrfs_release_path(path);
if (ret)
break;
}
if (ret > 0)
ret = 0;
err:
sk->nr_items = num_found;
btrfs_put_root(root);
btrfs_free_path(path);
return ret;
}
static noinline int btrfs_ioctl_tree_search(struct inode *inode,
void __user *argp)
{
struct btrfs_ioctl_search_args __user *uargs = argp;
struct btrfs_ioctl_search_key sk;
int ret;
size_t buf_size;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
return -EFAULT;
buf_size = sizeof(uargs->buf);
ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
/*
* In the origin implementation an overflow is handled by returning a
* search header with a len of zero, so reset ret.
*/
if (ret == -EOVERFLOW)
ret = 0;
if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
ret = -EFAULT;
return ret;
}
static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
void __user *argp)
{
struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
struct btrfs_ioctl_search_args_v2 args;
int ret;
size_t buf_size;
const size_t buf_limit = SZ_16M;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
/* copy search header and buffer size */
if (copy_from_user(&args, uarg, sizeof(args)))
return -EFAULT;
buf_size = args.buf_size;
/* limit result size to 16MB */
if (buf_size > buf_limit)
buf_size = buf_limit;
ret = search_ioctl(inode, &args.key, &buf_size,
(char __user *)(&uarg->buf[0]));
if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
ret = -EFAULT;
else if (ret == -EOVERFLOW &&
copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
ret = -EFAULT;
return ret;
}
/*
* Search INODE_REFs to identify path name of 'dirid' directory
* in a 'tree_id' tree. and sets path name to 'name'.
*/
static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
u64 tree_id, u64 dirid, char *name)
{
struct btrfs_root *root;
struct btrfs_key key;
char *ptr;
int ret = -1;
int slot;
int len;
int total_len = 0;
struct btrfs_inode_ref *iref;
struct extent_buffer *l;
struct btrfs_path *path;
if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
name[0]='\0';
return 0;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
root = btrfs_get_fs_root(info, tree_id, true);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
root = NULL;
goto out;
}
key.objectid = dirid;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_backwards(root, &key, path);
if (ret < 0)
goto out;
else if (ret > 0) {
ret = -ENOENT;
goto out;
}
l = path->nodes[0];
slot = path->slots[0];
iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
len = btrfs_inode_ref_name_len(l, iref);
ptr -= len + 1;
total_len += len + 1;
if (ptr < name) {
ret = -ENAMETOOLONG;
goto out;
}
*(ptr + len) = '/';
read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
break;
btrfs_release_path(path);
key.objectid = key.offset;
key.offset = (u64)-1;
dirid = key.objectid;
}
memmove(name, ptr, total_len);
name[total_len] = '\0';
ret = 0;
out:
btrfs_put_root(root);
btrfs_free_path(path);
return ret;
}
static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
btrfs: allow idmapped INO_LOOKUP_USER ioctl The INO_LOOKUP_USER is an unprivileged version of the INO_LOOKUP ioctl and has the following restrictions. The main difference between the two is that INO_LOOKUP is filesystem wide operation wheres INO_LOOKUP_USER is scoped beneath the file descriptor passed with the ioctl. Specifically, INO_LOOKUP_USER must adhere to the following restrictions: - The caller must be privileged over each inode of each path component for the path they are trying to lookup. - The path for the subvolume the caller is trying to lookup must be reachable from the inode associated with the file descriptor passed with the ioctl. The second condition makes it possible to scope the lookup of the path to the mount identified by the file descriptor passed with the ioctl. This allows us to enable this ioctl on idmapped mounts. Specifically, this is possible because all child subvolumes of a parent subvolume are reachable when the parent subvolume is mounted. So if the user had access to open the parent subvolume or has been given the fd then they can lookup the path if they had access to it provided they were privileged over each path component. Note, the INO_LOOKUP_USER ioctl allows a user to learn the path and name of a subvolume even though they would otherwise be restricted from doing so via regular VFS-based lookup. So think about a parent subvolume with multiple child subvolumes. Someone could mount he parent subvolume and restrict access to the child subvolumes by overmounting them with empty directories. At this point the user can't traverse the child subvolumes and they can't open files in the child subvolumes. However, they can still learn the path of child subvolumes as long as they have access to the parent subvolume by using the INO_LOOKUP_USER ioctl. The underlying assumption here is that it's ok that the lookup ioctls can't really take mounts into account other than the original mount the fd belongs to during lookup. Since this assumption is baked into the original INO_LOOKUP_USER ioctl we can extend it to idmapped mounts. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 12:48:57 +02:00
struct inode *inode,
struct btrfs_ioctl_ino_lookup_user_args *args)
{
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
struct super_block *sb = inode->i_sb;
struct btrfs_key upper_limit = BTRFS_I(inode)->location;
u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
u64 dirid = args->dirid;
unsigned long item_off;
unsigned long item_len;
struct btrfs_inode_ref *iref;
struct btrfs_root_ref *rref;
struct btrfs_root *root = NULL;
struct btrfs_path *path;
struct btrfs_key key, key2;
struct extent_buffer *leaf;
struct inode *temp_inode;
char *ptr;
int slot;
int len;
int total_len = 0;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/*
* If the bottom subvolume does not exist directly under upper_limit,
* construct the path in from the bottom up.
*/
if (dirid != upper_limit.objectid) {
ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
root = btrfs_get_fs_root(fs_info, treeid, true);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto out;
}
key.objectid = dirid;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_backwards(root, &key, path);
if (ret < 0)
goto out_put;
else if (ret > 0) {
ret = -ENOENT;
goto out_put;
}
leaf = path->nodes[0];
slot = path->slots[0];
iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
len = btrfs_inode_ref_name_len(leaf, iref);
ptr -= len + 1;
total_len += len + 1;
if (ptr < args->path) {
ret = -ENAMETOOLONG;
goto out_put;
}
*(ptr + len) = '/';
read_extent_buffer(leaf, ptr,
(unsigned long)(iref + 1), len);
/* Check the read+exec permission of this directory */
ret = btrfs_previous_item(root, path, dirid,
BTRFS_INODE_ITEM_KEY);
if (ret < 0) {
goto out_put;
} else if (ret > 0) {
ret = -ENOENT;
goto out_put;
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key2, slot);
if (key2.objectid != dirid) {
ret = -ENOENT;
goto out_put;
}
temp_inode = btrfs_iget(sb, key2.objectid, root);
if (IS_ERR(temp_inode)) {
ret = PTR_ERR(temp_inode);
goto out_put;
}
ret = inode_permission(idmap, temp_inode,
MAY_READ | MAY_EXEC);
iput(temp_inode);
if (ret) {
ret = -EACCES;
goto out_put;
}
if (key.offset == upper_limit.objectid)
break;
if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
ret = -EACCES;
goto out_put;
}
btrfs_release_path(path);
key.objectid = key.offset;
key.offset = (u64)-1;
dirid = key.objectid;
}
memmove(args->path, ptr, total_len);
args->path[total_len] = '\0';
btrfs_put_root(root);
root = NULL;
btrfs_release_path(path);
}
/* Get the bottom subvolume's name from ROOT_REF */
key.objectid = treeid;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = args->treeid;
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -ENOENT;
goto out;
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
item_off = btrfs_item_ptr_offset(leaf, slot);
item_len = btrfs_item_size(leaf, slot);
/* Check if dirid in ROOT_REF corresponds to passed dirid */
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
ret = -EINVAL;
goto out;
}
/* Copy subvolume's name */
item_off += sizeof(struct btrfs_root_ref);
item_len -= sizeof(struct btrfs_root_ref);
read_extent_buffer(leaf, args->name, item_off, item_len);
args->name[item_len] = 0;
out_put:
btrfs_put_root(root);
out:
btrfs_free_path(path);
return ret;
}
static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
void __user *argp)
{
struct btrfs_ioctl_ino_lookup_args *args;
int ret = 0;
args = memdup_user(argp, sizeof(*args));
if (IS_ERR(args))
return PTR_ERR(args);
/*
* Unprivileged query to obtain the containing subvolume root id. The
* path is reset so it's consistent with btrfs_search_path_in_tree.
*/
if (args->treeid == 0)
args->treeid = root->root_key.objectid;
if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
args->name[0] = 0;
goto out;
}
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out;
}
ret = btrfs_search_path_in_tree(root->fs_info,
args->treeid, args->objectid,
args->name);
out:
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
ret = -EFAULT;
kfree(args);
return ret;
}
/*
* Version of ino_lookup ioctl (unprivileged)
*
* The main differences from ino_lookup ioctl are:
*
* 1. Read + Exec permission will be checked using inode_permission() during
* path construction. -EACCES will be returned in case of failure.
* 2. Path construction will be stopped at the inode number which corresponds
* to the fd with which this ioctl is called. If constructed path does not
* exist under fd's inode, -EACCES will be returned.
* 3. The name of bottom subvolume is also searched and filled.
*/
static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
{
struct btrfs_ioctl_ino_lookup_user_args *args;
struct inode *inode;
int ret;
args = memdup_user(argp, sizeof(*args));
if (IS_ERR(args))
return PTR_ERR(args);
inode = file_inode(file);
if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
/*
* The subvolume does not exist under fd with which this is
* called
*/
kfree(args);
return -EACCES;
}
ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
ret = -EFAULT;
kfree(args);
return ret;
}
/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
{
struct btrfs_ioctl_get_subvol_info_args *subvol_info;
struct btrfs_fs_info *fs_info;
struct btrfs_root *root;
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_root_item *root_item;
struct btrfs_root_ref *rref;
struct extent_buffer *leaf;
unsigned long item_off;
unsigned long item_len;
int slot;
int ret = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
if (!subvol_info) {
btrfs_free_path(path);
return -ENOMEM;
}
fs_info = BTRFS_I(inode)->root->fs_info;
/* Get root_item of inode's subvolume */
key.objectid = BTRFS_I(inode)->root->root_key.objectid;
root = btrfs_get_fs_root(fs_info, key.objectid, true);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto out_free;
}
root_item = &root->root_item;
subvol_info->treeid = key.objectid;
subvol_info->generation = btrfs_root_generation(root_item);
subvol_info->flags = btrfs_root_flags(root_item);
memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
BTRFS_UUID_SIZE);
memcpy(subvol_info->received_uuid, root_item->received_uuid,
BTRFS_UUID_SIZE);
subvol_info->ctransid = btrfs_root_ctransid(root_item);
subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
subvol_info->otransid = btrfs_root_otransid(root_item);
subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
subvol_info->stransid = btrfs_root_stransid(root_item);
subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
subvol_info->rtransid = btrfs_root_rtransid(root_item);
subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
/* Search root tree for ROOT_BACKREF of this subvolume */
key.type = BTRFS_ROOT_BACKREF_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
if (ret < 0) {
goto out;
} else if (path->slots[0] >=
btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(fs_info->tree_root, path);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -EUCLEAN;
goto out;
}
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid == subvol_info->treeid &&
key.type == BTRFS_ROOT_BACKREF_KEY) {
subvol_info->parent_id = key.offset;
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
item_off = btrfs_item_ptr_offset(leaf, slot)
+ sizeof(struct btrfs_root_ref);
item_len = btrfs_item_size(leaf, slot)
- sizeof(struct btrfs_root_ref);
read_extent_buffer(leaf, subvol_info->name,
item_off, item_len);
} else {
ret = -ENOENT;
goto out;
}
}
btrfs_free_path(path);
path = NULL;
if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
ret = -EFAULT;
out:
btrfs_put_root(root);
out_free:
btrfs_free_path(path);
kfree(subvol_info);
return ret;
}
/*
* Return ROOT_REF information of the subvolume containing this inode
* except the subvolume name.
*/
static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
void __user *argp)
{
struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
struct btrfs_root_ref *rref;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *leaf;
u64 objectid;
int slot;
int ret;
u8 found;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
rootrefs = memdup_user(argp, sizeof(*rootrefs));
if (IS_ERR(rootrefs)) {
btrfs_free_path(path);
return PTR_ERR(rootrefs);
}
objectid = root->root_key.objectid;
key.objectid = objectid;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = rootrefs->min_treeid;
found = 0;
root = root->fs_info->tree_root;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0) {
goto out;
} else if (path->slots[0] >=
btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(root, path);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -EUCLEAN;
goto out;
}
}
while (1) {
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
ret = 0;
goto out;
}
if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
ret = -EOVERFLOW;
goto out;
}
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
rootrefs->rootref[found].treeid = key.offset;
rootrefs->rootref[found].dirid =
btrfs_root_ref_dirid(leaf, rref);
found++;
ret = btrfs_next_item(root, path);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -EUCLEAN;
goto out;
}
}
out:
btrfs: free btrfs_path before copying root refs to userspace Syzbot reported the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0 Not tainted ------------------------------------------------------ syz-executor307/3029 is trying to acquire lock: ffff0000c02525d8 (&mm->mmap_lock){++++}-{3:3}, at: __might_fault+0x54/0xb4 mm/memory.c:5576 but task is already holding lock: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline] ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline] ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (btrfs-root-00){++++}-{3:3}: down_read_nested+0x64/0x84 kernel/locking/rwsem.c:1624 __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline] btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline] btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279 btrfs_search_slot_get_root+0x74/0x338 fs/btrfs/ctree.c:1637 btrfs_search_slot+0x1b0/0xfd8 fs/btrfs/ctree.c:1944 btrfs_update_root+0x6c/0x5a0 fs/btrfs/root-tree.c:132 commit_fs_roots+0x1f0/0x33c fs/btrfs/transaction.c:1459 btrfs_commit_transaction+0x89c/0x12d8 fs/btrfs/transaction.c:2343 flush_space+0x66c/0x738 fs/btrfs/space-info.c:786 btrfs_async_reclaim_metadata_space+0x43c/0x4e0 fs/btrfs/space-info.c:1059 process_one_work+0x2d8/0x504 kernel/workqueue.c:2289 worker_thread+0x340/0x610 kernel/workqueue.c:2436 kthread+0x12c/0x158 kernel/kthread.c:376 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860 -> #2 (&fs_info->reloc_mutex){+.+.}-{3:3}: __mutex_lock_common+0xd4/0xca8 kernel/locking/mutex.c:603 __mutex_lock kernel/locking/mutex.c:747 [inline] mutex_lock_nested+0x38/0x44 kernel/locking/mutex.c:799 btrfs_record_root_in_trans fs/btrfs/transaction.c:516 [inline] start_transaction+0x248/0x944 fs/btrfs/transaction.c:752 btrfs_start_transaction+0x34/0x44 fs/btrfs/transaction.c:781 btrfs_create_common+0xf0/0x1b4 fs/btrfs/inode.c:6651 btrfs_create+0x8c/0xb0 fs/btrfs/inode.c:6697 lookup_open fs/namei.c:3413 [inline] open_last_lookups fs/namei.c:3481 [inline] path_openat+0x804/0x11c4 fs/namei.c:3688 do_filp_open+0xdc/0x1b8 fs/namei.c:3718 do_sys_openat2+0xb8/0x22c fs/open.c:1313 do_sys_open fs/open.c:1329 [inline] __do_sys_openat fs/open.c:1345 [inline] __se_sys_openat fs/open.c:1340 [inline] __arm64_sys_openat+0xb0/0xe0 fs/open.c:1340 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 -> #1 (sb_internal#2){.+.+}-{0:0}: percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1826 [inline] sb_start_intwrite include/linux/fs.h:1948 [inline] start_transaction+0x360/0x944 fs/btrfs/transaction.c:683 btrfs_join_transaction+0x30/0x40 fs/btrfs/transaction.c:795 btrfs_dirty_inode+0x50/0x140 fs/btrfs/inode.c:6103 btrfs_update_time+0x1c0/0x1e8 fs/btrfs/inode.c:6145 inode_update_time fs/inode.c:1872 [inline] touch_atime+0x1f0/0x4a8 fs/inode.c:1945 file_accessed include/linux/fs.h:2516 [inline] btrfs_file_mmap+0x50/0x88 fs/btrfs/file.c:2407 call_mmap include/linux/fs.h:2192 [inline] mmap_region+0x7fc/0xc14 mm/mmap.c:1752 do_mmap+0x644/0x97c mm/mmap.c:1540 vm_mmap_pgoff+0xe8/0x1d0 mm/util.c:552 ksys_mmap_pgoff+0x1cc/0x278 mm/mmap.c:1586 __do_sys_mmap arch/arm64/kernel/sys.c:28 [inline] __se_sys_mmap arch/arm64/kernel/sys.c:21 [inline] __arm64_sys_mmap+0x58/0x6c arch/arm64/kernel/sys.c:21 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 -> #0 (&mm->mmap_lock){++++}-{3:3}: check_prev_add kernel/locking/lockdep.c:3095 [inline] check_prevs_add kernel/locking/lockdep.c:3214 [inline] validate_chain kernel/locking/lockdep.c:3829 [inline] __lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053 lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666 __might_fault+0x7c/0xb4 mm/memory.c:5577 _copy_to_user include/linux/uaccess.h:134 [inline] copy_to_user include/linux/uaccess.h:160 [inline] btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203 btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 other info that might help us debug this: Chain exists of: &mm->mmap_lock --> &fs_info->reloc_mutex --> btrfs-root-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-root-00); lock(&fs_info->reloc_mutex); lock(btrfs-root-00); lock(&mm->mmap_lock); *** DEADLOCK *** 1 lock held by syz-executor307/3029: #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline] #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline] #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279 stack backtrace: CPU: 0 PID: 3029 Comm: syz-executor307 Not tainted 6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/30/2022 Call trace: dump_backtrace+0x1c4/0x1f0 arch/arm64/kernel/stacktrace.c:156 show_stack+0x2c/0x54 arch/arm64/kernel/stacktrace.c:163 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x104/0x16c lib/dump_stack.c:106 dump_stack+0x1c/0x58 lib/dump_stack.c:113 print_circular_bug+0x2c4/0x2c8 kernel/locking/lockdep.c:2053 check_noncircular+0x14c/0x154 kernel/locking/lockdep.c:2175 check_prev_add kernel/locking/lockdep.c:3095 [inline] check_prevs_add kernel/locking/lockdep.c:3214 [inline] validate_chain kernel/locking/lockdep.c:3829 [inline] __lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053 lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666 __might_fault+0x7c/0xb4 mm/memory.c:5577 _copy_to_user include/linux/uaccess.h:134 [inline] copy_to_user include/linux/uaccess.h:160 [inline] btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203 btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 We do generally the right thing here, copying the references into a temporary buffer, however we are still holding the path when we do copy_to_user from the temporary buffer. Fix this by freeing the path before we copy to user space. Reported-by: syzbot+4ef9e52e464c6ff47d9d@syzkaller.appspotmail.com CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-11-07 11:44:51 -05:00
btrfs_free_path(path);
if (!ret || ret == -EOVERFLOW) {
rootrefs->num_items = found;
/* update min_treeid for next search */
if (found)
rootrefs->min_treeid =
rootrefs->rootref[found - 1].treeid + 1;
if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
ret = -EFAULT;
}
kfree(rootrefs);
return ret;
}
static noinline int btrfs_ioctl_snap_destroy(struct file *file,
void __user *arg,
bool destroy_v2)
{
struct dentry *parent = file->f_path.dentry;
struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
struct dentry *dentry;
struct inode *dir = d_inode(parent);
struct inode *inode;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_root *dest = NULL;
struct btrfs_ioctl_vol_args *vol_args = NULL;
struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
struct mnt_idmap *idmap = file_mnt_idmap(file);
char *subvol_name, *subvol_name_ptr = NULL;
int subvol_namelen;
int err = 0;
bool destroy_parent = false;
/* We don't support snapshots with extent tree v2 yet. */
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info,
"extent tree v2 doesn't support snapshot deletion yet");
return -EOPNOTSUPP;
}
if (destroy_v2) {
vol_args2 = memdup_user(arg, sizeof(*vol_args2));
if (IS_ERR(vol_args2))
return PTR_ERR(vol_args2);
if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
err = -EOPNOTSUPP;
goto out;
}
/*
* If SPEC_BY_ID is not set, we are looking for the subvolume by
* name, same as v1 currently does.
