Merge branch 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu

Pull percpu updates from Dennis Zhou:

 - scan hint update which helps address performance issues with heavily
   fragmented blocks

 - lockdep fix when freeing an allocation causes balance work to be
   scheduled

* 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
  percpu: remove spurious lock dependency between percpu and sched
  percpu: use chunk scan_hint to skip some scanning
  percpu: convert chunk hints to be based on pcpu_block_md
  percpu: make pcpu_block_md generic
  percpu: use block scan_hint to only scan forward
  percpu: remember largest area skipped during allocation
  percpu: add block level scan_hint
  percpu: set PCPU_BITMAP_BLOCK_SIZE to PAGE_SIZE
  percpu: relegate chunks unusable when failing small allocations
  percpu: manage chunks based on contig_bits instead of free_bytes
  percpu: introduce helper to determine if two regions overlap
  percpu: do not search past bitmap when allocating an area
  percpu: update free path with correct new free region
This commit is contained in:
Linus Torvalds 2019-05-13 15:34:03 -07:00
commit 3aff5fac54
5 changed files with 407 additions and 180 deletions

View File

@ -26,16 +26,10 @@
#define PCPU_MIN_ALLOC_SHIFT 2 #define PCPU_MIN_ALLOC_SHIFT 2
#define PCPU_MIN_ALLOC_SIZE (1 << PCPU_MIN_ALLOC_SHIFT) #define PCPU_MIN_ALLOC_SIZE (1 << PCPU_MIN_ALLOC_SHIFT)
/* number of bits per page, used to trigger a scan if blocks are > PAGE_SIZE */
#define PCPU_BITS_PER_PAGE (PAGE_SIZE >> PCPU_MIN_ALLOC_SHIFT)
/* /*
* This determines the size of each metadata block. There are several subtle * The PCPU_BITMAP_BLOCK_SIZE must be the same size as PAGE_SIZE as the
* constraints around this constant. The reserved region must be a multiple of * updating of hints is used to manage the nr_empty_pop_pages in both
* PCPU_BITMAP_BLOCK_SIZE. Additionally, PCPU_BITMAP_BLOCK_SIZE must be a * the chunk and globally.
* multiple of PAGE_SIZE or PAGE_SIZE must be a multiple of
* PCPU_BITMAP_BLOCK_SIZE to align with the populated page map. The unit_size
* also has to be a multiple of PCPU_BITMAP_BLOCK_SIZE to ensure full blocks.
*/ */
#define PCPU_BITMAP_BLOCK_SIZE PAGE_SIZE #define PCPU_BITMAP_BLOCK_SIZE PAGE_SIZE
#define PCPU_BITMAP_BLOCK_BITS (PCPU_BITMAP_BLOCK_SIZE >> \ #define PCPU_BITMAP_BLOCK_BITS (PCPU_BITMAP_BLOCK_SIZE >> \

View File

@ -9,8 +9,17 @@
* pcpu_block_md is the metadata block struct. * pcpu_block_md is the metadata block struct.
* Each chunk's bitmap is split into a number of full blocks. * Each chunk's bitmap is split into a number of full blocks.
* All units are in terms of bits. * All units are in terms of bits.
*
* The scan hint is the largest known contiguous area before the contig hint.
* It is not necessarily the actual largest contig hint though. There is an
* invariant that the scan_hint_start > contig_hint_start iff
* scan_hint == contig_hint. This is necessary because when scanning forward,
* we don't know if a new contig hint would be better than the current one.
*/ */
struct pcpu_block_md { struct pcpu_block_md {
int scan_hint; /* scan hint for block */
int scan_hint_start; /* block relative starting
position of the scan hint */
int contig_hint; /* contig hint for block */ int contig_hint; /* contig hint for block */
int contig_hint_start; /* block relative starting int contig_hint_start; /* block relative starting
position of the contig hint */ position of the contig hint */
@ -19,6 +28,7 @@ struct pcpu_block_md {
int right_free; /* size of free space along int right_free; /* size of free space along
the right side of the block */ the right side of the block */
int first_free; /* block position of first free */ int first_free; /* block position of first free */
int nr_bits; /* total bits responsible for */
}; };
struct pcpu_chunk { struct pcpu_chunk {
@ -29,9 +39,7 @@ struct pcpu_chunk {
struct list_head list; /* linked to pcpu_slot lists */ struct list_head list; /* linked to pcpu_slot lists */
int free_bytes; /* free bytes in the chunk */ int free_bytes; /* free bytes in the chunk */
int contig_bits; /* max contiguous size hint */ struct pcpu_block_md chunk_md;
int contig_bits_start; /* contig_bits starting
offset */
void *base_addr; /* base address of this chunk */ void *base_addr; /* base address of this chunk */
unsigned long *alloc_map; /* allocation map */ unsigned long *alloc_map; /* allocation map */
@ -39,7 +47,6 @@ struct pcpu_chunk {
struct pcpu_block_md *md_blocks; /* metadata blocks */ struct pcpu_block_md *md_blocks; /* metadata blocks */
void *data; /* chunk data */ void *data; /* chunk data */
int first_bit; /* no free below this */
bool immutable; /* no [de]population allowed */ bool immutable; /* no [de]population allowed */
int start_offset; /* the overlap with the previous int start_offset; /* the overlap with the previous
region to have a page aligned region to have a page aligned

