1054 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright (C) 2015-2017 Intel Deutschland GmbH
* Copyright (C) 2018-2024 Intel Corporation
*
* element parsing for mac80211
*/
#include <net/mac80211.h>
#include <linux/netdevice.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <net/net_namespace.h>
#include <net/cfg80211.h>
#include <net/rtnetlink.h>
#include <kunit/visibility.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "rate.h"
#include "mesh.h"
#include "wme.h"
#include "led.h"
#include "wep.h"
struct ieee80211_elems_parse {
/* must be first for kfree to work */
struct ieee802_11_elems elems;
/* The basic Multi-Link element in the original elements */
const struct element *ml_basic_elem;
/* The reconfiguration Multi-Link element in the original elements */
const struct element *ml_reconf_elem;
/*
* scratch buffer that can be used for various element parsing related
* tasks, e.g., element de-fragmentation etc.
*/
size_t scratch_len;
u8 *scratch_pos;
u8 scratch[] __counted_by(scratch_len);
};
static void
ieee80211_parse_extension_element(u32 *crc,
const struct element *elem,
struct ieee80211_elems_parse *elems_parse,
struct ieee80211_elems_parse_params *params)
{
struct ieee802_11_elems *elems = &elems_parse->elems;
const void *data = elem->data + 1;
bool calc_crc = false;
u8 len;
if (!elem->datalen)
return;
len = elem->datalen - 1;
switch (elem->data[0]) {
case WLAN_EID_EXT_HE_MU_EDCA:
if (params->mode < IEEE80211_CONN_MODE_HE)
break;
calc_crc = true;
if (len >= sizeof(*elems->mu_edca_param_set))
elems->mu_edca_param_set = data;
break;
case WLAN_EID_EXT_HE_CAPABILITY:
if (params->mode < IEEE80211_CONN_MODE_HE)
break;
if (ieee80211_he_capa_size_ok(data, len)) {
elems->he_cap = data;
elems->he_cap_len = len;
}
break;
case WLAN_EID_EXT_HE_OPERATION:
if (params->mode < IEEE80211_CONN_MODE_HE)
break;
calc_crc = true;
if (len >= sizeof(*elems->he_operation) &&
len >= ieee80211_he_oper_size(data) - 1)
elems->he_operation = data;
break;
case WLAN_EID_EXT_UORA:
if (params->mode < IEEE80211_CONN_MODE_HE)
break;
if (len >= 1)
elems->uora_element = data;
break;
case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME:
if (len == 3)
elems->max_channel_switch_time = data;
break;
case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION:
if (len >= sizeof(*elems->mbssid_config_ie))
elems->mbssid_config_ie = data;
break;
case WLAN_EID_EXT_HE_SPR:
if (params->mode < IEEE80211_CONN_MODE_HE)
break;
if (len >= sizeof(*elems->he_spr) &&
len >= ieee80211_he_spr_size(data) - 1)
elems->he_spr = data;
break;
case WLAN_EID_EXT_HE_6GHZ_CAPA:
if (params->mode < IEEE80211_CONN_MODE_HE)
break;
if (len >= sizeof(*elems->he_6ghz_capa))
elems->he_6ghz_capa = data;
break;
case WLAN_EID_EXT_EHT_CAPABILITY:
if (params->mode < IEEE80211_CONN_MODE_EHT)
break;
if (ieee80211_eht_capa_size_ok(elems->he_cap,
data, len,
params->from_ap)) {
elems->eht_cap = data;
elems->eht_cap_len = len;
}
break;
case WLAN_EID_EXT_EHT_OPERATION:
if (params->mode < IEEE80211_CONN_MODE_EHT)
break;
if (ieee80211_eht_oper_size_ok(data, len))
elems->eht_operation = data;
calc_crc = true;
break;
case WLAN_EID_EXT_EHT_MULTI_LINK:
if (params->mode < IEEE80211_CONN_MODE_EHT)
break;
calc_crc = true;
if (ieee80211_mle_size_ok(data, len)) {
const struct ieee80211_multi_link_elem *mle =