*/
if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
subvol_name = vol_args2->name;
err = mnt_want_write_file(file);
if (err)
goto out;
} else {
struct inode *old_dir;
btrfs: allow idmapped SNAP_DESTROY ioctls Destroying subvolumes and snapshots are important features of btrfs. Both operations are available to unprivileged users if the filesystem has been mounted with the "user_subvol_rm_allowed" mount option. Allow subvolume and snapshot deletion on idmapped mounts. This is a fairly straightforward operation since all the permission checking helpers are already capable of handling idmapped mounts. So we just need to pass down the mount's userns. Subvolumes and snapshots can either be deleted by specifying their name or - if BTRFS_IOC_SNAP_DESTROY_V2 is used - by their subvolume or snapshot id if the BTRFS_SUBVOL_SPEC_BY_ID is set. This feature is blocked on idmapped mounts as this allows filesystem wide subvolume deletions and thus can escape the scope of what's exposed under the mount identified by the fd passed with the ioctl. This means that even the root or CAP_SYS_ADMIN capable user can't delete a subvolume via BTRFS_SUBVOL_SPEC_BY_ID. This is intentional. The root user is currently already subject to permission checks in btrfs_may_delete() including whether the inode's i_uid/i_gid of the directory the subvolume is located in have a mapping in the caller's idmapping. For this to fail isn't currently possible since a btrfs filesystem can't be mounted with a non-initial idmapping but it shows that even the root user would fail to delete a subvolume if the relevant inode isn't mapped in their idmapping. The idmapped mount case is the same in principle. This isn't a huge problem a root user wanting to delete arbitrary subvolumes can just always create another (even detached) mount without an idmapping attached. In addition, we will allow BTRFS_SUBVOL_SPEC_BY_ID for cases where the subvolume to delete is directly located under inode referenced by the fd passed for the ioctl() in a follow-up commit. Here is an example where a btrfs subvolume is deleted through a subvolume mount that does not expose the subvolume to be delete but it can still be deleted by using the subvolume id: /* Compile the following program as "delete_by_spec". */ #define _GNU_SOURCE #include <fcntl.h> #include <inttypes.h> #include <linux/btrfs.h> #include <stdio.h> #include <stdlib.h> #include <sys/ioctl.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> static int rm_subvolume_by_id(int fd, uint64_t subvolid) { struct btrfs_ioctl_vol_args_v2 args = {}; int ret; args.flags = BTRFS_SUBVOL_SPEC_BY_ID; args.subvolid = subvolid; ret = ioctl(fd, BTRFS_IOC_SNAP_DESTROY_V2, &args); if (ret < 0) return -1; return 0; } int main(int argc, char *argv[]) { int subvolid = 0; if (argc < 3) exit(1); fprintf(stderr, "Opening %s\n", argv[1]); int fd = open(argv[1], O_CLOEXEC | O_DIRECTORY); if (fd < 0) exit(2); subvolid = atoi(argv[2]); fprintf(stderr, "Deleting subvolume with subvolid %d\n", subvolid); int ret = rm_subvolume_by_id(fd, subvolid); if (ret < 0) exit(3); exit(0); } #include <stdio.h>" #include <stdlib.h>" #include <linux/btrfs.h" truncate -s 10G btrfs.img mkfs.btrfs btrfs.img export LOOPDEV=$(sudo losetup -f --show btrfs.img) mount ${LOOPDEV} /mnt sudo chown $(id -u):$(id -g) /mnt btrfs subvolume create /mnt/A btrfs subvolume create /mnt/B/C # Get subvolume id via: sudo btrfs subvolume show /mnt/A # Save subvolid SUBVOLID=<nr> sudo umount /mnt sudo mount ${LOOPDEV} -o subvol=B/C,user_subvol_rm_allowed /mnt ./delete_by_spec /mnt ${SUBVOLID} With idmapped mounts this can potentially be used by users to delete subvolumes/snapshots they would otherwise not have access to as the idmapping would be applied to an inode that is not exposed in the mount of the subvolume. The fact that this is a filesystem wide operation suggests it might be a good idea to expose this under a separate ioctl that clearly indicates this. In essence, the file descriptor passed with the ioctl is merely used to identify the filesystem on which to operate when BTRFS_SUBVOL_SPEC_BY_ID is used. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 12:48:53 +02:00
if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
err = -EINVAL;
goto out;
}
err = mnt_want_write_file(file);
if (err)
goto out;
dentry = btrfs_get_dentry(fs_info->sb,
BTRFS_FIRST_FREE_OBJECTID,
vol_args2->subvolid, 0);
if (IS_ERR(dentry)) {
err = PTR_ERR(dentry);
goto out_drop_write;
}
/*
* Change the default parent since the subvolume being
* deleted can be outside of the current mount point.
*/
parent = btrfs_get_parent(dentry);
/*
* At this point dentry->d_name can point to '/' if the
* subvolume we want to destroy is outsite of the
* current mount point, so we need to release the
* current dentry and execute the lookup to return a new
* one with ->d_name pointing to the
* <mount point>/subvol_name.
*/
dput(dentry);
if (IS_ERR(parent)) {
err = PTR_ERR(parent);
goto out_drop_write;
}
old_dir = dir;
dir = d_inode(parent);
/*
* If v2 was used with SPEC_BY_ID, a new parent was
* allocated since the subvolume can be outside of the
* current mount point. Later on we need to release this
* new parent dentry.
*/
destroy_parent = true;
/*
* On idmapped mounts, deletion via subvolid is
* restricted to subvolumes that are immediate
* ancestors of the inode referenced by the file
* descriptor in the ioctl. Otherwise the idmapping
* could potentially be abused to delete subvolumes
* anywhere in the filesystem the user wouldn't be able
* to delete without an idmapped mount.
*/
if (old_dir != dir && idmap != &nop_mnt_idmap) {
err = -EOPNOTSUPP;
goto free_parent;
}
subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
fs_info, vol_args2->subvolid);
if (IS_ERR(subvol_name_ptr)) {
err = PTR_ERR(subvol_name_ptr);
goto free_parent;
}
/* subvol_name_ptr is already nul terminated */
subvol_name = (char *)kbasename(subvol_name_ptr);
}
} else {
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
subvol_name = vol_args->name;
err = mnt_want_write_file(file);
if (err)
goto out;
}
subvol_namelen = strlen(subvol_name);
if (strchr(subvol_name, '/') ||
strncmp(subvol_name, "..", subvol_namelen) == 0) {
err = -EINVAL;
goto free_subvol_name;
}
if (!S_ISDIR(dir->i_mode)) {
err = -ENOTDIR;
goto free_subvol_name;
}
err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
if (err == -EINTR)
goto free_subvol_name;
dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
if (IS_ERR(dentry)) {
err = PTR_ERR(dentry);
goto out_unlock_dir;
}
if (d_really_is_negative(dentry)) {
err = -ENOENT;
goto out_dput;
}
inode = d_inode(dentry);
dest = BTRFS_I(inode)->root;
if (!capable(CAP_SYS_ADMIN)) {
/*
* Regular user. Only allow this with a special mount
* option, when the user has write+exec access to the
* subvol root, and when rmdir(2) would have been
* allowed.
*
* Note that this is _not_ check that the subvol is
* empty or doesn't contain data that we wouldn't
* otherwise be able to delete.
*
* Users who want to delete empty subvols should try
* rmdir(2).
*/
err = -EPERM;
if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
goto out_dput;
/*
* Do not allow deletion if the parent dir is the same
* as the dir to be deleted. That means the ioctl
* must be called on the dentry referencing the root
* of the subvol, not a random directory contained
* within it.
*/
err = -EINVAL;
if (root == dest)
goto out_dput;
err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
if (err)
goto out_dput;
}
/* check if subvolume may be deleted by a user */
err = btrfs_may_delete(idmap, dir, dentry, 1);
if (err)
goto out_dput;
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
err = -EINVAL;
goto out_dput;
}
btrfs_inode_lock(BTRFS_I(inode), 0);
err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
btrfs_inode_unlock(BTRFS_I(inode), 0);
fsnotify: invalidate dcache before IN_DELETE event Apparently, there are some applications that use IN_DELETE event as an invalidation mechanism and expect that if they try to open a file with the name reported with the delete event, that it should not contain the content of the deleted file. Commit 49246466a989 ("fsnotify: move fsnotify_nameremove() hook out of d_delete()") moved the fsnotify delete hook before d_delete() so fsnotify will have access to a positive dentry. This allowed a race where opening the deleted file via cached dentry is now possible after receiving the IN_DELETE event. To fix the regression, create a new hook fsnotify_delete() that takes the unlinked inode as an argument and use a helper d_delete_notify() to pin the inode, so we can pass it to fsnotify_delete() after d_delete(). Backporting hint: this regression is from v5.3. Although patch will apply with only trivial conflicts to v5.4 and v5.10, it won't build, because fsnotify_delete() implementation is different in each of those versions (see fsnotify_link()). A follow up patch will fix the fsnotify_unlink/rmdir() calls in pseudo filesystem that do not need to call d_delete(). Link: https://lore.kernel.org/r/20220120215305.282577-1-amir73il@gmail.com Reported-by: Ivan Delalande <colona@arista.com> Link: https://lore.kernel.org/linux-fsdevel/YeNyzoDM5hP5LtGW@visor/ Fixes: 49246466a989 ("fsnotify: move fsnotify_nameremove() hook out of d_delete()") Cc: stable@vger.kernel.org # v5.3+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2022-01-20 23:53:04 +02:00
if (!err)
d_delete_notify(dir, dentry);
out_dput:
dput(dentry);
out_unlock_dir:
btrfs_inode_unlock(BTRFS_I(dir), 0);
free_subvol_name:
kfree(subvol_name_ptr);
free_parent:
if (destroy_parent)
dput(parent);
out_drop_write:
mnt_drop_write_file(file);
out:
kfree(vol_args2);
kfree(vol_args);
return err;
}
static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_defrag_range_args range = {0};
int ret;
ret = mnt_want_write_file(file);
if (ret)
return ret;
if (btrfs_root_readonly(root)) {
ret = -EROFS;
goto out;
}
switch (inode->i_mode & S_IFMT) {
case S_IFDIR:
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out;
}
ret = btrfs_defrag_root(root);
break;
case S_IFREG:
/*
* Note that this does not check the file descriptor for write
* access. This prevents defragmenting executables that are
* running and allows defrag on files open in read-only mode.
*/
if (!capable(CAP_SYS_ADMIN) &&
inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
ret = -EPERM;
goto out;
}
if (argp) {
if (copy_from_user(&range, argp, sizeof(range))) {
ret = -EFAULT;
goto out;
}
/* compression requires us to start the IO */
if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
range.extent_thresh = (u32)-1;
}
} else {
/* the rest are all set to zero by kzalloc */
range.len = (u64)-1;
}
ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
&range, BTRFS_OLDEST_GENERATION, 0);
if (ret > 0)
ret = 0;
break;
default:
ret = -EINVAL;
}
out:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
{
struct btrfs_ioctl_vol_args *vol_args;
bool restore_op = false;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
return -EINVAL;
}
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
/*
* We can do the device add because we have a paused balanced,
* change the exclusive op type and remember we should bring
* back the paused balance
*/
fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
btrfs_exclop_start_unlock(fs_info);
restore_op = true;
}
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto out;
}
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
ret = btrfs_init_new_device(fs_info, vol_args->name);
if (!ret)
btrfs_info(fs_info, "disk added %s", vol_args->name);
kfree(vol_args);
out:
if (restore_op)
btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
else
btrfs_exclop_finish(fs_info);
return ret;
}
static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
{
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
BTRFS_DEV_LOOKUP_ARGS(args);
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_ioctl_vol_args_v2 *vol_args;
btrfs: delay blkdev_put until after the device remove When removing the device we call blkdev_put() on the device once we've removed it, and because we have an EXCL open we need to take the ->open_mutex on the block device to clean it up. Unfortunately during device remove we are holding the sb writers lock, which results in the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #407 Not tainted ------------------------------------------------------ losetup/11595 is trying to acquire lock: ffff973ac35dd138 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_put+0x3a/0x220 btrfs_rm_device.cold+0x62/0xe5 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11595: #0: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11595 Comm: losetup Not tainted 5.14.0-rc2+ #407 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc21255d4cb So instead save the bdev and do the put once we've dropped the sb writers lock in order to avoid the lockdep recursion. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 17:01:17 -04:00
struct block_device *bdev = NULL;
fmode_t mode;
int ret;
bool cancel = false;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
ret = -EOPNOTSUPP;
goto out;
}
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
args.devid = vol_args->devid;
} else if (!strcmp("cancel", vol_args->name)) {
cancel = true;
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
} else {
ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
if (ret)
goto out;
}
ret = mnt_want_write_file(file);
if (ret)
goto out;
ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
cancel);
if (ret)
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
goto err_drop;
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
/* Exclusive operation is now claimed */
ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
btrfs_exclop_finish(fs_info);
if (!ret) {
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
btrfs_info(fs_info, "device deleted: id %llu",
vol_args->devid);
else
btrfs_info(fs_info, "device deleted: %s",
vol_args->name);
}
err_drop:
mnt_drop_write_file(file);
btrfs: delay blkdev_put until after the device remove When removing the device we call blkdev_put() on the device once we've removed it, and because we have an EXCL open we need to take the ->open_mutex on the block device to clean it up. Unfortunately during device remove we are holding the sb writers lock, which results in the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #407 Not tainted ------------------------------------------------------ losetup/11595 is trying to acquire lock: ffff973ac35dd138 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_put+0x3a/0x220 btrfs_rm_device.cold+0x62/0xe5 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11595: #0: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11595 Comm: losetup Not tainted 5.14.0-rc2+ #407 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc21255d4cb So instead save the bdev and do the put once we've dropped the sb writers lock in order to avoid the lockdep recursion. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 17:01:17 -04:00
if (bdev)
blkdev_put(bdev, mode);
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
out:
btrfs_put_dev_args_from_path(&args);
kfree(vol_args);
return ret;
}
static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
{
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
BTRFS_DEV_LOOKUP_ARGS(args);
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_ioctl_vol_args *vol_args;
btrfs: delay blkdev_put until after the device remove When removing the device we call blkdev_put() on the device once we've removed it, and because we have an EXCL open we need to take the ->open_mutex on the block device to clean it up. Unfortunately during device remove we are holding the sb writers lock, which results in the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #407 Not tainted ------------------------------------------------------ losetup/11595 is trying to acquire lock: ffff973ac35dd138 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_put+0x3a/0x220 btrfs_rm_device.cold+0x62/0xe5 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11595: #0: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11595 Comm: losetup Not tainted 5.14.0-rc2+ #407 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc21255d4cb So instead save the bdev and do the put once we've dropped the sb writers lock in order to avoid the lockdep recursion. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 17:01:17 -04:00
struct block_device *bdev = NULL;
fmode_t mode;
int ret;
bool cancel = false;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
vol_args = memdup_user(arg, sizeof(*vol_args));
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
if (!strcmp("cancel", vol_args->name)) {
cancel = true;
} else {
ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
if (ret)
goto out;
}
ret = mnt_want_write_file(file);
if (ret)
goto out;
ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
cancel);
if (ret == 0) {
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
if (!ret)
btrfs_info(fs_info, "disk deleted %s", vol_args->name);
btrfs_exclop_finish(fs_info);
}
mnt_drop_write_file(file);
btrfs: delay blkdev_put until after the device remove When removing the device we call blkdev_put() on the device once we've removed it, and because we have an EXCL open we need to take the ->open_mutex on the block device to clean it up. Unfortunately during device remove we are holding the sb writers lock, which results in the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #407 Not tainted ------------------------------------------------------ losetup/11595 is trying to acquire lock: ffff973ac35dd138 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_put+0x3a/0x220 btrfs_rm_device.cold+0x62/0xe5 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11595: #0: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11595 Comm: losetup Not tainted 5.14.0-rc2+ #407 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc21255d4cb So instead save the bdev and do the put once we've dropped the sb writers lock in order to avoid the lockdep recursion. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 17:01:17 -04:00
if (bdev)
blkdev_put(bdev, mode);
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 16:12:44 -04:00
out:
btrfs_put_dev_args_from_path(&args);
kfree(vol_args);
return ret;
}
static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_fs_info_args *fi_args;
struct btrfs_device *device;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
btrfs: pass checksum type via BTRFS_IOC_FS_INFO ioctl With the recent addition of filesystem checksum types other than CRC32c, it is not anymore hard-coded which checksum type a btrfs filesystem uses. Up to now there is no good way to read the filesystem checksum, apart from reading the filesystem UUID and then query sysfs for the checksum type. Add a new csum_type and csum_size fields to the BTRFS_IOC_FS_INFO ioctl command which usually is used to query filesystem features. Also add a flags member indicating that the kernel responded with a set csum_type and csum_size field. For compatibility reasons, only return the csum_type and csum_size if the BTRFS_FS_INFO_FLAG_CSUM_INFO flag was passed to the kernel. Also clear any unknown flags so we don't pass false positives to user-space newer than the kernel. To simplify further additions to the ioctl, also switch the padding to a u8 array. Pahole was used to verify the result of this switch: The csum members are added before flags, which might look odd, but this is to keep the alignment requirements and not to introduce holes in the structure. $ pahole -C btrfs_ioctl_fs_info_args fs/btrfs/btrfs.ko struct btrfs_ioctl_fs_info_args { __u64 max_id; /* 0 8 */ __u64 num_devices; /* 8 8 */ __u8 fsid[16]; /* 16 16 */ __u32 nodesize; /* 32 4 */ __u32 sectorsize; /* 36 4 */ __u32 clone_alignment; /* 40 4 */ __u16 csum_type; /* 44 2 */ __u16 csum_size; /* 46 2 */ __u64 flags; /* 48 8 */ __u8 reserved[968]; /* 56 968 */ /* size: 1024, cachelines: 16, members: 10 */ }; Fixes: 3951e7f050ac ("btrfs: add xxhash64 to checksumming algorithms") Fixes: 3831bf0094ab ("btrfs: add sha256 to checksumming algorithm") CC: stable@vger.kernel.org # 5.5+ Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 21:28:58 +09:00
u64 flags_in;
int ret = 0;
