f2fs: add checkpoint operations

This adds functions required by the checkpoint operations.

Basically, f2fs adopts a roll-back model with checkpoint blocks written in the
CP area. The checkpoint procedure includes as follows.

- write_checkpoint()
1. block_operations() freezes VFS calls.
2. submit cached bios.
3. flush_nat_entries() writes NAT pages updated by dirty NAT entries.
4. flush_sit_entries() writes SIT pages updated by dirty SIT entries.
5. do_checkpoint() writes,
  - checkpoint block (#0)
  - orphan inode blocks
  - summary blocks made by active logs
  - checkpoint block (copy of #0)
6. unblock_opeations()

In order to provide an address space for meta pages, f2fs_sb_info has a special
inode, namely meta_inode. This patch also adds the address space operations for
meta_inode.

Signed-off-by: Chul Lee <chur.lee@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
This commit is contained in:
Jaegeuk Kim 2012-11-02 17:08:18 +09:00
parent aff063e266
commit 127e670abf

792
fs/f2fs/checkpoint.c Normal file
View File

@ -0,0 +1,792 @@
/**
* fs/f2fs/checkpoint.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/f2fs_fs.h>
#include <linux/pagevec.h>
#include <linux/swap.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
static struct kmem_cache *orphan_entry_slab;
static struct kmem_cache *inode_entry_slab;
/**
* We guarantee no failure on the returned page.
*/
struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = sbi->meta_inode->i_mapping;
struct page *page = NULL;
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
cond_resched();
goto repeat;
}
/* We wait writeback only inside grab_meta_page() */
wait_on_page_writeback(page);
SetPageUptodate(page);
return page;
}
/**
* We guarantee no failure on the returned page.
*/
struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = sbi->meta_inode->i_mapping;
struct page *page;
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
cond_resched();
goto repeat;
}
if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
f2fs_put_page(page, 1);
goto repeat;
}
mark_page_accessed(page);
/* We do not allow returning an errorneous page */
return page;
}
static int f2fs_write_meta_page(struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
int err;
wait_on_page_writeback(page);
err = write_meta_page(sbi, page, wbc);
if (err) {
wbc->pages_skipped++;
set_page_dirty(page);
}
dec_page_count(sbi, F2FS_DIRTY_META);
/* In this case, we should not unlock this page */
if (err != AOP_WRITEPAGE_ACTIVATE)
unlock_page(page);
return err;
}
static int f2fs_write_meta_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
struct block_device *bdev = sbi->sb->s_bdev;
long written;
if (wbc->for_kupdate)
return 0;
if (get_pages(sbi, F2FS_DIRTY_META) == 0)
return 0;
/* if mounting is failed, skip writing node pages */
mutex_lock(&sbi->cp_mutex);
written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
mutex_unlock(&sbi->cp_mutex);
wbc->nr_to_write -= written;
return 0;
}
long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
long nr_to_write)
{
struct address_space *mapping = sbi->meta_inode->i_mapping;
pgoff_t index = 0, end = LONG_MAX;
struct pagevec pvec;
long nwritten = 0;
struct writeback_control wbc = {
.for_reclaim = 0,
};
pagevec_init(&pvec, 0);
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
lock_page(page);
BUG_ON(page->mapping != mapping);
BUG_ON(!PageDirty(page));
clear_page_dirty_for_io(page);
f2fs_write_meta_page(page, &wbc);
if (nwritten++ >= nr_to_write)
break;
}
pagevec_release(&pvec);
cond_resched();