(void *)data;
switch (le16_get_bits(mle->control,
IEEE80211_ML_CONTROL_TYPE)) {
case IEEE80211_ML_CONTROL_TYPE_BASIC:
if (elems_parse->ml_basic_elem) {
elems->parse_error |=
IEEE80211_PARSE_ERR_DUP_NEST_ML_BASIC;
break;
}
elems_parse->ml_basic_elem = elem;
break;
case IEEE80211_ML_CONTROL_TYPE_RECONF:
elems_parse->ml_reconf_elem = elem;
break;
default:
break;
}
}
break;
case WLAN_EID_EXT_BANDWIDTH_INDICATION:
if (params->mode < IEEE80211_CONN_MODE_EHT)
break;
if (ieee80211_bandwidth_indication_size_ok(data, len))
elems->bandwidth_indication = data;
calc_crc = true;
break;
case WLAN_EID_EXT_TID_TO_LINK_MAPPING:
if (params->mode < IEEE80211_CONN_MODE_EHT)
break;
calc_crc = true;
if (ieee80211_tid_to_link_map_size_ok(data, len) &&
elems->ttlm_num < ARRAY_SIZE(elems->ttlm)) {
elems->ttlm[elems->ttlm_num] = (void *)data;
elems->ttlm_num++;
}
break;
}
if (crc && calc_crc)
*crc = crc32_be(*crc, (void *)elem, elem->datalen + 2);
}
static void ieee80211_parse_tpe(struct ieee80211_parsed_tpe *tpe,
const u8 *data, u8 len)
{
const struct ieee80211_tx_pwr_env *env = (const void *)data;
u8 count, interpret, category;
u8 *out, N, *cnt_out = NULL, *N_out = NULL;
if (!ieee80211_valid_tpe_element(data, len))
return;
count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT);
interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET);
category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY);
switch (interpret) {
case IEEE80211_TPE_LOCAL_EIRP:
out = tpe->max_local[category].power;
cnt_out = &tpe->max_local[category].count;
tpe->max_local[category].valid = true;
break;
case IEEE80211_TPE_REG_CLIENT_EIRP:
out = tpe->max_reg_client[category].power;
cnt_out = &tpe->max_reg_client[category].count;
tpe->max_reg_client[category].valid = true;
break;
case IEEE80211_TPE_LOCAL_EIRP_PSD:
out = tpe->psd_local[category].power;
cnt_out = &tpe->psd_local[category].count;
N_out = &tpe->psd_local[category].n;
tpe->psd_local[category].valid = true;
break;
case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
out = tpe->psd_reg_client[category].power;
cnt_out = &tpe->psd_reg_client[category].count;
N_out = &tpe->psd_reg_client[category].n;
tpe->psd_reg_client[category].valid = true;
break;
}
switch (interpret) {
case IEEE80211_TPE_LOCAL_EIRP:
case IEEE80211_TPE_REG_CLIENT_EIRP:
/* count was validated <= 3, plus 320 MHz */
BUILD_BUG_ON(IEEE80211_TPE_EIRP_ENTRIES_320MHZ < 5);
memcpy(out, env->variable, count + 1);
*cnt_out = count + 1;
/* separately take 320 MHz if present */
if (count == 3 && len > sizeof(*env) + count + 1) {
out[4] = env->variable[4];
*cnt_out = 5;
}
break;
case IEEE80211_TPE_LOCAL_EIRP_PSD:
case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
if (!count) {
memset(out, env->variable[0],
IEEE80211_TPE_PSD_ENTRIES_320MHZ);
*cnt_out = IEEE80211_TPE_PSD_ENTRIES_320MHZ;
break;
}
N = 1 << (count - 1);
memcpy(out, env->variable, N);
*cnt_out = N;
*N_out = N;
if (len > sizeof(*env) + N) {
int K = u8_get_bits(env->variable[N],
IEEE80211_TX_PWR_ENV_EXT_COUNT);
K = min(K, IEEE80211_TPE_PSD_ENTRIES_320MHZ - N);
memcpy(out + N, env->variable + N + 1, K);
(*cnt_out) += K;
}
break;
}
}
static u32
_ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params,
struct ieee80211_elems_parse *elems_parse,