btrfs: pass checksum type via BTRFS_IOC_FS_INFO ioctl With the recent addition of filesystem checksum types other than CRC32c, it is not anymore hard-coded which checksum type a btrfs filesystem uses. Up to now there is no good way to read the filesystem checksum, apart from reading the filesystem UUID and then query sysfs for the checksum type. Add a new csum_type and csum_size fields to the BTRFS_IOC_FS_INFO ioctl command which usually is used to query filesystem features. Also add a flags member indicating that the kernel responded with a set csum_type and csum_size field. For compatibility reasons, only return the csum_type and csum_size if the BTRFS_FS_INFO_FLAG_CSUM_INFO flag was passed to the kernel. Also clear any unknown flags so we don't pass false positives to user-space newer than the kernel. To simplify further additions to the ioctl, also switch the padding to a u8 array. Pahole was used to verify the result of this switch: The csum members are added before flags, which might look odd, but this is to keep the alignment requirements and not to introduce holes in the structure. $ pahole -C btrfs_ioctl_fs_info_args fs/btrfs/btrfs.ko struct btrfs_ioctl_fs_info_args { __u64 max_id; /* 0 8 */ __u64 num_devices; /* 8 8 */ __u8 fsid[16]; /* 16 16 */ __u32 nodesize; /* 32 4 */ __u32 sectorsize; /* 36 4 */ __u32 clone_alignment; /* 40 4 */ __u16 csum_type; /* 44 2 */ __u16 csum_size; /* 46 2 */ __u64 flags; /* 48 8 */ __u8 reserved[968]; /* 56 968 */ /* size: 1024, cachelines: 16, members: 10 */ }; Fixes: 3951e7f050ac ("btrfs: add xxhash64 to checksumming algorithms") Fixes: 3831bf0094ab ("btrfs: add sha256 to checksumming algorithm") CC: stable@vger.kernel.org # 5.5+ Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 21:28:58 +09:00
fi_args = memdup_user(arg, sizeof(*fi_args));
if (IS_ERR(fi_args))
return PTR_ERR(fi_args);
flags_in = fi_args->flags;
memset(fi_args, 0, sizeof(*fi_args));
rcu_read_lock();
fi_args->num_devices = fs_devices->num_devices;
list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
if (device->devid > fi_args->max_id)
fi_args->max_id = device->devid;
}
rcu_read_unlock();
memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
fi_args->nodesize = fs_info->nodesize;
fi_args->sectorsize = fs_info->sectorsize;
fi_args->clone_alignment = fs_info->sectorsize;
btrfs: pass checksum type via BTRFS_IOC_FS_INFO ioctl With the recent addition of filesystem checksum types other than CRC32c, it is not anymore hard-coded which checksum type a btrfs filesystem uses. Up to now there is no good way to read the filesystem checksum, apart from reading the filesystem UUID and then query sysfs for the checksum type. Add a new csum_type and csum_size fields to the BTRFS_IOC_FS_INFO ioctl command which usually is used to query filesystem features. Also add a flags member indicating that the kernel responded with a set csum_type and csum_size field. For compatibility reasons, only return the csum_type and csum_size if the BTRFS_FS_INFO_FLAG_CSUM_INFO flag was passed to the kernel. Also clear any unknown flags so we don't pass false positives to user-space newer than the kernel. To simplify further additions to the ioctl, also switch the padding to a u8 array. Pahole was used to verify the result of this switch: The csum members are added before flags, which might look odd, but this is to keep the alignment requirements and not to introduce holes in the structure. $ pahole -C btrfs_ioctl_fs_info_args fs/btrfs/btrfs.ko struct btrfs_ioctl_fs_info_args { __u64 max_id; /* 0 8 */ __u64 num_devices; /* 8 8 */ __u8 fsid[16]; /* 16 16 */ __u32 nodesize; /* 32 4 */ __u32 sectorsize; /* 36 4 */ __u32 clone_alignment; /* 40 4 */ __u16 csum_type; /* 44 2 */ __u16 csum_size; /* 46 2 */ __u64 flags; /* 48 8 */ __u8 reserved[968]; /* 56 968 */ /* size: 1024, cachelines: 16, members: 10 */ }; Fixes: 3951e7f050ac ("btrfs: add xxhash64 to checksumming algorithms") Fixes: 3831bf0094ab ("btrfs: add sha256 to checksumming algorithm") CC: stable@vger.kernel.org # 5.5+ Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 21:28:58 +09:00
if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
}
if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
fi_args->generation = fs_info->generation;
fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
}
if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
sizeof(fi_args->metadata_uuid));
fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
}
if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
ret = -EFAULT;
kfree(fi_args);
return ret;
}
static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
void __user *arg)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct btrfs_ioctl_dev_info_args *di_args;
struct btrfs_device *dev;
int ret = 0;
di_args = memdup_user(arg, sizeof(*di_args));
if (IS_ERR(di_args))
return PTR_ERR(di_args);
args.devid = di_args->devid;
if (!btrfs_is_empty_uuid(di_args->uuid))
args.uuid = di_args->uuid;
rcu_read_lock();
dev = btrfs_find_device(fs_info->fs_devices, &args);
if (!dev) {
ret = -ENODEV;
goto out;
}
di_args->devid = dev->devid;
di_args->bytes_used = btrfs_device_get_bytes_used(dev);
di_args->total_bytes = btrfs_device_get_total_bytes(dev);
memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
if (dev->name)
strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
else
di_args->path[0] = '\0';
out:
rcu_read_unlock();
if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
ret = -EFAULT;
kfree(di_args);
return ret;
}
static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_root *new_root;
struct btrfs_dir_item *di;
struct btrfs_trans_handle *trans;
struct btrfs_path *path = NULL;
struct btrfs_disk_key disk_key;
struct fscrypt_str name = FSTR_INIT("default", 7);
u64 objectid = 0;
u64 dir_id;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
if (copy_from_user(&objectid, argp, sizeof(objectid))) {
ret = -EFAULT;
goto out;
}
if (!objectid)
objectid = BTRFS_FS_TREE_OBJECTID;
new_root = btrfs_get_fs_root(fs_info, objectid, true);
if (IS_ERR(new_root)) {
ret = PTR_ERR(new_root);
goto out;
}
if (!is_fstree(new_root->root_key.objectid)) {
ret = -ENOENT;
goto out_free;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out_free;
}
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_free;
}
dir_id = btrfs_super_root_dir(fs_info->super_copy);
di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
dir_id, &name, 1);
if (IS_ERR_OR_NULL(di)) {
btrfs_release_path(path);
btrfs_end_transaction(trans);
btrfs_err(fs_info,
"Umm, you don't have the default diritem, this isn't going to work");
ret = -ENOENT;
goto out_free;
}
btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(path);
btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
btrfs_end_transaction(trans);
out_free:
btrfs_put_root(new_root);
btrfs_free_path(path);
out:
mnt_drop_write_file(file);
return ret;
}
static void get_block_group_info(struct list_head *groups_list,
struct btrfs_ioctl_space_info *space)
{
struct btrfs_block_group *block_group;
space->total_bytes = 0;
space->used_bytes = 0;
space->flags = 0;
list_for_each_entry(block_group, groups_list, list) {
space->flags = block_group->flags;
space->total_bytes += block_group->length;
space->used_bytes += block_group->used;
}
}
static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_space_args space_args;
struct btrfs_ioctl_space_info space;
struct btrfs_ioctl_space_info *dest;
struct btrfs_ioctl_space_info *dest_orig;
struct btrfs_ioctl_space_info __user *user_dest;
struct btrfs_space_info *info;
static const u64 types[] = {
BTRFS_BLOCK_GROUP_DATA,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_BLOCK_GROUP_METADATA,
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
};
int num_types = 4;
int alloc_size;
int ret = 0;
u64 slot_count = 0;
int i, c;
if (copy_from_user(&space_args,
(struct btrfs_ioctl_space_args __user *)arg,
sizeof(space_args)))
return -EFAULT;
for (i = 0; i < num_types; i++) {
struct btrfs_space_info *tmp;
info = NULL;
list_for_each_entry(tmp, &fs_info->space_info, list) {
if (tmp->flags == types[i]) {
info = tmp;
break;
}
}
if (!info)
continue;
down_read(&info->groups_sem);
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
if (!list_empty(&info->block_groups[c]))
slot_count++;
}
up_read(&info->groups_sem);
}
/*
* Global block reserve, exported as a space_info
*/
slot_count++;
/* space_slots == 0 means they are asking for a count */
if (space_args.space_slots == 0) {
space_args.total_spaces = slot_count;
goto out;
}
slot_count = min_t(u64, space_args.space_slots, slot_count);
alloc_size = sizeof(*dest) * slot_count;
/* we generally have at most 6 or so space infos, one for each raid
* level. So, a whole page should be more than enough for everyone
*/
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
if (alloc_size > PAGE_SIZE)
return -ENOMEM;
space_args.total_spaces = 0;
dest = kmalloc(alloc_size, GFP_KERNEL);
if (!dest)
return -ENOMEM;
dest_orig = dest;
/* now we have a buffer to copy into */
for (i = 0; i < num_types; i++) {
struct btrfs_space_info *tmp;
if (!slot_count)
break;
info = NULL;
list_for_each_entry(tmp, &fs_info->space_info, list) {
if (tmp->flags == types[i]) {
info = tmp;
break;
}
}
if (!info)
continue;
down_read(&info->groups_sem);
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
if (!list_empty(&info->block_groups[c])) {
get_block_group_info(&info->block_groups[c],
&space);
memcpy(dest, &space, sizeof(space));
dest++;
space_args.total_spaces++;
slot_count--;
}
if (!slot_count)
break;
}
up_read(&info->groups_sem);
}
/*
* Add global block reserve
*/
if (slot_count) {
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
spin_lock(&block_rsv->lock);
space.total_bytes = block_rsv->size;
space.used_bytes = block_rsv->size - block_rsv->reserved;
spin_unlock(&block_rsv->lock);
space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
memcpy(dest, &space, sizeof(space));
space_args.total_spaces++;
}
user_dest = (struct btrfs_ioctl_space_info __user *)
(arg + sizeof(struct btrfs_ioctl_space_args));
if (copy_to_user(user_dest, dest_orig, alloc_size))
ret = -EFAULT;
kfree(dest_orig);
out:
if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
ret = -EFAULT;
return ret;
}
static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
void __user *argp)
Btrfs: add START_SYNC, WAIT_SYNC ioctls START_SYNC will start a sync/commit, but not wait for it to complete. Any modification started after the ioctl returns is guaranteed not to be included in the commit. If a non-NULL pointer is passed, the transaction id will be returned to userspace. WAIT_SYNC will wait for any in-progress commit to complete. If a transaction id is specified, the ioctl will block and then return (success) when the specified transaction has committed. If it has already committed when we call the ioctl, it returns immediately. If the specified transaction doesn't exist, it returns EINVAL. If no transaction id is specified, WAIT_SYNC will wait for the currently committing transaction to finish it's commit to disk. If there is no currently committing transaction, it returns success. These ioctls are useful for applications which want to impose an ordering on when fs modifications reach disk, but do not want to wait for the full (slow) commit process to do so. Picky callers can take the transid returned by START_SYNC and feed it to WAIT_SYNC, and be certain to wait only as long as necessary for the transaction _they_ started to reach disk. Sloppy callers can START_SYNC and WAIT_SYNC without a transid, and provided they didn't wait too long between the calls, they will get the same result. However, if a second commit starts before they call WAIT_SYNC, they may end up waiting longer for it to commit as well. Even so, a START_SYNC+WAIT_SYNC still guarantees that any operation completed before the START_SYNC reaches disk. Signed-off-by: Sage Weil <sage@newdream.net> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-10-29 15:41:32 -04:00
{
struct btrfs_trans_handle *trans;
u64 transid;
trans = btrfs_attach_transaction_barrier(root);
if (IS_ERR(trans)) {
if (PTR_ERR(trans) != -ENOENT)
return PTR_ERR(trans);
/* No running transaction, don't bother */
transid = root->fs_info->last_trans_committed;
goto out;
}
Btrfs: add START_SYNC, WAIT_SYNC ioctls START_SYNC will start a sync/commit, but not wait for it to complete. Any modification started after the ioctl returns is guaranteed not to be included in the commit. If a non-NULL pointer is passed, the transaction id will be returned to userspace. WAIT_SYNC will wait for any in-progress commit to complete. If a transaction id is specified, the ioctl will block and then return (success) when the specified transaction has committed. If it has already committed when we call the ioctl, it returns immediately. If the specified transaction doesn't exist, it returns EINVAL. If no transaction id is specified, WAIT_SYNC will wait for the currently committing transaction to finish it's commit to disk. If there is no currently committing transaction, it returns success. These ioctls are useful for applications which want to impose an ordering on when fs modifications reach disk, but do not want to wait for the full (slow) commit process to do so. Picky callers can take the transid returned by START_SYNC and feed it to WAIT_SYNC, and be certain to wait only as long as necessary for the transaction _they_ started to reach disk. Sloppy callers can START_SYNC and WAIT_SYNC without a transid, and provided they didn't wait too long between the calls, they will get the same result. However, if a second commit starts before they call WAIT_SYNC, they may end up waiting longer for it to commit as well. Even so, a START_SYNC+WAIT_SYNC still guarantees that any operation completed before the START_SYNC reaches disk. Signed-off-by: Sage Weil <sage@newdream.net> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-10-29 15:41:32 -04:00
transid = trans->transid;
btrfs_commit_transaction_async(trans);
out:
Btrfs: add START_SYNC, WAIT_SYNC ioctls START_SYNC will start a sync/commit, but not wait for it to complete. Any modification started after the ioctl returns is guaranteed not to be included in the commit. If a non-NULL pointer is passed, the transaction id will be returned to userspace. WAIT_SYNC will wait for any in-progress commit to complete. If a transaction id is specified, the ioctl will block and then return (success) when the specified transaction has committed. If it has already committed when we call the ioctl, it returns immediately. If the specified transaction doesn't exist, it returns EINVAL. If no transaction id is specified, WAIT_SYNC will wait for the currently committing transaction to finish it's commit to disk. If there is no currently committing transaction, it returns success. These ioctls are useful for applications which want to impose an ordering on when fs modifications reach disk, but do not want to wait for the full (slow) commit process to do so. Picky callers can take the transid returned by START_SYNC and feed it to WAIT_SYNC, and be certain to wait only as long as necessary for the transaction _they_ started to reach disk. Sloppy callers can START_SYNC and WAIT_SYNC without a transid, and provided they didn't wait too long between the calls, they will get the same result. However, if a second commit starts before they call WAIT_SYNC, they may end up waiting longer for it to commit as well. Even so, a START_SYNC+WAIT_SYNC still guarantees that any operation completed before the START_SYNC reaches disk. Signed-off-by: Sage Weil <sage@newdream.net> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-10-29 15:41:32 -04:00
if (argp)
if (copy_to_user(argp, &transid, sizeof(transid)))
return -EFAULT;
return 0;
}
static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
void __user *argp)
Btrfs: add START_SYNC, WAIT_SYNC ioctls START_SYNC will start a sync/commit, but not wait for it to complete. Any modification started after the ioctl returns is guaranteed not to be included in the commit. If a non-NULL pointer is passed, the transaction id will be returned to userspace. WAIT_SYNC will wait for any in-progress commit to complete. If a transaction id is specified, the ioctl will block and then return (success) when the specified transaction has committed. If it has already committed when we call the ioctl, it returns immediately. If the specified transaction doesn't exist, it returns EINVAL. If no transaction id is specified, WAIT_SYNC will wait for the currently committing transaction to finish it's commit to disk. If there is no currently committing transaction, it returns success. These ioctls are useful for applications which want to impose an ordering on when fs modifications reach disk, but do not want to wait for the full (slow) commit process to do so. Picky callers can take the transid returned by START_SYNC and feed it to WAIT_SYNC, and be certain to wait only as long as necessary for the transaction _they_ started to reach disk. Sloppy callers can START_SYNC and WAIT_SYNC without a transid, and provided they didn't wait too long between the calls, they will get the same result. However, if a second commit starts before they call WAIT_SYNC, they may end up waiting longer for it to commit as well. Even so, a START_SYNC+WAIT_SYNC still guarantees that any operation completed before the START_SYNC reaches disk. Signed-off-by: Sage Weil <sage@newdream.net> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-10-29 15:41:32 -04:00
{
u64 transid;
if (argp) {
if (copy_from_user(&transid, argp, sizeof(transid)))
return -EFAULT;
} else {
transid = 0; /* current trans */
}
return btrfs_wait_for_commit(fs_info, transid);
Btrfs: add START_SYNC, WAIT_SYNC ioctls START_SYNC will start a sync/commit, but not wait for it to complete. Any modification started after the ioctl returns is guaranteed not to be included in the commit. If a non-NULL pointer is passed, the transaction id will be returned to userspace. WAIT_SYNC will wait for any in-progress commit to complete. If a transaction id is specified, the ioctl will block and then return (success) when the specified transaction has committed. If it has already committed when we call the ioctl, it returns immediately. If the specified transaction doesn't exist, it returns EINVAL. If no transaction id is specified, WAIT_SYNC will wait for the currently committing transaction to finish it's commit to disk. If there is no currently committing transaction, it returns success. These ioctls are useful for applications which want to impose an ordering on when fs modifications reach disk, but do not want to wait for the full (slow) commit process to do so. Picky callers can take the transid returned by START_SYNC and feed it to WAIT_SYNC, and be certain to wait only as long as necessary for the transaction _they_ started to reach disk. Sloppy callers can START_SYNC and WAIT_SYNC without a transid, and provided they didn't wait too long between the calls, they will get the same result. However, if a second commit starts before they call WAIT_SYNC, they may end up waiting longer for it to commit as well. Even so, a START_SYNC+WAIT_SYNC still guarantees that any operation completed before the START_SYNC reaches disk. Signed-off-by: Sage Weil <sage@newdream.net> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-10-29 15:41:32 -04:00
}
static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
{
struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
struct btrfs_ioctl_scrub_args *sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
return -EINVAL;
}
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
ret = -EOPNOTSUPP;
goto out;
}
if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
ret = mnt_want_write_file(file);
if (ret)
goto out;
}
ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
&sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
0);
/*
* Copy scrub args to user space even if btrfs_scrub_dev() returned an
* error. This is important as it allows user space to know how much
* progress scrub has done. For example, if scrub is canceled we get
* -ECANCELED from btrfs_scrub_dev() and return that error back to user
* space. Later user space can inspect the progress from the structure
* btrfs_ioctl_scrub_args and resume scrub from where it left off
* previously (btrfs-progs does this).
* If we fail to copy the btrfs_ioctl_scrub_args structure to user space
* then return -EFAULT to signal the structure was not copied or it may
* be corrupt and unreliable due to a partial copy.