}
if (nwritten)
f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
return nwritten;
}
static int f2fs_set_meta_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
SetPageUptodate(page);
if (!PageDirty(page)) {
__set_page_dirty_nobuffers(page);
inc_page_count(sbi, F2FS_DIRTY_META);
F2FS_SET_SB_DIRT(sbi);
return 1;
}
return 0;
}
const struct address_space_operations f2fs_meta_aops = {
.writepage = f2fs_write_meta_page,
.writepages = f2fs_write_meta_pages,
.set_page_dirty = f2fs_set_meta_page_dirty,
};
int check_orphan_space(struct f2fs_sb_info *sbi)
{
unsigned int max_orphans;
int err = 0;
/*
* considering 512 blocks in a segment 5 blocks are needed for cp
* and log segment summaries. Remaining blocks are used to keep
* orphan entries with the limitation one reserved segment
* for cp pack we can have max 1020*507 orphan entries
*/
max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
mutex_lock(&sbi->orphan_inode_mutex);
if (sbi->n_orphans >= max_orphans)
err = -ENOSPC;
mutex_unlock(&sbi->orphan_inode_mutex);
return err;
}
void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct list_head *head, *this;
struct orphan_inode_entry *new = NULL, *orphan = NULL;
mutex_lock(&sbi->orphan_inode_mutex);
head = &sbi->orphan_inode_list;
list_for_each(this, head) {
orphan = list_entry(this, struct orphan_inode_entry, list);
if (orphan->ino == ino)
goto out;
if (orphan->ino > ino)
break;
orphan = NULL;
}
retry:
new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
if (!new) {
cond_resched();
goto retry;
}
new->ino = ino;
INIT_LIST_HEAD(&new->list);
/* add new_oentry into list which is sorted by inode number */
if (orphan) {
struct orphan_inode_entry *prev;
/* get previous entry */
prev = list_entry(orphan->list.prev, typeof(*prev), list);
if (&prev->list != head)
/* insert new orphan inode entry */
list_add(&new->list, &prev->list);
else
list_add(&new->list, head);
} else {
list_add_tail(&new->list, head);
}
sbi->n_orphans++;
out:
mutex_unlock(&sbi->orphan_inode_mutex);
}
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct list_head *this, *next, *head;
struct orphan_inode_entry *orphan;
mutex_lock(&sbi->orphan_inode_mutex);
head = &sbi->orphan_inode_list;
list_for_each_safe(this, next, head) {
orphan = list_entry(this, struct orphan_inode_entry, list);
if (orphan->ino == ino) {
list_del(&orphan->list);
kmem_cache_free(orphan_entry_slab, orphan);
sbi->n_orphans--;
break;
}
}
mutex_unlock(&sbi->orphan_inode_mutex);
}
static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct inode *inode = f2fs_iget(sbi->sb, ino);
BUG_ON(IS_ERR(inode));
clear_nlink(inode);
/* truncate all the data during iput */
iput(inode);
}
int recover_orphan_inodes(struct f2fs_sb_info *sbi)
{
block_t start_blk, orphan_blkaddr, i, j;
if (!(F2FS_CKPT(sbi)->ckpt_flags & CP_ORPHAN_PRESENT_FLAG))
return 0;
sbi->por_doing = 1;
start_blk = __start_cp_addr(sbi) + 1;
orphan_blkaddr = __start_sum_addr(sbi) - 1;
for (i = 0; i < orphan_blkaddr; i++) {
struct page *page = get_meta_page(sbi, start_blk + i);
struct f2fs_orphan_block *orphan_blk;
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
recover_orphan_inode(sbi, ino);
}
f2fs_put_page(page, 1);
}
/* clear Orphan Flag */
F2FS_CKPT(sbi)->ckpt_flags &= (~CP_ORPHAN_PRESENT_FLAG);
sbi->por_doing = 0;
return 0;
}
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
{
struct list_head *head, *this, *next;
struct f2fs_orphan_block *orphan_blk = NULL;
struct page *page = NULL;
unsigned int nentries = 0;
unsigned short index = 1;
unsigned short orphan_blocks;