const struct element *check_inherit)
{
struct ieee802_11_elems *elems = &elems_parse->elems;
const struct element *elem;
bool calc_crc = params->filter != 0;
DECLARE_BITMAP(seen_elems, 256);
u32 crc = params->crc;
bitmap_zero(seen_elems, 256);
for_each_element(elem, params->start, params->len) {
const struct element *subelem;
u8 elem_parse_failed;
u8 id = elem->id;
u8 elen = elem->datalen;
const u8 *pos = elem->data;
if (check_inherit &&
!cfg80211_is_element_inherited(elem,
check_inherit))
continue;
switch (id) {
case WLAN_EID_SSID:
case WLAN_EID_SUPP_RATES:
case WLAN_EID_FH_PARAMS:
case WLAN_EID_DS_PARAMS:
case WLAN_EID_CF_PARAMS:
case WLAN_EID_TIM:
case WLAN_EID_IBSS_PARAMS:
case WLAN_EID_CHALLENGE:
case WLAN_EID_RSN:
case WLAN_EID_ERP_INFO:
case WLAN_EID_EXT_SUPP_RATES:
case WLAN_EID_HT_CAPABILITY:
case WLAN_EID_HT_OPERATION:
case WLAN_EID_VHT_CAPABILITY:
case WLAN_EID_VHT_OPERATION:
case WLAN_EID_MESH_ID:
case WLAN_EID_MESH_CONFIG:
case WLAN_EID_PEER_MGMT:
case WLAN_EID_PREQ:
case WLAN_EID_PREP:
case WLAN_EID_PERR:
case WLAN_EID_RANN:
case WLAN_EID_CHANNEL_SWITCH:
case WLAN_EID_EXT_CHANSWITCH_ANN:
case WLAN_EID_COUNTRY:
case WLAN_EID_PWR_CONSTRAINT:
case WLAN_EID_TIMEOUT_INTERVAL:
case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
case WLAN_EID_CHAN_SWITCH_PARAM:
case WLAN_EID_EXT_CAPABILITY:
case WLAN_EID_CHAN_SWITCH_TIMING:
case WLAN_EID_LINK_ID:
case WLAN_EID_BSS_MAX_IDLE_PERIOD:
case WLAN_EID_RSNX:
case WLAN_EID_S1G_BCN_COMPAT:
case WLAN_EID_S1G_CAPABILITIES:
case WLAN_EID_S1G_OPERATION:
case WLAN_EID_AID_RESPONSE:
case WLAN_EID_S1G_SHORT_BCN_INTERVAL:
/*
* not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
* that if the content gets bigger it might be needed more than once
*/
if (test_bit(id, seen_elems)) {
elems->parse_error |=
IEEE80211_PARSE_ERR_DUP_ELEM;
continue;
}
break;
}
if (calc_crc && id < 64 && (params->filter & (1ULL << id)))
crc = crc32_be(crc, pos - 2, elen + 2);
elem_parse_failed = 0;
switch (id) {
case WLAN_EID_LINK_ID:
if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
elems->lnk_id = (void *)(pos - 2);
break;
case WLAN_EID_CHAN_SWITCH_TIMING:
if (elen < sizeof(struct ieee80211_ch_switch_timing)) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
elems->ch_sw_timing = (void *)pos;
break;
case WLAN_EID_EXT_CAPABILITY:
elems->ext_capab = pos;
elems->ext_capab_len = elen;
break;
case WLAN_EID_SSID:
elems->ssid = pos;
elems->ssid_len = elen;
break;
case WLAN_EID_SUPP_RATES:
elems->supp_rates = pos;
elems->supp_rates_len = elen;
break;
case WLAN_EID_DS_PARAMS:
if (elen >= 1)
elems->ds_params = pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_TIM:
if (elen >= sizeof(struct ieee80211_tim_ie)) {
elems->tim = (void *)pos;
elems->tim_len = elen;
} else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_VENDOR_SPECIFIC:
if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
pos[2] == 0xf2) {
/* Microsoft OUI (00:50:F2) */
if (calc_crc)
crc = crc32_be(crc, pos - 2, elen + 2);
if (elen >= 5 && pos[3] == 2) {
/* OUI Type 2 - WMM IE */
if (pos[4] == 0) {
elems->wmm_info = pos;
elems->wmm_info_len = elen;
} else if (pos[4] == 1) {
elems->wmm_param = pos;
elems->wmm_param_len = elen;
}
}
}
break;
case WLAN_EID_RSN:
elems->rsn = pos;
elems->rsn_len = elen;
break;
case WLAN_EID_ERP_INFO:
if (elen >= 1)