*/
if (copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
if (!(sa->flags & BTRFS_SCRUB_READONLY))
mnt_drop_write_file(file);
out:
kfree(sa);
return ret;
}
static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return btrfs_scrub_cancel(fs_info);
}
static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_scrub_args *sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
kfree(sa);
return ret;
}
static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_get_dev_stats *sa;
int ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
kfree(sa);
return -EPERM;
}
ret = btrfs_get_dev_stats(fs_info, sa);
if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
kfree(sa);
return ret;
}
static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_dev_replace_args *p;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
return -EINVAL;
}
p = memdup_user(arg, sizeof(*p));
if (IS_ERR(p))
return PTR_ERR(p);
switch (p->cmd) {
case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
if (sb_rdonly(fs_info->sb)) {
ret = -EROFS;
goto out;
}
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
} else {
ret = btrfs_dev_replace_by_ioctl(fs_info, p);
btrfs_exclop_finish(fs_info);
}
break;
case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
btrfs_dev_replace_status(fs_info, p);
ret = 0;
break;
case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
p->result = btrfs_dev_replace_cancel(fs_info);
ret = 0;
break;
default:
ret = -EINVAL;
break;
}
if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
ret = -EFAULT;
out:
kfree(p);
return ret;
}
static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
{
int ret = 0;
int i;
u64 rel_ptr;
int size;
struct btrfs_ioctl_ino_path_args *ipa = NULL;
struct inode_fs_paths *ipath = NULL;
struct btrfs_path *path;
if (!capable(CAP_DAC_READ_SEARCH))
return -EPERM;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ipa = memdup_user(arg, sizeof(*ipa));
if (IS_ERR(ipa)) {
ret = PTR_ERR(ipa);
ipa = NULL;
goto out;
}
size = min_t(u32, ipa->size, 4096);
ipath = init_ipath(size, root, path);
if (IS_ERR(ipath)) {
ret = PTR_ERR(ipath);
ipath = NULL;
goto out;
}
ret = paths_from_inode(ipa->inum, ipath);
if (ret < 0)
goto out;
for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
rel_ptr = ipath->fspath->val[i] -
(u64)(unsigned long)ipath->fspath->val;
ipath->fspath->val[i] = rel_ptr;
}
btrfs_free_path(path);
path = NULL;
ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
ipath->fspath, size);
if (ret) {
ret = -EFAULT;
goto out;
}
out:
btrfs_free_path(path);
free_ipath(ipath);
kfree(ipa);
return ret;
}
static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
btrfs: add a flags argument to LOGICAL_INO and call it LOGICAL_INO_V2 Now that check_extent_in_eb()'s extent offset filter can be turned off, we need a way to do it from userspace. Add a 'flags' field to the btrfs_logical_ino_args structure to disable extent offset filtering, taking the place of one of the existing reserved[] fields. Previous versions of LOGICAL_INO neglected to check whether any of the reserved fields have non-zero values. Assigning meaning to those fields now may change the behavior of existing programs that left these fields uninitialized. The lack of a zero check also means that new programs have no way to know whether the kernel is honoring the flags field. To avoid these problems, define a new ioctl LOGICAL_INO_V2. We can use the same argument layout as LOGICAL_INO, but shorten the reserved[] array by one element and turn it into the 'flags' field. The V2 ioctl explicitly checks that reserved fields and unsupported flag bits are zero so that userspace can negotiate future feature bits as they are defined. Since the memory layouts of the two ioctls' arguments are compatible, there is no need for a separate function for logical_to_ino_v2 (contrast with tree_search_v2 vs tree_search where the layout and code are quite different). A version parameter and an 'if' statement will suffice. Now that we have a flags field in logical_ino_args, add a flag BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET to get the behavior we want, and pass it down the stack to iterate_inodes_from_logical. Motivation and background, copied from the patchset cover letter: Suppose we have a file with one extent: root@tester:~# zcat /usr/share/doc/cpio/changelog.gz > /test/a root@tester:~# sync Split the extent by overwriting it in the middle: root@tester:~# cat /dev/urandom | dd bs=4k seek=2 skip=2 count=1 conv=notrunc of=/test/a We should now have 3 extent refs to 2 extents, with one block unreachable. The extent tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 2 [...] item 9 key (1103101952 EXTENT_ITEM 73728) itemoff 15942 itemsize 53 extent refs 2 gen 29 flags DATA extent data backref root 5 objectid 261 offset 0 count 2 [...] item 11 key (1103175680 EXTENT_ITEM 4096) itemoff 15865 itemsize 53 extent refs 1 gen 30 flags DATA extent data backref root 5 objectid 261 offset 8192 count 1 [...] and the ref tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 5 [...] item 6 key (261 EXTENT_DATA 0) itemoff 15825 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 0 nr 8192 ram 73728 extent compression(none) item 7 key (261 EXTENT_DATA 8192) itemoff 15772 itemsize 53 extent data disk byte 1103175680 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression(none) item 8 key (261 EXTENT_DATA 12288) itemoff 15719 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 12288 nr 61440 ram 73728 extent compression(none) [...] There are two references to the same extent with different, non-overlapping byte offsets: [------------------72K extent at 1103101952----------------------] [--8K----------------|--4K unreachable----|--60K-----------------] ^ ^ | | [--8K ref offset 0--][--4K ref offset 0--][--60K ref offset 12K--] | v [-----4K extent-----] at 1103175680 We want to find all of the references to extent bytenr 1103101952. Without the patch (and without running btrfs-debug-tree), we have to do it with 18 LOGICAL_INO calls: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO inode 261 offset 0 root 5 root@tester:~# for x in $(seq 0 17); do btrfs ins log $((1103101952 + x * 4096)) -P /test/; done 2>&1 | grep inode inode 261 offset 0 root 5 inode 261 offset 4096 root 5 <- same extent ref as offset 0 (offset 8192 returns empty set, not reachable) inode 261 offset 12288 root 5 inode 261 offset 16384 root 5 \ inode 261 offset 20480 root 5 | inode 261 offset 24576 root 5 | inode 261 offset 28672 root 5 | inode 261 offset 32768 root 5 | inode 261 offset 36864 root 5 \ inode 261 offset 40960 root 5 > all the same extent ref as offset 12288. inode 261 offset 45056 root 5 / More processing required in userspace inode 261 offset 49152 root 5 | to figure out these are all duplicates. inode 261 offset 53248 root 5 | inode 261 offset 57344 root 5 | inode 261 offset 61440 root 5 | inode 261 offset 65536 root 5 | inode 261 offset 69632 root 5 / In the worst case the extents are 128MB long, and we have to do 32768 iterations of the loop to find one 4K extent ref. With the patch, we just use one call to map all refs to the extent at once: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO_V2 inode 261 offset 0 root 5 inode 261 offset 12288 root 5 The TREE_SEARCH ioctl allows userspace to retrieve the offset and extent bytenr fields easily once the root, inode and offset are known. This is sufficient information to build a complete map of the extent and all of its references. Userspace can use this information to make better choices to dedup or defrag. Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Reviewed-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> [ copy background and motivation from cover letter ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-09-22 13:58:46 -04:00
void __user *arg, int version)
{
int ret = 0;
int size;
struct btrfs_ioctl_logical_ino_args *loi;
struct btrfs_data_container *inodes = NULL;
struct btrfs_path *path = NULL;
btrfs: add a flags argument to LOGICAL_INO and call it LOGICAL_INO_V2 Now that check_extent_in_eb()'s extent offset filter can be turned off, we need a way to do it from userspace. Add a 'flags' field to the btrfs_logical_ino_args structure to disable extent offset filtering, taking the place of one of the existing reserved[] fields. Previous versions of LOGICAL_INO neglected to check whether any of the reserved fields have non-zero values. Assigning meaning to those fields now may change the behavior of existing programs that left these fields uninitialized. The lack of a zero check also means that new programs have no way to know whether the kernel is honoring the flags field. To avoid these problems, define a new ioctl LOGICAL_INO_V2. We can use the same argument layout as LOGICAL_INO, but shorten the reserved[] array by one element and turn it into the 'flags' field. The V2 ioctl explicitly checks that reserved fields and unsupported flag bits are zero so that userspace can negotiate future feature bits as they are defined. Since the memory layouts of the two ioctls' arguments are compatible, there is no need for a separate function for logical_to_ino_v2 (contrast with tree_search_v2 vs tree_search where the layout and code are quite different). A version parameter and an 'if' statement will suffice. Now that we have a flags field in logical_ino_args, add a flag BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET to get the behavior we want, and pass it down the stack to iterate_inodes_from_logical. Motivation and background, copied from the patchset cover letter: Suppose we have a file with one extent: root@tester:~# zcat /usr/share/doc/cpio/changelog.gz > /test/a root@tester:~# sync Split the extent by overwriting it in the middle: root@tester:~# cat /dev/urandom | dd bs=4k seek=2 skip=2 count=1 conv=notrunc of=/test/a We should now have 3 extent refs to 2 extents, with one block unreachable. The extent tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 2 [...] item 9 key (1103101952 EXTENT_ITEM 73728) itemoff 15942 itemsize 53 extent refs 2 gen 29 flags DATA extent data backref root 5 objectid 261 offset 0 count 2 [...] item 11 key (1103175680 EXTENT_ITEM 4096) itemoff 15865 itemsize 53 extent refs 1 gen 30 flags DATA extent data backref root 5 objectid 261 offset 8192 count 1 [...] and the ref tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 5 [...] item 6 key (261 EXTENT_DATA 0) itemoff 15825 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 0 nr 8192 ram 73728 extent compression(none) item 7 key (261 EXTENT_DATA 8192) itemoff 15772 itemsize 53 extent data disk byte 1103175680 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression(none) item 8 key (261 EXTENT_DATA 12288) itemoff 15719 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 12288 nr 61440 ram 73728 extent compression(none) [...] There are two references to the same extent with different, non-overlapping byte offsets: [------------------72K extent at 1103101952----------------------] [--8K----------------|--4K unreachable----|--60K-----------------] ^ ^ | | [--8K ref offset 0--][--4K ref offset 0--][--60K ref offset 12K--] | v [-----4K extent-----] at 1103175680 We want to find all of the references to extent bytenr 1103101952. Without the patch (and without running btrfs-debug-tree), we have to do it with 18 LOGICAL_INO calls: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO inode 261 offset 0 root 5 root@tester:~# for x in $(seq 0 17); do btrfs ins log $((1103101952 + x * 4096)) -P /test/; done 2>&1 | grep inode inode 261 offset 0 root 5 inode 261 offset 4096 root 5 <- same extent ref as offset 0 (offset 8192 returns empty set, not reachable) inode 261 offset 12288 root 5 inode 261 offset 16384 root 5 \ inode 261 offset 20480 root 5 | inode 261 offset 24576 root 5 | inode 261 offset 28672 root 5 | inode 261 offset 32768 root 5 | inode 261 offset 36864 root 5 \ inode 261 offset 40960 root 5 > all the same extent ref as offset 12288. inode 261 offset 45056 root 5 / More processing required in userspace inode 261 offset 49152 root 5 | to figure out these are all duplicates. inode 261 offset 53248 root 5 | inode 261 offset 57344 root 5 | inode 261 offset 61440 root 5 | inode 261 offset 65536 root 5 | inode 261 offset 69632 root 5 / In the worst case the extents are 128MB long, and we have to do 32768 iterations of the loop to find one 4K extent ref. With the patch, we just use one call to map all refs to the extent at once: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO_V2 inode 261 offset 0 root 5 inode 261 offset 12288 root 5 The TREE_SEARCH ioctl allows userspace to retrieve the offset and extent bytenr fields easily once the root, inode and offset are known. This is sufficient information to build a complete map of the extent and all of its references. Userspace can use this information to make better choices to dedup or defrag. Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Reviewed-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> [ copy background and motivation from cover letter ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-09-22 13:58:46 -04:00
bool ignore_offset;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
loi = memdup_user(arg, sizeof(*loi));
if (IS_ERR(loi))
return PTR_ERR(loi);
btrfs: add a flags argument to LOGICAL_INO and call it LOGICAL_INO_V2 Now that check_extent_in_eb()'s extent offset filter can be turned off, we need a way to do it from userspace. Add a 'flags' field to the btrfs_logical_ino_args structure to disable extent offset filtering, taking the place of one of the existing reserved[] fields. Previous versions of LOGICAL_INO neglected to check whether any of the reserved fields have non-zero values. Assigning meaning to those fields now may change the behavior of existing programs that left these fields uninitialized. The lack of a zero check also means that new programs have no way to know whether the kernel is honoring the flags field. To avoid these problems, define a new ioctl LOGICAL_INO_V2. We can use the same argument layout as LOGICAL_INO, but shorten the reserved[] array by one element and turn it into the 'flags' field. The V2 ioctl explicitly checks that reserved fields and unsupported flag bits are zero so that userspace can negotiate future feature bits as they are defined. Since the memory layouts of the two ioctls' arguments are compatible, there is no need for a separate function for logical_to_ino_v2 (contrast with tree_search_v2 vs tree_search where the layout and code are quite different). A version parameter and an 'if' statement will suffice. Now that we have a flags field in logical_ino_args, add a flag BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET to get the behavior we want, and pass it down the stack to iterate_inodes_from_logical. Motivation and background, copied from the patchset cover letter: Suppose we have a file with one extent: root@tester:~# zcat /usr/share/doc/cpio/changelog.gz > /test/a root@tester:~# sync Split the extent by overwriting it in the middle: root@tester:~# cat /dev/urandom | dd bs=4k seek=2 skip=2 count=1 conv=notrunc of=/test/a We should now have 3 extent refs to 2 extents, with one block unreachable. The extent tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 2 [...] item 9 key (1103101952 EXTENT_ITEM 73728) itemoff 15942 itemsize 53 extent refs 2 gen 29 flags DATA extent data backref root 5 objectid 261 offset 0 count 2 [...] item 11 key (1103175680 EXTENT_ITEM 4096) itemoff 15865 itemsize 53 extent refs 1 gen 30 flags DATA extent data backref root 5 objectid 261 offset 8192 count 1 [...] and the ref tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 5 [...] item 6 key (261 EXTENT_DATA 0) itemoff 15825 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 0 nr 8192 ram 73728 extent compression(none) item 7 key (261 EXTENT_DATA 8192) itemoff 15772 itemsize 53 extent data disk byte 1103175680 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression(none) item 8 key (261 EXTENT_DATA 12288) itemoff 15719 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 12288 nr 61440 ram 73728 extent compression(none) [...] There are two references to the same extent with different, non-overlapping byte offsets: [------------------72K extent at 1103101952----------------------] [--8K----------------|--4K unreachable----|--60K-----------------] ^ ^ | | [--8K ref offset 0--][--4K ref offset 0--][--60K ref offset 12K--] | v [-----4K extent-----] at 1103175680 We want to find all of the references to extent bytenr 1103101952. Without the patch (and without running btrfs-debug-tree), we have to do it with 18 LOGICAL_INO calls: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO inode 261 offset 0 root 5 root@tester:~# for x in $(seq 0 17); do btrfs ins log $((1103101952 + x * 4096)) -P /test/; done 2>&1 | grep inode inode 261 offset 0 root 5 inode 261 offset 4096 root 5 <- same extent ref as offset 0 (offset 8192 returns empty set, not reachable) inode 261 offset 12288 root 5 inode 261 offset 16384 root 5 \ inode 261 offset 20480 root 5 | inode 261 offset 24576 root 5 | inode 261 offset 28672 root 5 | inode 261 offset 32768 root 5 | inode 261 offset 36864 root 5 \ inode 261 offset 40960 root 5 > all the same extent ref as offset 12288. inode 261 offset 45056 root 5 / More processing required in userspace inode 261 offset 49152 root 5 | to figure out these are all duplicates. inode 261 offset 53248 root 5 | inode 261 offset 57344 root 5 | inode 261 offset 61440 root 5 | inode 261 offset 65536 root 5 | inode 261 offset 69632 root 5 / In the worst case the extents are 128MB long, and we have to do 32768 iterations of the loop to find one 4K extent ref. With the patch, we just use one call to map all refs to the extent at once: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO_V2 inode 261 offset 0 root 5 inode 261 offset 12288 root 5 The TREE_SEARCH ioctl allows userspace to retrieve the offset and extent bytenr fields easily once the root, inode and offset are known. This is sufficient information to build a complete map of the extent and all of its references. Userspace can use this information to make better choices to dedup or defrag. Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Reviewed-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> [ copy background and motivation from cover letter ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-09-22 13:58:46 -04:00
if (version == 1) {
ignore_offset = false;
size = min_t(u32, loi->size, SZ_64K);
btrfs: add a flags argument to LOGICAL_INO and call it LOGICAL_INO_V2 Now that check_extent_in_eb()'s extent offset filter can be turned off, we need a way to do it from userspace. Add a 'flags' field to the btrfs_logical_ino_args structure to disable extent offset filtering, taking the place of one of the existing reserved[] fields. Previous versions of LOGICAL_INO neglected to check whether any of the reserved fields have non-zero values. Assigning meaning to those fields now may change the behavior of existing programs that left these fields uninitialized. The lack of a zero check also means that new programs have no way to know whether the kernel is honoring the flags field. To avoid these problems, define a new ioctl LOGICAL_INO_V2. We can use the same argument layout as LOGICAL_INO, but shorten the reserved[] array by one element and turn it into the 'flags' field. The V2 ioctl explicitly checks that reserved fields and unsupported flag bits are zero so that userspace can negotiate future feature bits as they are defined. Since the memory layouts of the two ioctls' arguments are compatible, there is no need for a separate function for logical_to_ino_v2 (contrast with tree_search_v2 vs tree_search where the layout and code are quite different). A version parameter and an 'if' statement will suffice. Now that we have a flags field in logical_ino_args, add a flag BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET to get the behavior we want, and pass it down the stack to iterate_inodes_from_logical. Motivation and background, copied from the patchset cover letter: Suppose we have a file with one extent: root@tester:~# zcat /usr/share/doc/cpio/changelog.gz > /test/a root@tester:~# sync Split the extent by overwriting it in the middle: root@tester:~# cat /dev/urandom | dd bs=4k seek=2 skip=2 count=1 conv=notrunc of=/test/a We should now have 3 extent refs to 2 extents, with one block unreachable. The extent tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 2 [...] item 9 key (1103101952 EXTENT_ITEM 73728) itemoff 15942 itemsize 53 extent refs 2 gen 29 flags DATA extent data backref root 5 objectid 261 offset 0 count 2 [...] item 11 key (1103175680 EXTENT_ITEM 4096) itemoff 15865 itemsize 53 extent refs 1 gen 30 flags DATA extent data backref root 5 objectid 261 offset 8192 count 1 [...] and the ref tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 5 [...] item 6 key (261 EXTENT_DATA 0) itemoff 15825 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 0 nr 8192 ram 73728 extent compression(none) item 7 key (261 EXTENT_DATA 8192) itemoff 15772 itemsize 53 extent data disk byte 1103175680 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression(none) item 8 key (261 EXTENT_DATA 12288) itemoff 15719 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 12288 nr 61440 ram 73728 extent compression(none) [...] There are two references to the same extent with different, non-overlapping byte offsets: [------------------72K extent at 1103101952----------------------] [--8K----------------|--4K unreachable----|--60K-----------------] ^ ^ | | [--8K ref offset 0--][--4K ref offset 0--][--60K ref offset 12K--] | v [-----4K extent-----] at 1103175680 We want to find all of the references to extent bytenr 1103101952. Without the patch (and without running btrfs-debug-tree), we have to do it with 18 LOGICAL_INO calls: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO inode 261 offset 0 root 5 root@tester:~# for x in $(seq 0 17); do btrfs ins log $((1103101952 + x * 4096)) -P /test/; done 2>&1 | grep inode inode 261 offset 0 root 5 inode 261 offset 4096 root 5 <- same extent ref as offset 0 (offset 8192 returns empty set, not reachable) inode 261 offset 12288 root 5 inode 261 offset 16384 root 5 \ inode 261 offset 20480 root 5 | inode 261 offset 24576 root 5 | inode 261 offset 28672 root 5 | inode 261 offset 32768 root 5 | inode 261 offset 36864 root 5 \ inode 261 offset 40960 root 5 > all the same extent ref as offset 12288. inode 261 offset 45056 root 5 / More processing required in userspace inode 261 offset 49152 root 5 | to figure out these are all duplicates. inode 261 offset 53248 root 5 | inode 261 offset 57344 root 5 | inode 261 offset 61440 root 5 | inode 261 offset 65536 root 5 | inode 261 offset 69632 root 5 / In the worst case the extents are 128MB long, and we have to do 32768 iterations of the loop to find one 4K extent ref. With the patch, we just use one call to map all refs to the extent at once: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO_V2 inode 261 offset 0 root 5 inode 261 offset 12288 root 5 The TREE_SEARCH ioctl allows userspace to retrieve the offset and extent bytenr fields easily once the root, inode and offset are known. This is sufficient information to build a complete map of the extent and all of its references. Userspace can use this information to make better choices to dedup or defrag. Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Reviewed-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> [ copy background and motivation from cover letter ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-09-22 13:58:46 -04:00