orphan_blocks = (unsigned short)((sbi->n_orphans +
(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
mutex_lock(&sbi->orphan_inode_mutex);
head = &sbi->orphan_inode_list;
/* loop for each orphan inode entry and write them in Jornal block */
list_for_each_safe(this, next, head) {
struct orphan_inode_entry *orphan;
orphan = list_entry(this, struct orphan_inode_entry, list);
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
/*
* an orphan block is full of 1020 entries,
* then we need to flush current orphan blocks
* and bring another one in memory
*/
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
index++;
start_blk++;
nentries = 0;
page = NULL;
}
if (page)
goto page_exist;
page = grab_meta_page(sbi, start_blk);
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
memset(orphan_blk, 0, sizeof(*orphan_blk));
page_exist:
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
}
if (!page)
goto end;
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
end:
mutex_unlock(&sbi->orphan_inode_mutex);
}
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
block_t cp_addr, unsigned long long *version)
{
struct page *cp_page_1, *cp_page_2 = NULL;
unsigned long blk_size = sbi->blocksize;
struct f2fs_checkpoint *cp_block;
unsigned long long cur_version = 0, pre_version = 0;
unsigned int crc = 0;
size_t crc_offset;
/* Read the 1st cp block in this CP pack */
cp_page_1 = get_meta_page(sbi, cp_addr);
/* get the version number */
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp1;
crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp1;
pre_version = le64_to_cpu(cp_block->checkpoint_ver);
/* Read the 2nd cp block in this CP pack */
cp_addr += le64_to_cpu(cp_block->cp_pack_total_block_count) - 1;
cp_page_2 = get_meta_page(sbi, cp_addr);
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp2;
crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp2;
cur_version = le64_to_cpu(cp_block->checkpoint_ver);
if (cur_version == pre_version) {
*version = cur_version;
f2fs_put_page(cp_page_2, 1);
return cp_page_1;
}
invalid_cp2:
f2fs_put_page(cp_page_2, 1);
invalid_cp1:
f2fs_put_page(cp_page_1, 1);
return NULL;
}
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp_block;
struct f2fs_super_block *fsb = sbi->raw_super;
struct page *cp1, *cp2, *cur_page;
unsigned long blk_size = sbi->blocksize;
unsigned long long cp1_version = 0, cp2_version = 0;
unsigned long long cp_start_blk_no;
sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
if (!sbi->ckpt)
return -ENOMEM;
/*
* Finding out valid cp block involves read both
* sets( cp pack1 and cp pack 2)
*/
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
/* The second checkpoint pack should start at the next segment */
cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
if (cp1 && cp2) {
if (ver_after(cp2_version, cp1_version))
cur_page = cp2;
else
cur_page = cp1;
} else if (cp1) {
cur_page = cp1;
} else if (cp2) {
cur_page = cp2;
} else {
goto fail_no_cp;
}
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
memcpy(sbi->ckpt, cp_block, blk_size);
f2fs_put_page(cp1, 1);
f2fs_put_page(cp2, 1);
return 0;
fail_no_cp:
kfree(sbi->ckpt);
return -EINVAL;
}
void set_dirty_dir_page(struct inode *inode, struct page *page)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct list_head *head = &sbi->dir_inode_list;
struct dir_inode_entry *new;
struct list_head *this;
if (!S_ISDIR(inode->i_mode))
return;
retry:
new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
if (!new) {
cond_resched();
goto retry;
}
new->inode = inode;