elems->erp_info = pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_EXT_SUPP_RATES:
elems->ext_supp_rates = pos;
elems->ext_supp_rates_len = elen;
break;
case WLAN_EID_HT_CAPABILITY:
if (params->mode < IEEE80211_CONN_MODE_HT)
break;
if (elen >= sizeof(struct ieee80211_ht_cap))
elems->ht_cap_elem = (void *)pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_HT_OPERATION:
if (params->mode < IEEE80211_CONN_MODE_HT)
break;
if (elen >= sizeof(struct ieee80211_ht_operation))
elems->ht_operation = (void *)pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_VHT_CAPABILITY:
if (params->mode < IEEE80211_CONN_MODE_VHT)
break;
if (elen >= sizeof(struct ieee80211_vht_cap))
elems->vht_cap_elem = (void *)pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_VHT_OPERATION:
if (params->mode < IEEE80211_CONN_MODE_VHT)
break;
if (elen >= sizeof(struct ieee80211_vht_operation)) {
elems->vht_operation = (void *)pos;
if (calc_crc)
crc = crc32_be(crc, pos - 2, elen + 2);
break;
}
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_OPMODE_NOTIF:
if (params->mode < IEEE80211_CONN_MODE_VHT)
break;
if (elen > 0) {
elems->opmode_notif = pos;
if (calc_crc)
crc = crc32_be(crc, pos - 2, elen + 2);
break;
}
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_MESH_ID:
elems->mesh_id = pos;
elems->mesh_id_len = elen;
break;
case WLAN_EID_MESH_CONFIG:
if (elen >= sizeof(struct ieee80211_meshconf_ie))
elems->mesh_config = (void *)pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_PEER_MGMT:
elems->peering = pos;
elems->peering_len = elen;
break;
case WLAN_EID_MESH_AWAKE_WINDOW:
if (elen >= 2)
elems->awake_window = (void *)pos;
break;
case WLAN_EID_PREQ:
elems->preq = pos;
elems->preq_len = elen;
break;
case WLAN_EID_PREP:
elems->prep = pos;
elems->prep_len = elen;
break;
case WLAN_EID_PERR:
elems->perr = pos;
elems->perr_len = elen;
break;
case WLAN_EID_RANN:
if (elen >= sizeof(struct ieee80211_rann_ie))
elems->rann = (void *)pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_CHANNEL_SWITCH:
if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
elems->ch_switch_ie = (void *)pos;
break;
case WLAN_EID_EXT_CHANSWITCH_ANN:
if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
elems->ext_chansw_ie = (void *)pos;
break;
case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
if (params->mode < IEEE80211_CONN_MODE_HT)
break;
if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
elems->sec_chan_offs = (void *)pos;
break;
case WLAN_EID_CHAN_SWITCH_PARAM:
if (elen <
sizeof(*elems->mesh_chansw_params_ie)) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
elems->mesh_chansw_params_ie = (void *)pos;
break;
case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
if (params->mode < IEEE80211_CONN_MODE_VHT)
break;
if (!params->action) {
elem_parse_failed =
IEEE80211_PARSE_ERR_UNEXPECTED_ELEM;
break;
}
if (elen < sizeof(*elems->wide_bw_chansw_ie)) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
elems->wide_bw_chansw_ie = (void *)pos;
break;
case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
if (params->mode < IEEE80211_CONN_MODE_VHT)
break;
if (params->action) {
elem_parse_failed =
IEEE80211_PARSE_ERR_UNEXPECTED_ELEM;
break;
}
/*
* This is a bit tricky, but as we only care about
* a few elements, parse them out manually.