} else {
/* All reserved bits must be 0 for now */
if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
ret = -EINVAL;
goto out_loi;
}
/* Only accept flags we have defined so far */
if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
ret = -EINVAL;
goto out_loi;
}
ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
size = min_t(u32, loi->size, SZ_16M);
btrfs: add a flags argument to LOGICAL_INO and call it LOGICAL_INO_V2 Now that check_extent_in_eb()'s extent offset filter can be turned off, we need a way to do it from userspace. Add a 'flags' field to the btrfs_logical_ino_args structure to disable extent offset filtering, taking the place of one of the existing reserved[] fields. Previous versions of LOGICAL_INO neglected to check whether any of the reserved fields have non-zero values. Assigning meaning to those fields now may change the behavior of existing programs that left these fields uninitialized. The lack of a zero check also means that new programs have no way to know whether the kernel is honoring the flags field. To avoid these problems, define a new ioctl LOGICAL_INO_V2. We can use the same argument layout as LOGICAL_INO, but shorten the reserved[] array by one element and turn it into the 'flags' field. The V2 ioctl explicitly checks that reserved fields and unsupported flag bits are zero so that userspace can negotiate future feature bits as they are defined. Since the memory layouts of the two ioctls' arguments are compatible, there is no need for a separate function for logical_to_ino_v2 (contrast with tree_search_v2 vs tree_search where the layout and code are quite different). A version parameter and an 'if' statement will suffice. Now that we have a flags field in logical_ino_args, add a flag BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET to get the behavior we want, and pass it down the stack to iterate_inodes_from_logical. Motivation and background, copied from the patchset cover letter: Suppose we have a file with one extent: root@tester:~# zcat /usr/share/doc/cpio/changelog.gz > /test/a root@tester:~# sync Split the extent by overwriting it in the middle: root@tester:~# cat /dev/urandom | dd bs=4k seek=2 skip=2 count=1 conv=notrunc of=/test/a We should now have 3 extent refs to 2 extents, with one block unreachable. The extent tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 2 [...] item 9 key (1103101952 EXTENT_ITEM 73728) itemoff 15942 itemsize 53 extent refs 2 gen 29 flags DATA extent data backref root 5 objectid 261 offset 0 count 2 [...] item 11 key (1103175680 EXTENT_ITEM 4096) itemoff 15865 itemsize 53 extent refs 1 gen 30 flags DATA extent data backref root 5 objectid 261 offset 8192 count 1 [...] and the ref tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 5 [...] item 6 key (261 EXTENT_DATA 0) itemoff 15825 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 0 nr 8192 ram 73728 extent compression(none) item 7 key (261 EXTENT_DATA 8192) itemoff 15772 itemsize 53 extent data disk byte 1103175680 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression(none) item 8 key (261 EXTENT_DATA 12288) itemoff 15719 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 12288 nr 61440 ram 73728 extent compression(none) [...] There are two references to the same extent with different, non-overlapping byte offsets: [------------------72K extent at 1103101952----------------------] [--8K----------------|--4K unreachable----|--60K-----------------] ^ ^ | | [--8K ref offset 0--][--4K ref offset 0--][--60K ref offset 12K--] | v [-----4K extent-----] at 1103175680 We want to find all of the references to extent bytenr 1103101952. Without the patch (and without running btrfs-debug-tree), we have to do it with 18 LOGICAL_INO calls: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO inode 261 offset 0 root 5 root@tester:~# for x in $(seq 0 17); do btrfs ins log $((1103101952 + x * 4096)) -P /test/; done 2>&1 | grep inode inode 261 offset 0 root 5 inode 261 offset 4096 root 5 <- same extent ref as offset 0 (offset 8192 returns empty set, not reachable) inode 261 offset 12288 root 5 inode 261 offset 16384 root 5 \ inode 261 offset 20480 root 5 | inode 261 offset 24576 root 5 | inode 261 offset 28672 root 5 | inode 261 offset 32768 root 5 | inode 261 offset 36864 root 5 \ inode 261 offset 40960 root 5 > all the same extent ref as offset 12288. inode 261 offset 45056 root 5 / More processing required in userspace inode 261 offset 49152 root 5 | to figure out these are all duplicates. inode 261 offset 53248 root 5 | inode 261 offset 57344 root 5 | inode 261 offset 61440 root 5 | inode 261 offset 65536 root 5 | inode 261 offset 69632 root 5 / In the worst case the extents are 128MB long, and we have to do 32768 iterations of the loop to find one 4K extent ref. With the patch, we just use one call to map all refs to the extent at once: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO_V2 inode 261 offset 0 root 5 inode 261 offset 12288 root 5 The TREE_SEARCH ioctl allows userspace to retrieve the offset and extent bytenr fields easily once the root, inode and offset are known. This is sufficient information to build a complete map of the extent and all of its references. Userspace can use this information to make better choices to dedup or defrag. Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Reviewed-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> [ copy background and motivation from cover letter ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-09-22 13:58:46 -04:00
}
inodes = init_data_container(size);
if (IS_ERR(inodes)) {
ret = PTR_ERR(inodes);
goto out_loi;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
inodes, ignore_offset);
btrfs_free_path(path);
if (ret == -EINVAL)
ret = -ENOENT;
if (ret < 0)
goto out;
ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
size);
if (ret)
ret = -EFAULT;
out:
kvfree(inodes);
btrfs: add a flags argument to LOGICAL_INO and call it LOGICAL_INO_V2 Now that check_extent_in_eb()'s extent offset filter can be turned off, we need a way to do it from userspace. Add a 'flags' field to the btrfs_logical_ino_args structure to disable extent offset filtering, taking the place of one of the existing reserved[] fields. Previous versions of LOGICAL_INO neglected to check whether any of the reserved fields have non-zero values. Assigning meaning to those fields now may change the behavior of existing programs that left these fields uninitialized. The lack of a zero check also means that new programs have no way to know whether the kernel is honoring the flags field. To avoid these problems, define a new ioctl LOGICAL_INO_V2. We can use the same argument layout as LOGICAL_INO, but shorten the reserved[] array by one element and turn it into the 'flags' field. The V2 ioctl explicitly checks that reserved fields and unsupported flag bits are zero so that userspace can negotiate future feature bits as they are defined. Since the memory layouts of the two ioctls' arguments are compatible, there is no need for a separate function for logical_to_ino_v2 (contrast with tree_search_v2 vs tree_search where the layout and code are quite different). A version parameter and an 'if' statement will suffice. Now that we have a flags field in logical_ino_args, add a flag BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET to get the behavior we want, and pass it down the stack to iterate_inodes_from_logical. Motivation and background, copied from the patchset cover letter: Suppose we have a file with one extent: root@tester:~# zcat /usr/share/doc/cpio/changelog.gz > /test/a root@tester:~# sync Split the extent by overwriting it in the middle: root@tester:~# cat /dev/urandom | dd bs=4k seek=2 skip=2 count=1 conv=notrunc of=/test/a We should now have 3 extent refs to 2 extents, with one block unreachable. The extent tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 2 [...] item 9 key (1103101952 EXTENT_ITEM 73728) itemoff 15942 itemsize 53 extent refs 2 gen 29 flags DATA extent data backref root 5 objectid 261 offset 0 count 2 [...] item 11 key (1103175680 EXTENT_ITEM 4096) itemoff 15865 itemsize 53 extent refs 1 gen 30 flags DATA extent data backref root 5 objectid 261 offset 8192 count 1 [...] and the ref tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 5 [...] item 6 key (261 EXTENT_DATA 0) itemoff 15825 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 0 nr 8192 ram 73728 extent compression(none) item 7 key (261 EXTENT_DATA 8192) itemoff 15772 itemsize 53 extent data disk byte 1103175680 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression(none) item 8 key (261 EXTENT_DATA 12288) itemoff 15719 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 12288 nr 61440 ram 73728 extent compression(none) [...] There are two references to the same extent with different, non-overlapping byte offsets: [------------------72K extent at 1103101952----------------------] [--8K----------------|--4K unreachable----|--60K-----------------] ^ ^ | | [--8K ref offset 0--][--4K ref offset 0--][--60K ref offset 12K--] | v [-----4K extent-----] at 1103175680 We want to find all of the references to extent bytenr 1103101952. Without the patch (and without running btrfs-debug-tree), we have to do it with 18 LOGICAL_INO calls: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO inode 261 offset 0 root 5 root@tester:~# for x in $(seq 0 17); do btrfs ins log $((1103101952 + x * 4096)) -P /test/; done 2>&1 | grep inode inode 261 offset 0 root 5 inode 261 offset 4096 root 5 <- same extent ref as offset 0 (offset 8192 returns empty set, not reachable) inode 261 offset 12288 root 5 inode 261 offset 16384 root 5 \ inode 261 offset 20480 root 5 | inode 261 offset 24576 root 5 | inode 261 offset 28672 root 5 | inode 261 offset 32768 root 5 | inode 261 offset 36864 root 5 \ inode 261 offset 40960 root 5 > all the same extent ref as offset 12288. inode 261 offset 45056 root 5 / More processing required in userspace inode 261 offset 49152 root 5 | to figure out these are all duplicates. inode 261 offset 53248 root 5 | inode 261 offset 57344 root 5 | inode 261 offset 61440 root 5 | inode 261 offset 65536 root 5 | inode 261 offset 69632 root 5 / In the worst case the extents are 128MB long, and we have to do 32768 iterations of the loop to find one 4K extent ref. With the patch, we just use one call to map all refs to the extent at once: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO_V2 inode 261 offset 0 root 5 inode 261 offset 12288 root 5 The TREE_SEARCH ioctl allows userspace to retrieve the offset and extent bytenr fields easily once the root, inode and offset are known. This is sufficient information to build a complete map of the extent and all of its references. Userspace can use this information to make better choices to dedup or defrag. Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Reviewed-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> [ copy background and motivation from cover letter ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-09-22 13:58:46 -04:00
out_loi:
kfree(loi);
return ret;
}
void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
struct btrfs_ioctl_balance_args *bargs)
{
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
bargs->flags = bctl->flags;
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
if (atomic_read(&fs_info->balance_pause_req))
bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
if (atomic_read(&fs_info->balance_cancel_req))
bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
spin_lock(&fs_info->balance_lock);
memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
spin_unlock(&fs_info->balance_lock);
}
/*
* Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
* required.
*
* @fs_info: the filesystem
* @excl_acquired: ptr to boolean value which is set to false in case balance
* is being resumed
*
* Return 0 on success in which case both fs_info::balance is acquired as well
* as exclusive ops are blocked. In case of failure return an error code.
*/
static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
{
int ret;
/*
* Exclusive operation is locked. Three possibilities:
* (1) some other op is running
* (2) balance is running
* (3) balance is paused -- special case (think resume)
*/
while (1) {
if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
*excl_acquired = true;
mutex_lock(&fs_info->balance_mutex);
return 0;
}
mutex_lock(&fs_info->balance_mutex);
if (fs_info->balance_ctl) {
/* This is either (2) or (3) */
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
/* This is (2) */
ret = -EINPROGRESS;
goto out_failure;
} else {
mutex_unlock(&fs_info->balance_mutex);
/*
* Lock released to allow other waiters to
* continue, we'll reexamine the status again.
*/
mutex_lock(&fs_info->balance_mutex);
if (fs_info->balance_ctl &&
!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
/* This is (3) */
*excl_acquired = false;
return 0;
}
}
} else {
/* This is (1) */
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
goto out_failure;
}
mutex_unlock(&fs_info->balance_mutex);
}
out_failure:
mutex_unlock(&fs_info->balance_mutex);
*excl_acquired = false;
return ret;
}
static long btrfs_ioctl_balance(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_ioctl_balance_args *bargs;
struct btrfs_balance_control *bctl;
bool need_unlock = true;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
bargs = memdup_user(arg, sizeof(*bargs));
if (IS_ERR(bargs)) {
ret = PTR_ERR(bargs);
bargs = NULL;
goto out;
}
ret = btrfs_try_lock_balance(fs_info, &need_unlock);
if (ret)
goto out;
lockdep_assert_held(&fs_info->balance_mutex);
if (bargs->flags & BTRFS_BALANCE_RESUME) {
if (!fs_info->balance_ctl) {
ret = -ENOTCONN;
goto out_unlock;
}
bctl = fs_info->balance_ctl;
spin_lock(&fs_info->balance_lock);
bctl->flags |= BTRFS_BALANCE_RESUME;
spin_unlock(&fs_info->balance_lock);
btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
goto do_balance;
}
if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
ret = -EINVAL;
goto out_unlock;
}
if (fs_info->balance_ctl) {
ret = -EINPROGRESS;
goto out_unlock;
}
bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
if (!bctl) {
ret = -ENOMEM;
goto out_unlock;
}
memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
bctl->flags = bargs->flags;
do_balance:
/*
* Ownership of bctl and exclusive operation goes to btrfs_balance.
* bctl is freed in reset_balance_state, or, if restriper was paused
* all the way until unmount, in free_fs_info. The flag should be
* cleared after reset_balance_state.
*/
need_unlock = false;
ret = btrfs_balance(fs_info, bctl, bargs);
bctl = NULL;
if (ret == 0 || ret == -ECANCELED) {
if (copy_to_user(arg, bargs, sizeof(*bargs)))
ret = -EFAULT;
}
kfree(bctl);
out_unlock:
mutex_unlock(&fs_info->balance_mutex);
if (need_unlock)
btrfs_exclop_finish(fs_info);
out:
mnt_drop_write_file(file);
kfree(bargs);
return ret;
}
static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
switch (cmd) {
case BTRFS_BALANCE_CTL_PAUSE:
return btrfs_pause_balance(fs_info);
case BTRFS_BALANCE_CTL_CANCEL:
return btrfs_cancel_balance(fs_info);
}
return -EINVAL;
}
static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_balance_args *bargs;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
mutex_lock(&fs_info->balance_mutex);
if (!fs_info->balance_ctl) {
ret = -ENOTCONN;
goto out;
}
bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
if (!bargs) {
ret = -ENOMEM;
goto out;
}
btrfs_update_ioctl_balance_args(fs_info, bargs);
if (copy_to_user(arg, bargs, sizeof(*bargs)))
ret = -EFAULT;
kfree(bargs);
out:
mutex_unlock(&fs_info->balance_mutex);
return ret;
}
static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_ioctl_quota_ctl_args *sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
down_write(&fs_info->subvol_sem);
switch (sa->cmd) {
case BTRFS_QUOTA_CTL_ENABLE:
ret = btrfs_quota_enable(fs_info);
break;
case BTRFS_QUOTA_CTL_DISABLE:
ret = btrfs_quota_disable(fs_info);
break;
default:
ret = -EINVAL;
break;
}
kfree(sa);
up_write(&fs_info->subvol_sem);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_qgroup_assign_args *sa;
struct btrfs_trans_handle *trans;
int ret;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
if (sa->assign) {
ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
} else {
ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
}
/* update qgroup status and info */
btrfs: fix race between quota disable and quota assign ioctls The quota assign ioctl can currently run in parallel with a quota disable ioctl call. The assign ioctl uses the quota root, while the disable ioctl frees that root, and therefore we can have a use-after-free triggered in the assign ioctl, leading to a trace like the following when KASAN is enabled: [672.723][T736] BUG: KASAN: slab-use-after-free in btrfs_search_slot+0x2962/0x2db0 [672.723][T736] Read of size 8 at addr ffff888022ec0208 by task btrfs_search_sl/27736 [672.724][T736] [672.725][T736] CPU: 1 PID: 27736 Comm: btrfs_search_sl Not tainted 6.3.0-rc3 #37 [672.723][T736] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [672.727][T736] Call Trace: [672.728][T736] <TASK> [672.728][T736] dump_stack_lvl+0xd9/0x150 [672.725][T736] print_report+0xc1/0x5e0 [672.720][T736] ? __virt_addr_valid+0x61/0x2e0 [672.727][T736] ? __phys_addr+0xc9/0x150 [672.725][T736] ? btrfs_search_slot+0x2962/0x2db0 [672.722][T736] kasan_report+0xc0/0xf0 [672.729][T736] ? btrfs_search_slot+0x2962/0x2db0 [672.724][T736] btrfs_search_slot+0x2962/0x2db0 [672.723][T736] ? fs_reclaim_acquire+0xba/0x160 [672.722][T736] ? split_leaf+0x13d0/0x13d0 [672.726][T736] ? rcu_is_watching+0x12/0xb0 [672.723][T736] ? kmem_cache_alloc+0x338/0x3c0 [672.722][T736] update_qgroup_status_item+0xf7/0x320 [672.724][T736] ? add_qgroup_rb+0x3d0/0x3d0 [672.739][T736] ? do_raw_spin_lock+0x12d/0x2b0 [672.730][T736] ? spin_bug+0x1d0/0x1d0 [672.737][T736] btrfs_run_qgroups+0x5de/0x840 [672.730][T736] ? btrfs_qgroup_rescan_worker+0xa70/0xa70 [672.738][T736] ? __del_qgroup_relation+0x4ba/0xe00 [672.738][T736] btrfs_ioctl+0x3d58/0x5d80 [672.735][T736] ? tomoyo_path_number_perm+0x16a/0x550 [672.737][T736] ? tomoyo_execute_permission+0x4a0/0x4a0 [672.731][T736] ? btrfs_ioctl_get_supported_features+0x50/0x50 [672.737][T736] ? __sanitizer_cov_trace_switch+0x54/0x90 [672.734][T736] ? do_vfs_ioctl+0x132/0x1660 [672.730][T736] ? vfs_fileattr_set+0xc40/0xc40 [672.730][T736] ? _raw_spin_unlock_irq+0x2e/0x50 [672.732][T736] ? sigprocmask+0xf2/0x340 [672.737][T736] ? __fget_files+0x26a/0x480 [672.732][T736] ? bpf_lsm_file_ioctl+0x9/0x10 [672.738][T736] ? btrfs_ioctl_get_supported_features+0x50/0x50 [672.736][T736] __x64_sys_ioctl+0x198/0x210 [672.736][T736] do_syscall_64+0x39/0xb0 [672.731][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.739][T736] RIP: 0033:0x4556ad [672.742][T736] </TASK> [672.743][T736] [672.748][T736] Allocated by task 27677: [672.743][T736] kasan_save_stack+0x22/0x40 [672.741][T736] kasan_set_track+0x25/0x30 [672.741][T736] __kasan_kmalloc+0xa4/0xb0 [672.749][T736] btrfs_alloc_root+0x48/0x90 [672.746][T736] btrfs_create_tree+0x146/0xa20 [672.744][T736] btrfs_quota_enable+0x461/0x1d20 [672.743][T736] btrfs_ioctl+0x4a1c/0x5d80 [672.747][T736] __x64_sys_ioctl+0x198/0x210 [672.749][T736] do_syscall_64+0x39/0xb0 [672.744][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.756][T736] [672.757][T736] Freed by task 27677: [672.759][T736] kasan_save_stack+0x22/0x40 [672.759][T736] kasan_set_track+0x25/0x30 [672.756][T736] kasan_save_free_info+0x2e/0x50 [672.751][T736] ____kasan_slab_free+0x162/0x1c0 [672.758][T736] slab_free_freelist_hook+0x89/0x1c0 [672.752][T736] __kmem_cache_free+0xaf/0x2e0 [672.752][T736] btrfs_put_root+0x1ff/0x2b0 [672.759][T736] btrfs_quota_disable+0x80a/0xbc0 [672.752][T736] btrfs_ioctl+0x3e5f/0x5d80 [672.756][T736] __x64_sys_ioctl+0x198/0x210 [672.753][T736] do_syscall_64+0x39/0xb0 [672.765][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.769][T736] [672.768][T736] The buggy address belongs to the object at ffff888022ec0000 [672.768][T736] which belongs to the cache kmalloc-4k of size 4096 [672.769][T736] The buggy address is located 520 bytes inside of [672.769][T736] freed 4096-byte region [ffff888022ec0000, ffff888022ec1000) [672.760][T736] [672.764][T736] The buggy address belongs to the physical page: [672.761][T736] page:ffffea00008bb000 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x22ec0 [672.766][T736] head:ffffea00008bb000 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 [672.779][T736] flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff) [672.770][T736] raw: 00fff00000010200 ffff888012842140 ffffea000054ba00 dead000000000002 [672.770][T736] raw: 0000000000000000 0000000000040004 00000001ffffffff 0000000000000000 [672.771][T736] page dumped because: kasan: bad access detected [672.778][T736] page_owner tracks the page as allocated [672.777][T736] page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd2040(__GFP_IO|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 88 [672.779][T736] get_page_from_freelist+0x119c/0x2d50 [672.779][T736] __alloc_pages+0x1cb/0x4a0 [672.776][T736] alloc_pages+0x1aa/0x270 [672.773][T736] allocate_slab+0x260/0x390 [672.771][T736] ___slab_alloc+0xa9a/0x13e0 [672.778][T736] __slab_alloc.constprop.0+0x56/0xb0 [672.771][T736] __kmem_cache_alloc_node+0x136/0x320 [672.789][T736] __kmalloc+0x4e/0x1a0 [672.783][T736] tomoyo_realpath_from_path+0xc3/0x600 [672.781][T736] tomoyo_path_perm+0x22f/0x420 [672.782][T736] tomoyo_path_unlink+0x92/0xd0 [672.780][T736] security_path_unlink+0xdb/0x150 [672.788][T736] do_unlinkat+0x377/0x680 [672.788][T736] __x64_sys_unlink+0xca/0x110 [672.789][T736] do_syscall_64+0x39/0xb0 [672.783][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.784][T736] page last free stack trace: [672.787][T736] free_pcp_prepare+0x4e5/0x920 [672.787][T736] free_unref_page+0x1d/0x4e0 [672.784][T736] __unfreeze_partials+0x17c/0x1a0 [672.797][T736] qlist_free_all+0x6a/0x180 [672.796][T736] kasan_quarantine_reduce+0x189/0x1d0 [672.797][T736] __kasan_slab_alloc+0x64/0x90 [672.793][T736] kmem_cache_alloc+0x17c/0x3c0 [672.799][T736] getname_flags.part.0+0x50/0x4e0 [672.799][T736] getname_flags+0x9e/0xe0 [672.792][T736] vfs_fstatat+0x77/0xb0 [672.791][T736] __do_sys_newlstat+0x84/0x100 [672.798][T736] do_syscall_64+0x39/0xb0 [672.796][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.790][T736] [672.791][T736] Memory state around the buggy address: [672.799][T736] ffff888022ec0100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.805][T736] ffff888022ec0180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.802][T736] >ffff888022ec0200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.809][T736] ^ [672.809][T736] ffff888022ec0280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.809][T736] ffff888022ec0300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fix this by having the qgroup assign ioctl take the qgroup ioctl mutex before calling btrfs_run_qgroups(), which is what all qgroup ioctls should call. Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CAFcO6XN3VD8ogmHwqRk4kbiwtpUSNySu2VAxN8waEPciCHJvMA@mail.gmail.com/ CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-22 10:33:28 +00:00