INIT_LIST_HEAD(&new->list);
spin_lock(&sbi->dir_inode_lock);
list_for_each(this, head) {
struct dir_inode_entry *entry;
entry = list_entry(this, struct dir_inode_entry, list);
if (entry->inode == inode) {
kmem_cache_free(inode_entry_slab, new);
goto out;
}
}
list_add_tail(&new->list, head);
sbi->n_dirty_dirs++;
BUG_ON(!S_ISDIR(inode->i_mode));
out:
inc_page_count(sbi, F2FS_DIRTY_DENTS);
inode_inc_dirty_dents(inode);
SetPagePrivate(page);
spin_unlock(&sbi->dir_inode_lock);
}
void remove_dirty_dir_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct list_head *head = &sbi->dir_inode_list;
struct list_head *this;
if (!S_ISDIR(inode->i_mode))
return;
spin_lock(&sbi->dir_inode_lock);
if (atomic_read(&F2FS_I(inode)->dirty_dents))
goto out;
list_for_each(this, head) {
struct dir_inode_entry *entry;
entry = list_entry(this, struct dir_inode_entry, list);
if (entry->inode == inode) {
list_del(&entry->list);
kmem_cache_free(inode_entry_slab, entry);
sbi->n_dirty_dirs--;
break;
}
}
out:
spin_unlock(&sbi->dir_inode_lock);
}
void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
{
struct list_head *head = &sbi->dir_inode_list;
struct dir_inode_entry *entry;
struct inode *inode;
retry:
spin_lock(&sbi->dir_inode_lock);
if (list_empty(head)) {
spin_unlock(&sbi->dir_inode_lock);
return;
}
entry = list_entry(head->next, struct dir_inode_entry, list);
inode = igrab(entry->inode);
spin_unlock(&sbi->dir_inode_lock);
if (inode) {
filemap_flush(inode->i_mapping);
iput(inode);
} else {
/*
* We should submit bio, since it exists several
* wribacking dentry pages in the freeing inode.
*/
f2fs_submit_bio(sbi, DATA, true);
}
goto retry;
}
/**
* Freeze all the FS-operations for checkpoint.
*/
void block_operations(struct f2fs_sb_info *sbi)
{
int t;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.for_reclaim = 0,
};
/* Stop renaming operation */
mutex_lock_op(sbi, RENAME);
mutex_lock_op(sbi, DENTRY_OPS);
retry_dents:
/* write all the dirty dentry pages */
sync_dirty_dir_inodes(sbi);
mutex_lock_op(sbi, DATA_WRITE);
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
mutex_unlock_op(sbi, DATA_WRITE);
goto retry_dents;
}
/* block all the operations */
for (t = DATA_NEW; t <= NODE_TRUNC; t++)
mutex_lock_op(sbi, t);
mutex_lock(&sbi->write_inode);
/*
* POR: we should ensure that there is no dirty node pages
* until finishing nat/sit flush.
*/
retry:
sync_node_pages(sbi, 0, &wbc);
mutex_lock_op(sbi, NODE_WRITE);
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
mutex_unlock_op(sbi, NODE_WRITE);
goto retry;
}
mutex_unlock(&sbi->write_inode);
}
static void unblock_operations(struct f2fs_sb_info *sbi)
{
int t;
for (t = NODE_WRITE; t >= RENAME; t--)
mutex_unlock_op(sbi, t);
}
static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
nid_t last_nid = 0;
block_t start_blk;
struct page *cp_page;
unsigned int data_sum_blocks, orphan_blocks;
void *kaddr;
__u32 crc32 = 0;
int i;
/* Flush all the NAT/SIT pages */
while (get_pages(sbi, F2FS_DIRTY_META))
sync_meta_pages(sbi, META, LONG_MAX);
next_free_nid(sbi, &last_nid);
/*
* modify checkpoint
* version number is already updated
*/
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
for (i = 0; i < 3; i++) {
ckpt->cur_node_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
ckpt->cur_node_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
}
for (i = 0; i < 3; i++) {
ckpt->cur_data_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
ckpt->cur_data_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
}
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