*/
subelem = cfg80211_find_elem(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
pos, elen);
if (subelem) {
if (subelem->datalen >= sizeof(*elems->wide_bw_chansw_ie))
elems->wide_bw_chansw_ie =
(void *)subelem->data;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
}
if (params->mode < IEEE80211_CONN_MODE_EHT)
break;
subelem = cfg80211_find_ext_elem(WLAN_EID_EXT_BANDWIDTH_INDICATION,
pos, elen);
if (subelem) {
const void *edata = subelem->data + 1;
u8 edatalen = subelem->datalen - 1;
if (ieee80211_bandwidth_indication_size_ok(edata,
edatalen))
elems->bandwidth_indication = edata;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
}
subelem = cfg80211_find_ext_elem(WLAN_EID_TX_POWER_ENVELOPE,
pos, elen);
if (subelem)
ieee80211_parse_tpe(&elems->csa_tpe,
subelem->data + 1,
subelem->datalen - 1);
break;
case WLAN_EID_COUNTRY:
elems->country_elem = pos;
elems->country_elem_len = elen;
break;
case WLAN_EID_PWR_CONSTRAINT:
if (elen != 1) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
elems->pwr_constr_elem = pos;
break;
case WLAN_EID_CISCO_VENDOR_SPECIFIC:
/* Lots of different options exist, but we only care
* about the Dynamic Transmit Power Control element.
* First check for the Cisco OUI, then for the DTPC
* tag (0x00).
*/
if (elen < 4) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
if (pos[0] != 0x00 || pos[1] != 0x40 ||
pos[2] != 0x96 || pos[3] != 0x00)
break;
if (elen != 6) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
if (calc_crc)
crc = crc32_be(crc, pos - 2, elen + 2);
elems->cisco_dtpc_elem = pos;
break;
case WLAN_EID_ADDBA_EXT:
if (elen < sizeof(struct ieee80211_addba_ext_ie)) {
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
}
elems->addba_ext_ie = (void *)pos;
break;
case WLAN_EID_TIMEOUT_INTERVAL:
if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
elems->timeout_int = (void *)pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_BSS_MAX_IDLE_PERIOD:
if (elen >= sizeof(*elems->max_idle_period_ie))
elems->max_idle_period_ie = (void *)pos;
break;
case WLAN_EID_RSNX:
elems->rsnx = pos;
elems->rsnx_len = elen;
break;
case WLAN_EID_TX_POWER_ENVELOPE:
if (params->mode < IEEE80211_CONN_MODE_HE)
break;
ieee80211_parse_tpe(&elems->tpe, pos, elen);
break;
case WLAN_EID_EXTENSION:
ieee80211_parse_extension_element(calc_crc ?
&crc : NULL,
elem, elems_parse,
params);
break;
case WLAN_EID_S1G_CAPABILITIES:
if (params->mode != IEEE80211_CONN_MODE_S1G)
break;
if (elen >= sizeof(*elems->s1g_capab))
elems->s1g_capab = (void *)pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_S1G_OPERATION:
if (params->mode != IEEE80211_CONN_MODE_S1G)
break;
if (elen == sizeof(*elems->s1g_oper))
elems->s1g_oper = (void *)pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_S1G_BCN_COMPAT:
if (params->mode != IEEE80211_CONN_MODE_S1G)
break;
if (elen == sizeof(*elems->s1g_bcn_compat))
elems->s1g_bcn_compat = (void *)pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
case WLAN_EID_AID_RESPONSE:
if (params->mode != IEEE80211_CONN_MODE_S1G)
break;
if (elen == sizeof(struct ieee80211_aid_response_ie))
elems->aid_resp = (void *)pos;
else
elem_parse_failed =
IEEE80211_PARSE_ERR_BAD_ELEM_SIZE;
break;
default:
break;
}
if (elem_parse_failed)
elems->parse_error |= elem_parse_failed;
else
__set_bit(id, seen_elems);
}
if (!for_each_element_completed(elem, params->start, params->len))
elems->parse_error |= IEEE80211_PARSE_ERR_INVALID_END;
return crc;
}
static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len,
struct ieee802_11_elems *elems,
struct cfg80211_bss *bss,
u8 *nontransmitted_profile)
{
const struct element *elem, *sub;
size_t profile_len = 0;
bool found = false;
if (!bss || !bss->transmitted_bss)
return profile_len;
for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) {
if (elem->datalen < 2)
continue;
if (elem->data[0] < 1 || elem->data[0] > 8)
continue;
for_each_element(sub, elem->data + 1, elem->datalen - 1) {
u8 new_bssid[ETH_ALEN];
const u8 *index;
if (sub->id != 0 || sub->datalen < 4) {
/* not a valid BSS profile */
continue;
}
if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
sub->data[1] != 2) {
/* The first element of the
* Nontransmitted BSSID Profile is not
* the Nontransmitted BSSID Capability
* element.