mutex_lock(&fs_info->qgroup_ioctl_lock);
err = btrfs_run_qgroups(trans);
btrfs: fix race between quota disable and quota assign ioctls The quota assign ioctl can currently run in parallel with a quota disable ioctl call. The assign ioctl uses the quota root, while the disable ioctl frees that root, and therefore we can have a use-after-free triggered in the assign ioctl, leading to a trace like the following when KASAN is enabled: [672.723][T736] BUG: KASAN: slab-use-after-free in btrfs_search_slot+0x2962/0x2db0 [672.723][T736] Read of size 8 at addr ffff888022ec0208 by task btrfs_search_sl/27736 [672.724][T736] [672.725][T736] CPU: 1 PID: 27736 Comm: btrfs_search_sl Not tainted 6.3.0-rc3 #37 [672.723][T736] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [672.727][T736] Call Trace: [672.728][T736] <TASK> [672.728][T736] dump_stack_lvl+0xd9/0x150 [672.725][T736] print_report+0xc1/0x5e0 [672.720][T736] ? __virt_addr_valid+0x61/0x2e0 [672.727][T736] ? __phys_addr+0xc9/0x150 [672.725][T736] ? btrfs_search_slot+0x2962/0x2db0 [672.722][T736] kasan_report+0xc0/0xf0 [672.729][T736] ? btrfs_search_slot+0x2962/0x2db0 [672.724][T736] btrfs_search_slot+0x2962/0x2db0 [672.723][T736] ? fs_reclaim_acquire+0xba/0x160 [672.722][T736] ? split_leaf+0x13d0/0x13d0 [672.726][T736] ? rcu_is_watching+0x12/0xb0 [672.723][T736] ? kmem_cache_alloc+0x338/0x3c0 [672.722][T736] update_qgroup_status_item+0xf7/0x320 [672.724][T736] ? add_qgroup_rb+0x3d0/0x3d0 [672.739][T736] ? do_raw_spin_lock+0x12d/0x2b0 [672.730][T736] ? spin_bug+0x1d0/0x1d0 [672.737][T736] btrfs_run_qgroups+0x5de/0x840 [672.730][T736] ? btrfs_qgroup_rescan_worker+0xa70/0xa70 [672.738][T736] ? __del_qgroup_relation+0x4ba/0xe00 [672.738][T736] btrfs_ioctl+0x3d58/0x5d80 [672.735][T736] ? tomoyo_path_number_perm+0x16a/0x550 [672.737][T736] ? tomoyo_execute_permission+0x4a0/0x4a0 [672.731][T736] ? btrfs_ioctl_get_supported_features+0x50/0x50 [672.737][T736] ? __sanitizer_cov_trace_switch+0x54/0x90 [672.734][T736] ? do_vfs_ioctl+0x132/0x1660 [672.730][T736] ? vfs_fileattr_set+0xc40/0xc40 [672.730][T736] ? _raw_spin_unlock_irq+0x2e/0x50 [672.732][T736] ? sigprocmask+0xf2/0x340 [672.737][T736] ? __fget_files+0x26a/0x480 [672.732][T736] ? bpf_lsm_file_ioctl+0x9/0x10 [672.738][T736] ? btrfs_ioctl_get_supported_features+0x50/0x50 [672.736][T736] __x64_sys_ioctl+0x198/0x210 [672.736][T736] do_syscall_64+0x39/0xb0 [672.731][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.739][T736] RIP: 0033:0x4556ad [672.742][T736] </TASK> [672.743][T736] [672.748][T736] Allocated by task 27677: [672.743][T736] kasan_save_stack+0x22/0x40 [672.741][T736] kasan_set_track+0x25/0x30 [672.741][T736] __kasan_kmalloc+0xa4/0xb0 [672.749][T736] btrfs_alloc_root+0x48/0x90 [672.746][T736] btrfs_create_tree+0x146/0xa20 [672.744][T736] btrfs_quota_enable+0x461/0x1d20 [672.743][T736] btrfs_ioctl+0x4a1c/0x5d80 [672.747][T736] __x64_sys_ioctl+0x198/0x210 [672.749][T736] do_syscall_64+0x39/0xb0 [672.744][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.756][T736] [672.757][T736] Freed by task 27677: [672.759][T736] kasan_save_stack+0x22/0x40 [672.759][T736] kasan_set_track+0x25/0x30 [672.756][T736] kasan_save_free_info+0x2e/0x50 [672.751][T736] ____kasan_slab_free+0x162/0x1c0 [672.758][T736] slab_free_freelist_hook+0x89/0x1c0 [672.752][T736] __kmem_cache_free+0xaf/0x2e0 [672.752][T736] btrfs_put_root+0x1ff/0x2b0 [672.759][T736] btrfs_quota_disable+0x80a/0xbc0 [672.752][T736] btrfs_ioctl+0x3e5f/0x5d80 [672.756][T736] __x64_sys_ioctl+0x198/0x210 [672.753][T736] do_syscall_64+0x39/0xb0 [672.765][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.769][T736] [672.768][T736] The buggy address belongs to the object at ffff888022ec0000 [672.768][T736] which belongs to the cache kmalloc-4k of size 4096 [672.769][T736] The buggy address is located 520 bytes inside of [672.769][T736] freed 4096-byte region [ffff888022ec0000, ffff888022ec1000) [672.760][T736] [672.764][T736] The buggy address belongs to the physical page: [672.761][T736] page:ffffea00008bb000 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x22ec0 [672.766][T736] head:ffffea00008bb000 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 [672.779][T736] flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff) [672.770][T736] raw: 00fff00000010200 ffff888012842140 ffffea000054ba00 dead000000000002 [672.770][T736] raw: 0000000000000000 0000000000040004 00000001ffffffff 0000000000000000 [672.771][T736] page dumped because: kasan: bad access detected [672.778][T736] page_owner tracks the page as allocated [672.777][T736] page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd2040(__GFP_IO|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 88 [672.779][T736] get_page_from_freelist+0x119c/0x2d50 [672.779][T736] __alloc_pages+0x1cb/0x4a0 [672.776][T736] alloc_pages+0x1aa/0x270 [672.773][T736] allocate_slab+0x260/0x390 [672.771][T736] ___slab_alloc+0xa9a/0x13e0 [672.778][T736] __slab_alloc.constprop.0+0x56/0xb0 [672.771][T736] __kmem_cache_alloc_node+0x136/0x320 [672.789][T736] __kmalloc+0x4e/0x1a0 [672.783][T736] tomoyo_realpath_from_path+0xc3/0x600 [672.781][T736] tomoyo_path_perm+0x22f/0x420 [672.782][T736] tomoyo_path_unlink+0x92/0xd0 [672.780][T736] security_path_unlink+0xdb/0x150 [672.788][T736] do_unlinkat+0x377/0x680 [672.788][T736] __x64_sys_unlink+0xca/0x110 [672.789][T736] do_syscall_64+0x39/0xb0 [672.783][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.784][T736] page last free stack trace: [672.787][T736] free_pcp_prepare+0x4e5/0x920 [672.787][T736] free_unref_page+0x1d/0x4e0 [672.784][T736] __unfreeze_partials+0x17c/0x1a0 [672.797][T736] qlist_free_all+0x6a/0x180 [672.796][T736] kasan_quarantine_reduce+0x189/0x1d0 [672.797][T736] __kasan_slab_alloc+0x64/0x90 [672.793][T736] kmem_cache_alloc+0x17c/0x3c0 [672.799][T736] getname_flags.part.0+0x50/0x4e0 [672.799][T736] getname_flags+0x9e/0xe0 [672.792][T736] vfs_fstatat+0x77/0xb0 [672.791][T736] __do_sys_newlstat+0x84/0x100 [672.798][T736] do_syscall_64+0x39/0xb0 [672.796][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.790][T736] [672.791][T736] Memory state around the buggy address: [672.799][T736] ffff888022ec0100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.805][T736] ffff888022ec0180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.802][T736] >ffff888022ec0200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.809][T736] ^ [672.809][T736] ffff888022ec0280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.809][T736] ffff888022ec0300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fix this by having the qgroup assign ioctl take the qgroup ioctl mutex before calling btrfs_run_qgroups(), which is what all qgroup ioctls should call. Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CAFcO6XN3VD8ogmHwqRk4kbiwtpUSNySu2VAxN8waEPciCHJvMA@mail.gmail.com/ CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-22 10:33:28 +00:00
mutex_unlock(&fs_info->qgroup_ioctl_lock);
if (err < 0)
btrfs_handle_fs_error(fs_info, err,
"failed to update qgroup status and info");
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
kfree(sa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_qgroup_create_args *sa;
struct btrfs_trans_handle *trans;
int ret;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
if (!sa->qgroupid) {
ret = -EINVAL;
goto out;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
if (sa->create) {
ret = btrfs_create_qgroup(trans, sa->qgroupid);
} else {
ret = btrfs_remove_qgroup(trans, sa->qgroupid);
}
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
kfree(sa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_qgroup_limit_args *sa;
struct btrfs_trans_handle *trans;
int ret;
int err;
u64 qgroupid;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
qgroupid = sa->qgroupid;
if (!qgroupid) {
/* take the current subvol as qgroup */
qgroupid = root->root_key.objectid;
}
ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
kfree(sa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_ioctl_quota_rescan_args *qsa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
qsa = memdup_user(arg, sizeof(*qsa));
if (IS_ERR(qsa)) {
ret = PTR_ERR(qsa);
goto drop_write;
}
if (qsa->flags) {
ret = -EINVAL;
goto out;
}
ret = btrfs_qgroup_rescan(fs_info);
out:
kfree(qsa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_quota_rescan_args qsa = {0};
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
qsa.flags = 1;
qsa.progress = fs_info->qgroup_rescan_progress.objectid;
}
if (copy_to_user(arg, &qsa, sizeof(qsa)))
return -EFAULT;
return 0;
}
static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
void __user *arg)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return btrfs_qgroup_wait_for_completion(fs_info, true);
}
static long _btrfs_ioctl_set_received_subvol(struct file *file,
struct mnt_idmap *idmap,
struct btrfs_ioctl_received_subvol_args *sa)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_root_item *root_item = &root->root_item;
struct btrfs_trans_handle *trans;
vfs: change inode times to use struct timespec64 struct timespec is not y2038 safe. Transition vfs to use y2038 safe struct timespec64 instead. The change was made with the help of the following cocinelle script. This catches about 80% of the changes. All the header file and logic changes are included in the first 5 rules. The rest are trivial substitutions. I avoid changing any of the function signatures or any other filesystem specific data structures to keep the patch simple for review. The script can be a little shorter by combining different cases. But, this version was sufficient for my usecase. virtual patch @ depends on patch @ identifier now; @@ - struct timespec + struct timespec64 current_time ( ... ) { - struct timespec now = current_kernel_time(); + struct timespec64 now = current_kernel_time64(); ... - return timespec_trunc( + return timespec64_trunc( ... ); } @ depends on patch @ identifier xtime; @@ struct \( iattr \| inode \| kstat \) { ... - struct timespec xtime; + struct timespec64 xtime; ... } @ depends on patch @ identifier t; @@ struct inode_operations { ... int (*update_time) (..., - struct timespec t, + struct timespec64 t, ...); ... } @ depends on patch @ identifier t; identifier fn_update_time =~ "update_time$"; @@ fn_update_time (..., - struct timespec *t, + struct timespec64 *t, ...) { ... } @ depends on patch @ identifier t; @@ lease_get_mtime( ... , - struct timespec *t + struct timespec64 *t ) { ... } @te depends on patch forall@ identifier ts; local idexpression struct inode *inode_node; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn_update_time =~ "update_time$"; identifier fn; expression e, E3; local idexpression struct inode *node1; local idexpression struct inode *node2; local idexpression struct iattr *attr1; local idexpression struct iattr *attr2; local idexpression struct iattr attr; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; @@ ( ( - struct timespec ts; + struct timespec64 ts; | - struct timespec ts = current_time(inode_node); + struct timespec64 ts = current_time(inode_node); ) <+... when != ts ( - timespec_equal(&inode_node->i_xtime, &ts) + timespec64_equal(&inode_node->i_xtime, &ts) | - timespec_equal(&ts, &inode_node->i_xtime) + timespec64_equal(&ts, &inode_node->i_xtime) | - timespec_compare(&inode_node->i_xtime, &ts) + timespec64_compare(&inode_node->i_xtime, &ts) | - timespec_compare(&ts, &inode_node->i_xtime) + timespec64_compare(&ts, &inode_node->i_xtime) | ts = current_time(e) | fn_update_time(..., &ts,...) | inode_node->i_xtime = ts | node1->i_xtime = ts | ts = inode_node->i_xtime | <+... attr1->ia_xtime ...+> = ts | ts = attr1->ia_xtime | ts.tv_sec | ts.tv_nsec | btrfs_set_stack_timespec_sec(..., ts.tv_sec) | btrfs_set_stack_timespec_nsec(..., ts.tv_nsec) | - ts = timespec64_to_timespec( + ts = ... -) | - ts = ktime_to_timespec( + ts = ktime_to_timespec64( ...) | - ts = E3 + ts = timespec_to_timespec64(E3) | - ktime_get_real_ts(&ts) + ktime_get_real_ts64(&ts) | fn(..., - ts + timespec64_to_timespec(ts) ,...) ) ...+> ( <... when != ts - return ts; + return timespec64_to_timespec(ts); ...> ) | - timespec_equal(&node1->i_xtime1, &node2->i_xtime2) + timespec64_equal(&node1->i_xtime2, &node2->i_xtime2) | - timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2) + timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2) | - timespec_compare(&node1->i_xtime1, &node2->i_xtime2) + timespec64_compare(&node1->i_xtime1, &node2->i_xtime2) | node1->i_xtime1 = - timespec_trunc(attr1->ia_xtime1, + timespec64_trunc(attr1->ia_xtime1, ...) | - attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2, + attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2, ...) | - ktime_get_real_ts(&attr1->ia_xtime1) + ktime_get_real_ts64(&attr1->ia_xtime1) | - ktime_get_real_ts(&attr.ia_xtime1) + ktime_get_real_ts64(&attr.ia_xtime1) ) @ depends on patch @ struct inode *node; struct iattr *attr; identifier fn; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; expression e; @@ ( - fn(node->i_xtime); + fn(timespec64_to_timespec(node->i_xtime)); | fn(..., - node->i_xtime); + timespec64_to_timespec(node->i_xtime)); | - e = fn(attr->ia_xtime); + e = fn(timespec64_to_timespec(attr->ia_xtime)); ) @ depends on patch forall @ struct inode *node; struct iattr *attr; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); fn (..., - &attr->ia_xtime, + &ts, ...); ) ...+> } @ depends on patch forall @ struct inode *node; struct iattr *attr; struct kstat *stat; identifier ia_xtime =~ "^ia_[acm]time$"; identifier i_xtime =~ "^i_[acm]time$"; identifier xtime =~ "^[acm]time$"; identifier fn, ret; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime); + &ts); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime); + &ts); | + ts = timespec64_to_timespec(stat->xtime); ret = fn (..., - &stat->xtime); + &ts); ) ...+> } @ depends on patch @ struct inode *node; struct inode *node2; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier i_xtime3 =~ "^i_[acm]time$"; struct iattr *attrp; struct iattr *attrp2; struct iattr attr ; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; struct kstat *stat; struct kstat stat1; struct timespec64 ts; identifier xtime =~ "^[acmb]time$"; expression e; @@ ( ( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ; | node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | stat->xtime = node2->i_xtime1; | stat1.xtime = node2->i_xtime1; | ( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ; | ( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2; | - e = node->i_xtime1; + e = timespec64_to_timespec( node->i_xtime1 ); | - e = attrp->ia_xtime1; + e = timespec64_to_timespec( attrp->ia_xtime1 ); | node->i_xtime1 = current_time(...); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | - node->i_xtime1 = e; + node->i_xtime1 = timespec_to_timespec64(e); ) Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com> Cc: <anton@tuxera.com> Cc: <balbi@kernel.org> Cc: <bfields@fieldses.org> Cc: <darrick.wong@oracle.com> Cc: <dhowells@redhat.com> Cc: <dsterba@suse.com> Cc: <dwmw2@infradead.org> Cc: <hch@lst.de> Cc: <hirofumi@mail.parknet.co.jp> Cc: <hubcap@omnibond.com> Cc: <jack@suse.com> Cc: <jaegeuk@kernel.org> Cc: <jaharkes@cs.cmu.edu> Cc: <jslaby@suse.com> Cc: <keescook@chromium.org> Cc: <mark@fasheh.com> Cc: <miklos@szeredi.hu> Cc: <nico@linaro.org> Cc: <reiserfs-devel@vger.kernel.org> Cc: <richard@nod.at> Cc: <sage@redhat.com> Cc: <sfrench@samba.org> Cc: <swhiteho@redhat.com> Cc: <tj@kernel.org> Cc: <trond.myklebust@primarydata.com> Cc: <tytso@mit.edu> Cc: <viro@zeniv.linux.org.uk>
2018-05-08 19:36:02 -07:00
struct timespec64 ct = current_time(inode);
int ret = 0;
int received_uuid_changed;
if (!inode_owner_or_capable(idmap, inode))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret < 0)
return ret;
down_write(&fs_info->subvol_sem);
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
ret = -EINVAL;
goto out;
}
if (btrfs_root_readonly(root)) {
ret = -EROFS;
goto out;
}
/*
* 1 - root item
* 2 - uuid items (received uuid + subvol uuid)
*/
trans = btrfs_start_transaction(root, 3);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto out;
}
sa->rtransid = trans->transid;
sa->rtime.sec = ct.tv_sec;
sa->rtime.nsec = ct.tv_nsec;
received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
BTRFS_UUID_SIZE);
if (received_uuid_changed &&
!btrfs_is_empty_uuid(root_item->received_uuid)) {
ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
root->root_key.objectid);
if (ret && ret != -ENOENT) {
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
goto out;
}
}
memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
btrfs_set_root_stransid(root_item, sa->stransid);
btrfs_set_root_rtransid(root_item, sa->rtransid);
btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
ret = btrfs_update_root(trans, fs_info->tree_root,
&root->root_key, &root->root_item);
if (ret < 0) {
btrfs_end_transaction(trans);
goto out;
}
if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
ret = btrfs_uuid_tree_add(trans, sa->uuid,
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
root->root_key.objectid);
if (ret < 0 && ret != -EEXIST) {
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
goto out;
}
}
ret = btrfs_commit_transaction(trans);
out:
up_write(&fs_info->subvol_sem);
mnt_drop_write_file(file);
return ret;
}
#ifdef CONFIG_64BIT
static long btrfs_ioctl_set_received_subvol_32(struct file *file,
void __user *arg)
{
struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
struct btrfs_ioctl_received_subvol_args *args64 = NULL;
int ret = 0;
args32 = memdup_user(arg, sizeof(*args32));
if (IS_ERR(args32))
return PTR_ERR(args32);
args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
if (!args64) {
ret = -ENOMEM;
goto out;
}
memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
args64->stransid = args32->stransid;
args64->rtransid = args32->rtransid;
args64->stime.sec = args32->stime.sec;
args64->stime.nsec = args32->stime.nsec;
args64->rtime.sec = args32->rtime.sec;
args64->rtime.nsec = args32->rtime.nsec;
args64->flags = args32->flags;
ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
if (ret)
goto out;
memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
args32->stransid = args64->stransid;
args32->rtransid = args64->rtransid;
args32->stime.sec = args64->stime.sec;
args32->stime.nsec = args64->stime.nsec;
args32->rtime.sec = args64->rtime.sec;
args32->rtime.nsec = args64->rtime.nsec;
args32->flags = args64->flags;
ret = copy_to_user(arg, args32, sizeof(*args32));
if (ret)
ret = -EFAULT;
out:
kfree(args32);
kfree(args64);
return ret;
}
#endif
static long btrfs_ioctl_set_received_subvol(struct file *file,
void __user *arg)
{
struct btrfs_ioctl_received_subvol_args *sa = NULL;
int ret = 0;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
if (ret)
goto out;
ret = copy_to_user(arg, sa, sizeof(*sa));
if (ret)
ret = -EFAULT;
out:
kfree(sa);
return ret;
}
static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
void __user *arg)
{
size_t len;
int ret;
char label[BTRFS_LABEL_SIZE];
spin_lock(&fs_info->super_lock);
memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
spin_unlock(&fs_info->super_lock);
len = strnlen(label, BTRFS_LABEL_SIZE);
if (len == BTRFS_LABEL_SIZE) {
btrfs_warn(fs_info,
"label is too long, return the first %zu bytes",
--len);
}
ret = copy_to_user(arg, label, len);
return ret ? -EFAULT : 0;
}
static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_super_block *super_block = fs_info->super_copy;
struct btrfs_trans_handle *trans;
char label[BTRFS_LABEL_SIZE];
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(label, arg, sizeof(label)))
return -EFAULT;
if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
btrfs_err(fs_info,
"unable to set label with more than %d bytes",
BTRFS_LABEL_SIZE - 1);
return -EINVAL;
}
ret = mnt_want_write_file(file);
if (ret)
return ret;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_unlock;
}
spin_lock(&fs_info->super_lock);
strcpy(super_block->label, label);
spin_unlock(&fs_info->super_lock);
ret = btrfs_commit_transaction(trans);
out_unlock:
mnt_drop_write_file(file);
return ret;
}
#define INIT_FEATURE_FLAGS(suffix) \
{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
.compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
.incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
int btrfs_ioctl_get_supported_features(void __user *arg)
{
static const struct btrfs_ioctl_feature_flags features[3] = {
INIT_FEATURE_FLAGS(SUPP),
INIT_FEATURE_FLAGS(SAFE_SET),
INIT_FEATURE_FLAGS(SAFE_CLEAR)
};
if (copy_to_user(arg, &features, sizeof(features)))
return -EFAULT;
return 0;
}
static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_super_block *super_block = fs_info->super_copy;
struct btrfs_ioctl_feature_flags features;
features.compat_flags = btrfs_super_compat_flags(super_block);
features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
features.incompat_flags = btrfs_super_incompat_flags(super_block);
if (copy_to_user(arg, &features, sizeof(features)))
return -EFAULT;
return 0;
}
static int check_feature_bits(struct btrfs_fs_info *fs_info,
enum btrfs_feature_set set,
u64 change_mask, u64 flags, u64 supported_flags,
u64 safe_set, u64 safe_clear)
{
const char *type = btrfs_feature_set_name(set);
char *names;
u64 disallowed, unsupported;
u64 set_mask = flags & change_mask;
u64 clear_mask = ~flags & change_mask;
unsupported = set_mask & ~supported_flags;
if (unsupported) {
names = btrfs_printable_features(set, unsupported);
if (names) {
btrfs_warn(fs_info,
"this kernel does not support the %s feature bit%s",
names, strchr(names, ',') ? "s" : "");
kfree(names);
} else
btrfs_warn(fs_info,
"this kernel does not support %s bits 0x%llx",
type, unsupported);
return -EOPNOTSUPP;
}
disallowed = set_mask & ~safe_set;
if (disallowed) {
names = btrfs_printable_features(set, disallowed);
if (names) {
btrfs_warn(fs_info,