ckpt->next_free_nid = cpu_to_le32(last_nid);
/* 2 cp + n data seg summary + orphan inode blocks */
data_sum_blocks = npages_for_summary_flush(sbi);
if (data_sum_blocks < 3)
ckpt->ckpt_flags |= CP_COMPACT_SUM_FLAG;
else
ckpt->ckpt_flags &= (~CP_COMPACT_SUM_FLAG);
orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
/ F2FS_ORPHANS_PER_BLOCK;
ckpt->cp_pack_start_sum = 1 + orphan_blocks;
ckpt->cp_pack_total_block_count = 2 + data_sum_blocks + orphan_blocks;
if (is_umount) {
ckpt->ckpt_flags |= CP_UMOUNT_FLAG;
ckpt->cp_pack_total_block_count += NR_CURSEG_NODE_TYPE;
} else {
ckpt->ckpt_flags &= (~CP_UMOUNT_FLAG);
}
if (sbi->n_orphans)
ckpt->ckpt_flags |= CP_ORPHAN_PRESENT_FLAG;
else
ckpt->ckpt_flags &= (~CP_ORPHAN_PRESENT_FLAG);
/* update SIT/NAT bitmap */
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
*(__u32 *)((unsigned char *)ckpt +
le32_to_cpu(ckpt->checksum_offset))
= cpu_to_le32(crc32);
start_blk = __start_cp_addr(sbi);
/* write out checkpoint buffer at block 0 */
cp_page = grab_meta_page(sbi, start_blk++);
kaddr = page_address(cp_page);
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
if (sbi->n_orphans) {
write_orphan_inodes(sbi, start_blk);
start_blk += orphan_blocks;
}
write_data_summaries(sbi, start_blk);
start_blk += data_sum_blocks;
if (is_umount) {
write_node_summaries(sbi, start_blk);
start_blk += NR_CURSEG_NODE_TYPE;
}
/* writeout checkpoint block */
cp_page = grab_meta_page(sbi, start_blk);
kaddr = page_address(cp_page);
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
/* wait for previous submitted node/meta pages writeback */
while (get_pages(sbi, F2FS_WRITEBACK))
congestion_wait(BLK_RW_ASYNC, HZ / 50);
filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
/* update user_block_counts */
sbi->last_valid_block_count = sbi->total_valid_block_count;
sbi->alloc_valid_block_count = 0;
/* Here, we only have one bio having CP pack */
if (sbi->ckpt->ckpt_flags & CP_ERROR_FLAG)
sbi->sb->s_flags |= MS_RDONLY;
else
sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
clear_prefree_segments(sbi);
F2FS_RESET_SB_DIRT(sbi);
}
/**
* We guarantee that this checkpoint procedure should not fail.
*/
void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned long long ckpt_ver;
if (!blocked) {
mutex_lock(&sbi->cp_mutex);
block_operations(sbi);
}
f2fs_submit_bio(sbi, DATA, true);
f2fs_submit_bio(sbi, NODE, true);
f2fs_submit_bio(sbi, META, true);
/*
* update checkpoint pack index
* Increase the version number so that
* SIT entries and seg summaries are written at correct place
*/
ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
/* write cached NAT/SIT entries to NAT/SIT area */
flush_nat_entries(sbi);
flush_sit_entries(sbi);
reset_victim_segmap(sbi);
/* unlock all the fs_lock[] in do_checkpoint() */
do_checkpoint(sbi, is_umount);
unblock_operations(sbi);
mutex_unlock(&sbi->cp_mutex);
}
void init_orphan_info(struct f2fs_sb_info *sbi)
{
mutex_init(&sbi->orphan_inode_mutex);
INIT_LIST_HEAD(&sbi->orphan_inode_list);
sbi->n_orphans = 0;
}
int create_checkpoint_caches(void)
{
orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
sizeof(struct orphan_inode_entry), NULL);
if (unlikely(!orphan_entry_slab))
return -ENOMEM;
inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
sizeof(struct dir_inode_entry), NULL);
if (unlikely(!inode_entry_slab)) {
kmem_cache_destroy(orphan_entry_slab);
return -ENOMEM;
}
return 0;
}
void destroy_checkpoint_caches(void)
{
kmem_cache_destroy(orphan_entry_slab);
kmem_cache_destroy(inode_entry_slab);
}