*/
continue;
}
memset(nontransmitted_profile, 0, len);
profile_len = cfg80211_merge_profile(start, len,
elem,
sub,
nontransmitted_profile,
len);
/* found a Nontransmitted BSSID Profile */
index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX,
nontransmitted_profile,
profile_len);
if (!index || index[1] < 1 || index[2] == 0) {
/* Invalid MBSSID Index element */
continue;
}
cfg80211_gen_new_bssid(bss->transmitted_bss->bssid,
elem->data[0],
index[2],
new_bssid);
if (ether_addr_equal(new_bssid, bss->bssid)) {
found = true;
elems->bssid_index_len = index[1];
elems->bssid_index = (void *)&index[2];
break;
}
}
}
return found ? profile_len : 0;
}
static void
ieee80211_mle_get_sta_prof(struct ieee80211_elems_parse *elems_parse,
u8 link_id)
{
struct ieee802_11_elems *elems = &elems_parse->elems;
const struct ieee80211_multi_link_elem *ml = elems->ml_basic;
ssize_t ml_len = elems->ml_basic_len;
const struct element *sub;
for_each_mle_subelement(sub, (u8 *)ml, ml_len) {
struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data;
ssize_t sta_prof_len;
u16 control;
if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE)
continue;
if (!ieee80211_mle_basic_sta_prof_size_ok(sub->data,
sub->datalen))
return;
control = le16_to_cpu(prof->control);
if (link_id != u16_get_bits(control,
IEEE80211_MLE_STA_CONTROL_LINK_ID))
continue;
if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
return;
/* the sub element can be fragmented */
sta_prof_len =
cfg80211_defragment_element(sub,
(u8 *)ml, ml_len,
elems_parse->scratch_pos,
elems_parse->scratch +
elems_parse->scratch_len -
elems_parse->scratch_pos,
IEEE80211_MLE_SUBELEM_FRAGMENT);
if (sta_prof_len < 0)
return;
elems->prof = (void *)elems_parse->scratch_pos;
elems->sta_prof_len = sta_prof_len;
elems_parse->scratch_pos += sta_prof_len;
return;
}
}
static void ieee80211_mle_parse_link(struct ieee80211_elems_parse *elems_parse,
struct ieee80211_elems_parse_params *params)
{
struct ieee802_11_elems *elems = &elems_parse->elems;
struct ieee80211_mle_per_sta_profile *prof;
struct ieee80211_elems_parse_params sub = {
.mode = params->mode,
.action = params->action,
.from_ap = params->from_ap,
.link_id = -1,
};
ssize_t ml_len = elems->ml_basic_len;
const struct element *non_inherit = NULL;
const u8 *end;
ml_len = cfg80211_defragment_element(elems_parse->ml_basic_elem,
elems->ie_start,
elems->total_len,
elems_parse->scratch_pos,
elems_parse->scratch +
elems_parse->scratch_len -
elems_parse->scratch_pos,
WLAN_EID_FRAGMENT);
if (ml_len < 0)
return;
elems->ml_basic = (const void *)elems_parse->scratch_pos;
elems->ml_basic_len = ml_len;
elems_parse->scratch_pos += ml_len;
if (params->link_id == -1)
return;
ieee80211_mle_get_sta_prof(elems_parse, params->link_id);
prof = elems->prof;
if (!prof)
return;
/* check if we have the 4 bytes for the fixed part in assoc response */
if (elems->sta_prof_len < sizeof(*prof) + prof->sta_info_len - 1 + 4) {
elems->prof = NULL;
elems->sta_prof_len = 0;
return;
}
/*
* Skip the capability information and the status code that are expected
* as part of the station profile in association response frames. Note
* the -1 is because the 'sta_info_len' is accounted to as part of the
* per-STA profile, but not part of the 'u8 variable[]' portion.