"can't set the %s feature bit%s while mounted",
names, strchr(names, ',') ? "s" : "");
kfree(names);
} else
btrfs_warn(fs_info,
"can't set %s bits 0x%llx while mounted",
type, disallowed);
return -EPERM;
}
disallowed = clear_mask & ~safe_clear;
if (disallowed) {
names = btrfs_printable_features(set, disallowed);
if (names) {
btrfs_warn(fs_info,
"can't clear the %s feature bit%s while mounted",
names, strchr(names, ',') ? "s" : "");
kfree(names);
} else
btrfs_warn(fs_info,
"can't clear %s bits 0x%llx while mounted",
type, disallowed);
return -EPERM;
}
return 0;
}
#define check_feature(fs_info, change_mask, flags, mask_base) \
check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
BTRFS_FEATURE_ ## mask_base ## _SUPP, \
BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_super_block *super_block = fs_info->super_copy;
struct btrfs_ioctl_feature_flags flags[2];
struct btrfs_trans_handle *trans;
u64 newflags;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(flags, arg, sizeof(flags)))
return -EFAULT;
/* Nothing to do */
if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
!flags[0].incompat_flags)
return 0;
ret = check_feature(fs_info, flags[0].compat_flags,
flags[1].compat_flags, COMPAT);
if (ret)
return ret;
ret = check_feature(fs_info, flags[0].compat_ro_flags,
flags[1].compat_ro_flags, COMPAT_RO);
if (ret)
return ret;
ret = check_feature(fs_info, flags[0].incompat_flags,
flags[1].incompat_flags, INCOMPAT);
if (ret)
return ret;
ret = mnt_want_write_file(file);
if (ret)
return ret;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_drop_write;
}
spin_lock(&fs_info->super_lock);
newflags = btrfs_super_compat_flags(super_block);
newflags |= flags[0].compat_flags & flags[1].compat_flags;
newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
btrfs_set_super_compat_flags(super_block, newflags);
newflags = btrfs_super_compat_ro_flags(super_block);
newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
btrfs_set_super_compat_ro_flags(super_block, newflags);
newflags = btrfs_super_incompat_flags(super_block);
newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
btrfs_set_super_incompat_flags(super_block, newflags);
spin_unlock(&fs_info->super_lock);
ret = btrfs_commit_transaction(trans);
out_drop_write:
mnt_drop_write_file(file);
return ret;
}
static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
{
struct btrfs_ioctl_send_args *arg;
int ret;
if (compat) {
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_send_args_32 args32;
ret = copy_from_user(&args32, argp, sizeof(args32));
if (ret)
return -EFAULT;
arg = kzalloc(sizeof(*arg), GFP_KERNEL);
if (!arg)
return -ENOMEM;
arg->send_fd = args32.send_fd;
arg->clone_sources_count = args32.clone_sources_count;
arg->clone_sources = compat_ptr(args32.clone_sources);
arg->parent_root = args32.parent_root;
arg->flags = args32.flags;
memcpy(arg->reserved, args32.reserved,
sizeof(args32.reserved));
#else
return -ENOTTY;
#endif
} else {
arg = memdup_user(argp, sizeof(*arg));
if (IS_ERR(arg))
return PTR_ERR(arg);
}
ret = btrfs_ioctl_send(inode, arg);
kfree(arg);
return ret;
}
btrfs: add BTRFS_IOC_ENCODED_READ ioctl There are 4 main cases: 1. Inline extents: we copy the data straight out of the extent buffer. 2. Hole/preallocated extents: we fill in zeroes. 3. Regular, uncompressed extents: we read the sectors we need directly from disk. 4. Regular, compressed extents: we read the entire compressed extent from disk and indicate what subset of the decompressed extent is in the file. This initial implementation simplifies a few things that can be improved in the future: - Cases 1, 3, and 4 allocate temporary memory to read into before copying out to userspace. - We don't do read repair, because it turns out that read repair is currently broken for compressed data. - We hold the inode lock during the operation. Note that we don't need to hold the mmap lock. We may race with btrfs_page_mkwrite() and read the old data from before the page was dirtied: btrfs_page_mkwrite btrfs_encoded_read --------------------------------------------------- (enter) (enter) btrfs_wait_ordered_range lock_extent_bits btrfs_page_set_dirty unlock_extent_cached (exit) lock_extent_bits read extent (dirty page hasn't been flushed, so this is the old data) unlock_extent_cached (exit) we read the old data from before the page was dirtied. But, that's true even if we were to hold the mmap lock: btrfs_page_mkwrite btrfs_encoded_read ------------------------------------------------------------------- (enter) (enter) btrfs_inode_lock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) (blocked) btrfs_wait_ordered_range lock_extent_bits read extent (page hasn't been dirtied, so this is the old data) unlock_extent_cached btrfs_inode_unlock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) returns lock_extent_bits btrfs_page_set_dirty unlock_extent_cached In other words, this is inherently racy, so it's fine that we return the old data in this tiny window. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-09 17:59:07 -07:00
static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
bool compat)
{
struct btrfs_ioctl_encoded_io_args args = { 0 };
size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
flags);
size_t copy_end;
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
loff_t pos;
struct kiocb kiocb;
ssize_t ret;
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out_acct;
}
if (compat) {
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_encoded_io_args_32 args32;
copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
flags);
if (copy_from_user(&args32, argp, copy_end)) {
ret = -EFAULT;
goto out_acct;
}
args.iov = compat_ptr(args32.iov);
args.iovcnt = args32.iovcnt;
args.offset = args32.offset;
args.flags = args32.flags;
#else
return -ENOTTY;
#endif
} else {
copy_end = copy_end_kernel;
if (copy_from_user(&args, argp, copy_end)) {
ret = -EFAULT;
goto out_acct;
}
}
if (args.flags != 0) {
ret = -EINVAL;
goto out_acct;
}
ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
btrfs: add BTRFS_IOC_ENCODED_READ ioctl There are 4 main cases: 1. Inline extents: we copy the data straight out of the extent buffer. 2. Hole/preallocated extents: we fill in zeroes. 3. Regular, uncompressed extents: we read the sectors we need directly from disk. 4. Regular, compressed extents: we read the entire compressed extent from disk and indicate what subset of the decompressed extent is in the file. This initial implementation simplifies a few things that can be improved in the future: - Cases 1, 3, and 4 allocate temporary memory to read into before copying out to userspace. - We don't do read repair, because it turns out that read repair is currently broken for compressed data. - We hold the inode lock during the operation. Note that we don't need to hold the mmap lock. We may race with btrfs_page_mkwrite() and read the old data from before the page was dirtied: btrfs_page_mkwrite btrfs_encoded_read --------------------------------------------------- (enter) (enter) btrfs_wait_ordered_range lock_extent_bits btrfs_page_set_dirty unlock_extent_cached (exit) lock_extent_bits read extent (dirty page hasn't been flushed, so this is the old data) unlock_extent_cached (exit) we read the old data from before the page was dirtied. But, that's true even if we were to hold the mmap lock: btrfs_page_mkwrite btrfs_encoded_read ------------------------------------------------------------------- (enter) (enter) btrfs_inode_lock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) (blocked) btrfs_wait_ordered_range lock_extent_bits read extent (page hasn't been dirtied, so this is the old data) unlock_extent_cached btrfs_inode_unlock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) returns lock_extent_bits btrfs_page_set_dirty unlock_extent_cached In other words, this is inherently racy, so it's fine that we return the old data in this tiny window. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-09 17:59:07 -07:00
&iov, &iter);
if (ret < 0)
goto out_acct;
if (iov_iter_count(&iter) == 0) {
ret = 0;
goto out_iov;
}
pos = args.offset;
ret = rw_verify_area(READ, file, &pos, args.len);
if (ret < 0)
goto out_iov;
init_sync_kiocb(&kiocb, file);
kiocb.ki_pos = pos;
ret = btrfs_encoded_read(&kiocb, &iter, &args);
if (ret >= 0) {
fsnotify_access(file);
if (copy_to_user(argp + copy_end,
(char *)&args + copy_end_kernel,
sizeof(args) - copy_end_kernel))
ret = -EFAULT;
}
out_iov:
kfree(iov);
out_acct:
if (ret > 0)
add_rchar(current, ret);
inc_syscr(current);
return ret;
}
static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
{
struct btrfs_ioctl_encoded_io_args args;
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
loff_t pos;
struct kiocb kiocb;
ssize_t ret;
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out_acct;
}
if (!(file->f_mode & FMODE_WRITE)) {
ret = -EBADF;
goto out_acct;
}
if (compat) {
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_encoded_io_args_32 args32;
if (copy_from_user(&args32, argp, sizeof(args32))) {
ret = -EFAULT;
goto out_acct;
}
args.iov = compat_ptr(args32.iov);
args.iovcnt = args32.iovcnt;
args.offset = args32.offset;
args.flags = args32.flags;
args.len = args32.len;
args.unencoded_len = args32.unencoded_len;
args.unencoded_offset = args32.unencoded_offset;
args.compression = args32.compression;
args.encryption = args32.encryption;
memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
#else
return -ENOTTY;
#endif
} else {
if (copy_from_user(&args, argp, sizeof(args))) {
ret = -EFAULT;
goto out_acct;
}
}
ret = -EINVAL;
if (args.flags != 0)
goto out_acct;
if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
goto out_acct;
if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
goto out_acct;
if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
goto out_acct;
if (args.unencoded_offset > args.unencoded_len)
goto out_acct;
if (args.len > args.unencoded_len - args.unencoded_offset)
goto out_acct;
ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
&iov, &iter);
if (ret < 0)
goto out_acct;
file_start_write(file);
if (iov_iter_count(&iter) == 0) {
ret = 0;
goto out_end_write;
}
pos = args.offset;
ret = rw_verify_area(WRITE, file, &pos, args.len);
if (ret < 0)
goto out_end_write;
init_sync_kiocb(&kiocb, file);
ret = kiocb_set_rw_flags(&kiocb, 0);
if (ret)
goto out_end_write;
kiocb.ki_pos = pos;
ret = btrfs_do_write_iter(&kiocb, &iter, &args);
if (ret > 0)
fsnotify_modify(file);
out_end_write:
file_end_write(file);
kfree(iov);
out_acct:
if (ret > 0)
add_wchar(current, ret);
inc_syscw(current);
return ret;
}
long btrfs_ioctl(struct file *file, unsigned int
cmd, unsigned long arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
void __user *argp = (void __user *)arg;
switch (cmd) {
case FS_IOC_GETVERSION:
return btrfs_ioctl_getversion(inode, argp);
case FS_IOC_GETFSLABEL:
return btrfs_ioctl_get_fslabel(fs_info, argp);
case FS_IOC_SETFSLABEL:
return btrfs_ioctl_set_fslabel(file, argp);
case FITRIM:
return btrfs_ioctl_fitrim(fs_info, argp);
case BTRFS_IOC_SNAP_CREATE:
return btrfs_ioctl_snap_create(file, argp, 0);
case BTRFS_IOC_SNAP_CREATE_V2:
return btrfs_ioctl_snap_create_v2(file, argp, 0);
case BTRFS_IOC_SUBVOL_CREATE:
return btrfs_ioctl_snap_create(file, argp, 1);
case BTRFS_IOC_SUBVOL_CREATE_V2:
return btrfs_ioctl_snap_create_v2(file, argp, 1);
case BTRFS_IOC_SNAP_DESTROY:
return btrfs_ioctl_snap_destroy(file, argp, false);
case BTRFS_IOC_SNAP_DESTROY_V2:
return btrfs_ioctl_snap_destroy(file, argp, true);
case BTRFS_IOC_SUBVOL_GETFLAGS:
return btrfs_ioctl_subvol_getflags(inode, argp);
case BTRFS_IOC_SUBVOL_SETFLAGS:
return btrfs_ioctl_subvol_setflags(file, argp);
case BTRFS_IOC_DEFAULT_SUBVOL:
return btrfs_ioctl_default_subvol(file, argp);
case BTRFS_IOC_DEFRAG:
return btrfs_ioctl_defrag(file, NULL);
case BTRFS_IOC_DEFRAG_RANGE:
return btrfs_ioctl_defrag(file, argp);
case BTRFS_IOC_RESIZE:
return btrfs_ioctl_resize(file, argp);
case BTRFS_IOC_ADD_DEV:
return btrfs_ioctl_add_dev(fs_info, argp);
case BTRFS_IOC_RM_DEV:
return btrfs_ioctl_rm_dev(file, argp);
case BTRFS_IOC_RM_DEV_V2:
return btrfs_ioctl_rm_dev_v2(file, argp);
case BTRFS_IOC_FS_INFO:
return btrfs_ioctl_fs_info(fs_info, argp);
case BTRFS_IOC_DEV_INFO:
return btrfs_ioctl_dev_info(fs_info, argp);
case BTRFS_IOC_TREE_SEARCH:
return btrfs_ioctl_tree_search(inode, argp);
case BTRFS_IOC_TREE_SEARCH_V2:
return btrfs_ioctl_tree_search_v2(inode, argp);
case BTRFS_IOC_INO_LOOKUP:
return btrfs_ioctl_ino_lookup(root, argp);
case BTRFS_IOC_INO_PATHS:
return btrfs_ioctl_ino_to_path(root, argp);
case BTRFS_IOC_LOGICAL_INO:
btrfs: add a flags argument to LOGICAL_INO and call it LOGICAL_INO_V2 Now that check_extent_in_eb()'s extent offset filter can be turned off, we need a way to do it from userspace. Add a 'flags' field to the btrfs_logical_ino_args structure to disable extent offset filtering, taking the place of one of the existing reserved[] fields. Previous versions of LOGICAL_INO neglected to check whether any of the reserved fields have non-zero values. Assigning meaning to those fields now may change the behavior of existing programs that left these fields uninitialized. The lack of a zero check also means that new programs have no way to know whether the kernel is honoring the flags field. To avoid these problems, define a new ioctl LOGICAL_INO_V2. We can use the same argument layout as LOGICAL_INO, but shorten the reserved[] array by one element and turn it into the 'flags' field. The V2 ioctl explicitly checks that reserved fields and unsupported flag bits are zero so that userspace can negotiate future feature bits as they are defined. Since the memory layouts of the two ioctls' arguments are compatible, there is no need for a separate function for logical_to_ino_v2 (contrast with tree_search_v2 vs tree_search where the layout and code are quite different). A version parameter and an 'if' statement will suffice. Now that we have a flags field in logical_ino_args, add a flag BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET to get the behavior we want, and pass it down the stack to iterate_inodes_from_logical. Motivation and background, copied from the patchset cover letter: Suppose we have a file with one extent: root@tester:~# zcat /usr/share/doc/cpio/changelog.gz > /test/a root@tester:~# sync Split the extent by overwriting it in the middle: root@tester:~# cat /dev/urandom | dd bs=4k seek=2 skip=2 count=1 conv=notrunc of=/test/a We should now have 3 extent refs to 2 extents, with one block unreachable. The extent tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 2 [...] item 9 key (1103101952 EXTENT_ITEM 73728) itemoff 15942 itemsize 53 extent refs 2 gen 29 flags DATA extent data backref root 5 objectid 261 offset 0 count 2 [...] item 11 key (1103175680 EXTENT_ITEM 4096) itemoff 15865 itemsize 53 extent refs 1 gen 30 flags DATA extent data backref root 5 objectid 261 offset 8192 count 1 [...] and the ref tree looks like: root@tester:~# btrfs-debug-tree /dev/vdc -t 5 [...] item 6 key (261 EXTENT_DATA 0) itemoff 15825 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 0 nr 8192 ram 73728 extent compression(none) item 7 key (261 EXTENT_DATA 8192) itemoff 15772 itemsize 53 extent data disk byte 1103175680 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression(none) item 8 key (261 EXTENT_DATA 12288) itemoff 15719 itemsize 53 extent data disk byte 1103101952 nr 73728 extent data offset 12288 nr 61440 ram 73728 extent compression(none) [...] There are two references to the same extent with different, non-overlapping byte offsets: [------------------72K extent at 1103101952----------------------] [--8K----------------|--4K unreachable----|--60K-----------------] ^ ^ | | [--8K ref offset 0--][--4K ref offset 0--][--60K ref offset 12K--] | v [-----4K extent-----] at 1103175680 We want to find all of the references to extent bytenr 1103101952. Without the patch (and without running btrfs-debug-tree), we have to do it with 18 LOGICAL_INO calls: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO inode 261 offset 0 root 5 root@tester:~# for x in $(seq 0 17); do btrfs ins log $((1103101952 + x * 4096)) -P /test/; done 2>&1 | grep inode inode 261 offset 0 root 5 inode 261 offset 4096 root 5 <- same extent ref as offset 0 (offset 8192 returns empty set, not reachable) inode 261 offset 12288 root 5 inode 261 offset 16384 root 5 \ inode 261 offset 20480 root 5 | inode 261 offset 24576 root 5 | inode 261 offset 28672 root 5 | inode 261 offset 32768 root 5 | inode 261 offset 36864 root 5 \ inode 261 offset 40960 root 5 > all the same extent ref as offset 12288. inode 261 offset 45056 root 5 / More processing required in userspace inode 261 offset 49152 root 5 | to figure out these are all duplicates. inode 261 offset 53248 root 5 | inode 261 offset 57344 root 5 | inode 261 offset 61440 root 5 | inode 261 offset 65536 root 5 | inode 261 offset 69632 root 5 / In the worst case the extents are 128MB long, and we have to do 32768 iterations of the loop to find one 4K extent ref. With the patch, we just use one call to map all refs to the extent at once: root@tester:~# btrfs ins log 1103101952 -P /test/ Using LOGICAL_INO_V2 inode 261 offset 0 root 5 inode 261 offset 12288 root 5 The TREE_SEARCH ioctl allows userspace to retrieve the offset and extent bytenr fields easily once the root, inode and offset are known. This is sufficient information to build a complete map of the extent and all of its references. Userspace can use this information to make better choices to dedup or defrag. Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Reviewed-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> [ copy background and motivation from cover letter ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-09-22 13:58:46 -04:00
return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
case BTRFS_IOC_LOGICAL_INO_V2:
return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
case BTRFS_IOC_SPACE_INFO:
return btrfs_ioctl_space_info(fs_info, argp);
Btrfs: fix sync fs to actually wait for all data to be persisted Currently the fs sync function (super.c:btrfs_sync_fs()) doesn't wait for delayed work to finish before returning success to the caller. This change fixes this, ensuring that there's no data loss if a power failure happens right after fs sync returns success to the caller and before the next commit happens. Steps to reproduce the data loss issue: $ mkfs.btrfs -f /dev/sdb3 $ mount /dev/sdb3 /mnt/btrfs $ perl -e '$d = ("\x41" x 6001); open($f,">","/mnt/btrfs/foobar"); print $f $d; close($f);' && btrfs fi sync /mnt/btrfs Right after the btrfs fi sync command (a second or 2 for example), power off the machine and reboot it. The file will be empty, as it can be verified after mounting the filesystem and through btrfs-debug-tree: $ btrfs-debug-tree /dev/sdb3 | egrep '\(257 INODE_ITEM 0\) itemoff' -B 3 -A 8 item 3 key (256 DIR_INDEX 2) itemoff 3751 itemsize 36 location key (257 INODE_ITEM 0) type FILE namelen 6 datalen 0 name: foobar item 4 key (257 INODE_ITEM 0) itemoff 3591 itemsize 160 inode generation 7 transid 7 size 0 block group 0 mode 100644 links 1 item 5 key (257 INODE_REF 256) itemoff 3575 itemsize 16 inode ref index 2 namelen 6 name: foobar checksum tree key (CSUM_TREE ROOT_ITEM 0) leaf 29429760 items 0 free space 3995 generation 7 owner 7 fs uuid 6192815c-af2a-4b75-b3db-a959ffb6166e chunk uuid b529c44b-938c-4d3d-910a-013b4700bcae uuid tree key (UUID_TREE ROOT_ITEM 0) After this patch, the data loss no longer happens after a power failure and btrfs-debug-tree shows: $ btrfs-debug-tree /dev/sdb3 | egrep '\(257 INODE_ITEM 0\) itemoff' -B 3 -A 8 item 3 key (256 DIR_INDEX 2) itemoff 3751 itemsize 36 location key (257 INODE_ITEM 0) type FILE namelen 6 datalen 0 name: foobar item 4 key (257 INODE_ITEM 0) itemoff 3591 itemsize 160 inode generation 6 transid 6 size 6001 block group 0 mode 100644 links 1 item 5 key (257 INODE_REF 256) itemoff 3575 itemsize 16 inode ref index 2 namelen 6 name: foobar item 6 key (257 EXTENT_DATA 0) itemoff 3522 itemsize 53 extent data disk byte 12845056 nr 8192 extent data offset 0 nr 8192 ram 8192 extent compression 0 checksum tree key (CSUM_TREE ROOT_ITEM 0) Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Reviewed-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-09-23 11:35:11 +01:00
case BTRFS_IOC_SYNC: {
int ret;
ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
Btrfs: fix sync fs to actually wait for all data to be persisted Currently the fs sync function (super.c:btrfs_sync_fs()) doesn't wait for delayed work to finish before returning success to the caller. This change fixes this, ensuring that there's no data loss if a power failure happens right after fs sync returns success to the caller and before the next commit happens. Steps to reproduce the data loss issue: $ mkfs.btrfs -f /dev/sdb3 $ mount /dev/sdb3 /mnt/btrfs $ perl -e '$d = ("\x41" x 6001); open($f,">","/mnt/btrfs/foobar"); print $f $d; close($f);' && btrfs fi sync /mnt/btrfs Right after the btrfs fi sync command (a second or 2 for example), power off the machine and reboot it. The file will be empty, as it can be verified after mounting the filesystem and through btrfs-debug-tree: $ btrfs-debug-tree /dev/sdb3 | egrep '\(257 INODE_ITEM 0\) itemoff' -B 3 -A 8 item 3 key (256 DIR_INDEX 2) itemoff 3751 itemsize 36 location key (257 INODE_ITEM 0) type FILE namelen 6 datalen 0 name: foobar item 4 key (257 INODE_ITEM 0) itemoff 3591 itemsize 160 inode generation 7 transid 7 size 0 block group 0 mode 100644 links 1 item 5 key (257 INODE_REF 256) itemoff 3575 itemsize 16 inode ref index 2 namelen 6 name: foobar checksum tree key (CSUM_TREE ROOT_ITEM 0) leaf 29429760 items 0 free space 3995 generation 7 owner 7 fs uuid 6192815c-af2a-4b75-b3db-a959ffb6166e chunk uuid b529c44b-938c-4d3d-910a-013b4700bcae uuid tree key (UUID_TREE ROOT_ITEM 0) After this patch, the data loss no longer happens after a power failure and btrfs-debug-tree shows: $ btrfs-debug-tree /dev/sdb3 | egrep '\(257 INODE_ITEM 0\) itemoff' -B 3 -A 8 item 3 key (256 DIR_INDEX 2) itemoff 3751 itemsize 36 location key (257 INODE_ITEM 0) type FILE namelen 6 datalen 0 name: foobar item 4 key (257 INODE_ITEM 0) itemoff 3591 itemsize 160 inode generation 6 transid 6 size 6001 block group 0 mode 100644 links 1 item 5 key (257 INODE_REF 256) itemoff 3575 itemsize 16 inode ref index 2 namelen 6 name: foobar item 6 key (257 EXTENT_DATA 0) itemoff 3522 itemsize 53 extent data disk byte 12845056 nr 8192 extent data offset 0 nr 8192 ram 8192 extent compression 0 checksum tree key (CSUM_TREE ROOT_ITEM 0) Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Reviewed-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-09-23 11:35:11 +01:00
if (ret)
return ret;
ret = btrfs_sync_fs(inode->i_sb, 1);
/*
* The transaction thread may want to do more work,
* namely it pokes the cleaner kthread that will start
* processing uncleaned subvols.
*/
wake_up_process(fs_info->transaction_kthread);
Btrfs: fix sync fs to actually wait for all data to be persisted Currently the fs sync function (super.c:btrfs_sync_fs()) doesn't wait for delayed work to finish before returning success to the caller. This change fixes this, ensuring that there's no data loss if a power failure happens right after fs sync returns success to the caller and before the next commit happens. Steps to reproduce the data loss issue: $ mkfs.btrfs -f /dev/sdb3 $ mount /dev/sdb3 /mnt/btrfs $ perl -e '$d = ("\x41" x 6001); open($f,">","/mnt/btrfs/foobar"); print $f $d; close($f);' && btrfs fi sync /mnt/btrfs Right after the btrfs fi sync command (a second or 2 for example), power off the machine and reboot it. The file will be empty, as it can be verified after mounting the filesystem and through btrfs-debug-tree: $ btrfs-debug-tree /dev/sdb3 | egrep '\(257 INODE_ITEM 0\) itemoff' -B 3 -A 8 item 3 key (256 DIR_INDEX 2) itemoff 3751 itemsize 36 location key (257 INODE_ITEM 0) type FILE namelen 6 datalen 0 name: foobar item 4 key (257 INODE_ITEM 0) itemoff 3591 itemsize 160 inode generation 7 transid 7 size 0 block group 0 mode 100644 links 1 item 5 key (257 INODE_REF 256) itemoff 3575 itemsize 16 inode ref index 2 namelen 6 name: foobar checksum tree key (CSUM_TREE ROOT_ITEM 0) leaf 29429760 items 0 free space 3995 generation 7 owner 7 fs uuid 6192815c-af2a-4b75-b3db-a959ffb6166e chunk uuid b529c44b-938c-4d3d-910a-013b4700bcae uuid tree key (UUID_TREE ROOT_ITEM 0) After this patch, the data loss no longer happens after a power failure and btrfs-debug-tree shows: $ btrfs-debug-tree /dev/sdb3 | egrep '\(257 INODE_ITEM 0\) itemoff' -B 3 -A 8 item 3 key (256 DIR_INDEX 2) itemoff 3751 itemsize 36 location key (257 INODE_ITEM 0) type FILE namelen 6 datalen 0 name: foobar item 4 key (257 INODE_ITEM 0) itemoff 3591 itemsize 160 inode generation 6 transid 6 size 6001 block group 0 mode 100644 links 1 item 5 key (257 INODE_REF 256) itemoff 3575 itemsize 16 inode ref index 2 namelen 6 name: foobar item 6 key (257 EXTENT_DATA 0) itemoff 3522 itemsize 53 extent data disk byte 12845056 nr 8192 extent data offset 0 nr 8192 ram 8192 extent compression 0 checksum tree key (CSUM_TREE ROOT_ITEM 0) Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Reviewed-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-09-23 11:35:11 +01:00
return ret;
}
Btrfs: add START_SYNC, WAIT_SYNC ioctls START_SYNC will start a sync/commit, but not wait for it to complete. Any modification started after the ioctl returns is guaranteed not to be included in the commit. If a non-NULL pointer is passed, the transaction id will be returned to userspace. WAIT_SYNC will wait for any in-progress commit to complete. If a transaction id is specified, the ioctl will block and then return (success) when the specified transaction has committed. If it has already committed when we call the ioctl, it returns immediately. If the specified transaction doesn't exist, it returns EINVAL. If no transaction id is specified, WAIT_SYNC will wait for the currently committing transaction to finish it's commit to disk. If there is no currently committing transaction, it returns success. These ioctls are useful for applications which want to impose an ordering on when fs modifications reach disk, but do not want to wait for the full (slow) commit process to do so. Picky callers can take the transid returned by START_SYNC and feed it to WAIT_SYNC, and be certain to wait only as long as necessary for the transaction _they_ started to reach disk. Sloppy callers can START_SYNC and WAIT_SYNC without a transid, and provided they didn't wait too long between the calls, they will get the same result. However, if a second commit starts before they call WAIT_SYNC, they may end up waiting longer for it to commit as well. Even so, a START_SYNC+WAIT_SYNC still guarantees that any operation completed before the START_SYNC reaches disk. Signed-off-by: Sage Weil <sage@newdream.net> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-10-29 15:41:32 -04:00
case BTRFS_IOC_START_SYNC:
return btrfs_ioctl_start_sync(root, argp);
Btrfs: add START_SYNC, WAIT_SYNC ioctls START_SYNC will start a sync/commit, but not wait for it to complete. Any modification started after the ioctl returns is guaranteed not to be included in the commit. If a non-NULL pointer is passed, the transaction id will be returned to userspace. WAIT_SYNC will wait for any in-progress commit to complete. If a transaction id is specified, the ioctl will block and then return (success) when the specified transaction has committed. If it has already committed when we call the ioctl, it returns immediately. If the specified transaction doesn't exist, it returns EINVAL. If no transaction id is specified, WAIT_SYNC will wait for the currently committing transaction to finish it's commit to disk. If there is no currently committing transaction, it returns success. These ioctls are useful for applications which want to impose an ordering on when fs modifications reach disk, but do not want to wait for the full (slow) commit process to do so. Picky callers can take the transid returned by START_SYNC and feed it to WAIT_SYNC, and be certain to wait only as long as necessary for the transaction _they_ started to reach disk. Sloppy callers can START_SYNC and WAIT_SYNC without a transid, and provided they didn't wait too long between the calls, they will get the same result. However, if a second commit starts before they call WAIT_SYNC, they may end up waiting longer for it to commit as well. Even so, a START_SYNC+WAIT_SYNC still guarantees that any operation completed before the START_SYNC reaches disk. Signed-off-by: Sage Weil <sage@newdream.net> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-10-29 15:41:32 -04:00
case BTRFS_IOC_WAIT_SYNC:
return btrfs_ioctl_wait_sync(fs_info, argp);
case BTRFS_IOC_SCRUB:
return btrfs_ioctl_scrub(file, argp);
case BTRFS_IOC_SCRUB_CANCEL:
return btrfs_ioctl_scrub_cancel(fs_info);
case BTRFS_IOC_SCRUB_PROGRESS:
return btrfs_ioctl_scrub_progress(fs_info, argp);
case BTRFS_IOC_BALANCE_V2:
return btrfs_ioctl_balance(file, argp);
case BTRFS_IOC_BALANCE_CTL:
return btrfs_ioctl_balance_ctl(fs_info, arg);
case BTRFS_IOC_BALANCE_PROGRESS:
return btrfs_ioctl_balance_progress(fs_info, argp);
case BTRFS_IOC_SET_RECEIVED_SUBVOL:
return btrfs_ioctl_set_received_subvol(file, argp);
#ifdef CONFIG_64BIT
case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
return btrfs_ioctl_set_received_subvol_32(file, argp);
#endif
case BTRFS_IOC_SEND:
return _btrfs_ioctl_send(inode, argp, false);
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
case BTRFS_IOC_SEND_32:
return _btrfs_ioctl_send(inode, argp, true);
#endif
case BTRFS_IOC_GET_DEV_STATS:
return btrfs_ioctl_get_dev_stats(fs_info, argp);
case BTRFS_IOC_QUOTA_CTL:
return btrfs_ioctl_quota_ctl(file, argp);
case BTRFS_IOC_QGROUP_ASSIGN:
return btrfs_ioctl_qgroup_assign(file, argp);
case BTRFS_IOC_QGROUP_CREATE:
return btrfs_ioctl_qgroup_create(file, argp);
case BTRFS_IOC_QGROUP_LIMIT:
return btrfs_ioctl_qgroup_limit(file, argp);
case BTRFS_IOC_QUOTA_RESCAN:
return btrfs_ioctl_quota_rescan(file, argp);
case BTRFS_IOC_QUOTA_RESCAN_STATUS:
return btrfs_ioctl_quota_rescan_status(fs_info, argp);
case BTRFS_IOC_QUOTA_RESCAN_WAIT:
return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
case BTRFS_IOC_DEV_REPLACE:
return btrfs_ioctl_dev_replace(fs_info, argp);
case BTRFS_IOC_GET_SUPPORTED_FEATURES:
return btrfs_ioctl_get_supported_features(argp);
case BTRFS_IOC_GET_FEATURES:
return btrfs_ioctl_get_features(fs_info, argp);
case BTRFS_IOC_SET_FEATURES:
return btrfs_ioctl_set_features(file, argp);
case BTRFS_IOC_GET_SUBVOL_INFO:
return btrfs_ioctl_get_subvol_info(inode, argp);
case BTRFS_IOC_GET_SUBVOL_ROOTREF:
return btrfs_ioctl_get_subvol_rootref(root, argp);
case BTRFS_IOC_INO_LOOKUP_USER:
return btrfs_ioctl_ino_lookup_user(file, argp);
btrfs: initial fsverity support Add support for fsverity in btrfs. To support the generic interface in fs/verity, we add two new item types in the fs tree for inodes with verity enabled. One stores the per-file verity descriptor and btrfs verity item and the other stores the Merkle tree data itself. Verity checking is done in end_page_read just before a page is marked uptodate. This naturally handles a variety of edge cases like holes, preallocated extents, and inline extents. Some care needs to be taken to not try to verity pages past the end of the file, which are accessed by the generic buffered file reading code under some circumstances like reading to the end of the last page and trying to read again. Direct IO on a verity file falls back to buffered reads. Verity relies on PageChecked for the Merkle tree data itself to avoid re-walking up shared paths in the tree. For this reason, we need to cache the Merkle tree data. Since the file is immutable after verity is turned on, we can cache it at an index past EOF. Use the new inode ro_flags to store verity on the inode item, so that we can enable verity on a file, then rollback to an older kernel and still mount the file system and read the file. Since we can't safely write the file anymore without ruining the invariants of the Merkle tree, we mark a ro_compat flag on the file system when a file has verity enabled. Acked-by: Eric Biggers <ebiggers@google.com> Co-developed-by: Chris Mason <clm@fb.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 13:01:49 -07:00
case FS_IOC_ENABLE_VERITY:
return fsverity_ioctl_enable(file, (const void __user *)argp);
case FS_IOC_MEASURE_VERITY:
return fsverity_ioctl_measure(file, argp);
btrfs: add BTRFS_IOC_ENCODED_READ ioctl There are 4 main cases: 1. Inline extents: we copy the data straight out of the extent buffer. 2. Hole/preallocated extents: we fill in zeroes. 3. Regular, uncompressed extents: we read the sectors we need directly from disk. 4. Regular, compressed extents: we read the entire compressed extent from disk and indicate what subset of the decompressed extent is in the file. This initial implementation simplifies a few things that can be improved in the future: - Cases 1, 3, and 4 allocate temporary memory to read into before copying out to userspace. - We don't do read repair, because it turns out that read repair is currently broken for compressed data. - We hold the inode lock during the operation. Note that we don't need to hold the mmap lock. We may race with btrfs_page_mkwrite() and read the old data from before the page was dirtied: btrfs_page_mkwrite btrfs_encoded_read --------------------------------------------------- (enter) (enter) btrfs_wait_ordered_range lock_extent_bits btrfs_page_set_dirty unlock_extent_cached (exit) lock_extent_bits read extent (dirty page hasn't been flushed, so this is the old data) unlock_extent_cached (exit) we read the old data from before the page was dirtied. But, that's true even if we were to hold the mmap lock: btrfs_page_mkwrite btrfs_encoded_read ------------------------------------------------------------------- (enter) (enter) btrfs_inode_lock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) (blocked) btrfs_wait_ordered_range lock_extent_bits read extent (page hasn't been dirtied, so this is the old data) unlock_extent_cached btrfs_inode_unlock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) returns lock_extent_bits btrfs_page_set_dirty unlock_extent_cached In other words, this is inherently racy, so it's fine that we return the old data in this tiny window. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-09 17:59:07 -07:00
case BTRFS_IOC_ENCODED_READ:
return btrfs_ioctl_encoded_read(file, argp, false);
case BTRFS_IOC_ENCODED_WRITE:
return btrfs_ioctl_encoded_write(file, argp, false);
btrfs: add BTRFS_IOC_ENCODED_READ ioctl There are 4 main cases: 1. Inline extents: we copy the data straight out of the extent buffer. 2. Hole/preallocated extents: we fill in zeroes. 3. Regular, uncompressed extents: we read the sectors we need directly from disk. 4. Regular, compressed extents: we read the entire compressed extent from disk and indicate what subset of the decompressed extent is in the file. This initial implementation simplifies a few things that can be improved in the future: - Cases 1, 3, and 4 allocate temporary memory to read into before copying out to userspace. - We don't do read repair, because it turns out that read repair is currently broken for compressed data. - We hold the inode lock during the operation. Note that we don't need to hold the mmap lock. We may race with btrfs_page_mkwrite() and read the old data from before the page was dirtied: btrfs_page_mkwrite btrfs_encoded_read --------------------------------------------------- (enter) (enter) btrfs_wait_ordered_range lock_extent_bits btrfs_page_set_dirty unlock_extent_cached (exit) lock_extent_bits read extent (dirty page hasn't been flushed, so this is the old data) unlock_extent_cached (exit) we read the old data from before the page was dirtied. But, that's true even if we were to hold the mmap lock: btrfs_page_mkwrite btrfs_encoded_read ------------------------------------------------------------------- (enter) (enter) btrfs_inode_lock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) (blocked) btrfs_wait_ordered_range lock_extent_bits read extent (page hasn't been dirtied, so this is the old data) unlock_extent_cached btrfs_inode_unlock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) returns lock_extent_bits btrfs_page_set_dirty unlock_extent_cached In other words, this is inherently racy, so it's fine that we return the old data in this tiny window. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-09 17:59:07 -07:00
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
case BTRFS_IOC_ENCODED_READ_32:
return btrfs_ioctl_encoded_read(file, argp, true);
case BTRFS_IOC_ENCODED_WRITE_32:
return btrfs_ioctl_encoded_write(file, argp, true);
btrfs: add BTRFS_IOC_ENCODED_READ ioctl There are 4 main cases: 1. Inline extents: we copy the data straight out of the extent buffer. 2. Hole/preallocated extents: we fill in zeroes. 3. Regular, uncompressed extents: we read the sectors we need directly from disk. 4. Regular, compressed extents: we read the entire compressed extent from disk and indicate what subset of the decompressed extent is in the file. This initial implementation simplifies a few things that can be improved in the future: - Cases 1, 3, and 4 allocate temporary memory to read into before copying out to userspace. - We don't do read repair, because it turns out that read repair is currently broken for compressed data. - We hold the inode lock during the operation. Note that we don't need to hold the mmap lock. We may race with btrfs_page_mkwrite() and read the old data from before the page was dirtied: btrfs_page_mkwrite btrfs_encoded_read --------------------------------------------------- (enter) (enter) btrfs_wait_ordered_range lock_extent_bits btrfs_page_set_dirty unlock_extent_cached (exit) lock_extent_bits read extent (dirty page hasn't been flushed, so this is the old data) unlock_extent_cached (exit) we read the old data from before the page was dirtied. But, that's true even if we were to hold the mmap lock: btrfs_page_mkwrite btrfs_encoded_read ------------------------------------------------------------------- (enter) (enter) btrfs_inode_lock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) (blocked) btrfs_wait_ordered_range lock_extent_bits read extent (page hasn't been dirtied, so this is the old data) unlock_extent_cached btrfs_inode_unlock(BTRFS_ILOCK_MMAP) down_read(i_mmap_lock) returns lock_extent_bits btrfs_page_set_dirty unlock_extent_cached In other words, this is inherently racy, so it's fine that we return the old data in this tiny window. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-09 17:59:07 -07:00
#endif
}
return -ENOTTY;
}
#ifdef CONFIG_COMPAT
long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
/*
* These all access 32-bit values anyway so no further
* handling is necessary.
*/
switch (cmd) {
case FS_IOC32_GETVERSION:
cmd = FS_IOC_GETVERSION;
break;
}
return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
}
#endif