*/
sub.start = prof->variable + prof->sta_info_len - 1 + 4;
end = (const u8 *)prof + elems->sta_prof_len;
sub.len = end - sub.start;
non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
sub.start, sub.len);
_ieee802_11_parse_elems_full(&sub, elems_parse, non_inherit);
}
static void
ieee80211_mle_defrag_reconf(struct ieee80211_elems_parse *elems_parse)
{
struct ieee802_11_elems *elems = &elems_parse->elems;
ssize_t ml_len;
ml_len = cfg80211_defragment_element(elems_parse->ml_reconf_elem,
elems->ie_start,
elems->total_len,
elems_parse->scratch_pos,
elems_parse->scratch +
elems_parse->scratch_len -
elems_parse->scratch_pos,
WLAN_EID_FRAGMENT);
if (ml_len < 0)
return;
elems->ml_reconf = (void *)elems_parse->scratch_pos;
elems->ml_reconf_len = ml_len;
elems_parse->scratch_pos += ml_len;
}
struct ieee802_11_elems *
ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params)
{
struct ieee80211_elems_parse *elems_parse;
struct ieee802_11_elems *elems;
const struct element *non_inherit = NULL;
u8 *nontransmitted_profile;
int nontransmitted_profile_len = 0;
size_t scratch_len = 3 * params->len;
BUILD_BUG_ON(offsetof(typeof(*elems_parse), elems) != 0);
elems_parse = kzalloc(struct_size(elems_parse, scratch, scratch_len),
GFP_ATOMIC);
if (!elems_parse)
return NULL;
elems_parse->scratch_len = scratch_len;
elems_parse->scratch_pos = elems_parse->scratch;
elems = &elems_parse->elems;
elems->ie_start = params->start;
elems->total_len = params->len;
/* set all TPE entries to unlimited (but invalid) */
ieee80211_clear_tpe(&elems->tpe);
ieee80211_clear_tpe(&elems->csa_tpe);
nontransmitted_profile = elems_parse->scratch_pos;
nontransmitted_profile_len =
ieee802_11_find_bssid_profile(params->start, params->len,
elems, params->bss,
nontransmitted_profile);
elems_parse->scratch_pos += nontransmitted_profile_len;
non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
nontransmitted_profile,
nontransmitted_profile_len);
elems->crc = _ieee802_11_parse_elems_full(params, elems_parse,
non_inherit);
/* Override with nontransmitted profile, if found */
if (nontransmitted_profile_len) {
struct ieee80211_elems_parse_params sub = {
.mode = params->mode,
.start = nontransmitted_profile,
.len = nontransmitted_profile_len,
.action = params->action,
.link_id = params->link_id,
};
_ieee802_11_parse_elems_full(&sub, elems_parse, NULL);
}
ieee80211_mle_parse_link(elems_parse, params);
ieee80211_mle_defrag_reconf(elems_parse);
if (elems->tim && !elems->parse_error) {
const struct ieee80211_tim_ie *tim_ie = elems->tim;
elems->dtim_period = tim_ie->dtim_period;
elems->dtim_count = tim_ie->dtim_count;
}
/* Override DTIM period and count if needed */
if (elems->bssid_index &&
elems->bssid_index_len >=
offsetofend(struct ieee80211_bssid_index, dtim_period))
elems->dtim_period = elems->bssid_index->dtim_period;
if (elems->bssid_index &&
elems->bssid_index_len >=
offsetofend(struct ieee80211_bssid_index, dtim_count))
elems->dtim_count = elems->bssid_index->dtim_count;
return elems;
}
EXPORT_SYMBOL_IF_KUNIT(ieee802_11_parse_elems_full);
int ieee80211_parse_bitrates(enum nl80211_chan_width width,
const struct ieee80211_supported_band *sband,
const u8 *srates, int srates_len, u32 *rates)
{
u32 rate_flags = ieee80211_chanwidth_rate_flags(width);
struct ieee80211_rate *br;
int brate, rate, i, j, count = 0;
*rates = 0;
for (i = 0; i < srates_len; i++) {
rate = srates[i] & 0x7f;
for (j = 0; j < sband->n_bitrates; j++) {
br = &sband->bitrates[j];
if ((rate_flags & br->flags) != rate_flags)
continue;
brate = DIV_ROUND_UP(br->bitrate, 5);
if (brate == rate) {
*rates |= BIT(j);
count++;
break;
}
}
}
return count;
}