View File

@ -70,7 +70,7 @@ static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp)
chunk->base_addr = page_address(pages); chunk->base_addr = page_address(pages);
spin_lock_irqsave(&pcpu_lock, flags); spin_lock_irqsave(&pcpu_lock, flags);
pcpu_chunk_populated(chunk, 0, nr_pages, false); pcpu_chunk_populated(chunk, 0, nr_pages);
spin_unlock_irqrestore(&pcpu_lock, flags); spin_unlock_irqrestore(&pcpu_lock, flags);
pcpu_stats_chunk_alloc(); pcpu_stats_chunk_alloc();

View File

@ -53,6 +53,7 @@ static int find_max_nr_alloc(void)
static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk, static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk,
int *buffer) int *buffer)
{ {
struct pcpu_block_md *chunk_md = &chunk->chunk_md;
int i, last_alloc, as_len, start, end; int i, last_alloc, as_len, start, end;
int *alloc_sizes, *p; int *alloc_sizes, *p;
/* statistics */ /* statistics */
@ -121,9 +122,9 @@ static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk,
P("nr_alloc", chunk->nr_alloc); P("nr_alloc", chunk->nr_alloc);
P("max_alloc_size", chunk->max_alloc_size); P("max_alloc_size", chunk->max_alloc_size);
P("empty_pop_pages", chunk->nr_empty_pop_pages); P("empty_pop_pages", chunk->nr_empty_pop_pages);
P("first_bit", chunk->first_bit); P("first_bit", chunk_md->first_free);
P("free_bytes", chunk->free_bytes); P("free_bytes", chunk->free_bytes);
P("contig_bytes", chunk->contig_bits * PCPU_MIN_ALLOC_SIZE); P("contig_bytes", chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
P("sum_frag", sum_frag); P("sum_frag", sum_frag);
P("max_frag", max_frag); P("max_frag", max_frag);
P("cur_min_alloc", cur_min_alloc); P("cur_min_alloc", cur_min_alloc);

View File

@ -94,6 +94,8 @@
/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
#define PCPU_SLOT_BASE_SHIFT 5 #define PCPU_SLOT_BASE_SHIFT 5
/* chunks in slots below this are subject to being sidelined on failed alloc */
#define PCPU_SLOT_FAIL_THRESHOLD 3
#define PCPU_EMPTY_POP_PAGES_LOW 2 #define PCPU_EMPTY_POP_PAGES_LOW 2
#define PCPU_EMPTY_POP_PAGES_HIGH 4 #define PCPU_EMPTY_POP_PAGES_HIGH 4
@ -231,10 +233,13 @@ static int pcpu_size_to_slot(int size)
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{ {
if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0) const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
chunk_md->contig_hint == 0)
return 0; return 0;
return pcpu_size_to_slot(chunk->free_bytes); return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
} }
/* set the pointer to a chunk in a page struct */ /* set the pointer to a chunk in a page struct */
@ -318,6 +323,34 @@ static unsigned long pcpu_block_off_to_off(int index, int off)
return index * PCPU_BITMAP_BLOCK_BITS + off; return index * PCPU_BITMAP_BLOCK_BITS + off;
} }
/*
* pcpu_next_hint - determine which hint to use
* @block: block of interest
* @alloc_bits: size of allocation
*
* This determines if we should scan based on the scan_hint or first_free.
* In general, we want to scan from first_free to fulfill allocations by
* first fit. However, if we know a scan_hint at position scan_hint_start
* cannot fulfill an allocation, we can begin scanning from there knowing
* the contig_hint will be our fallback.
*/
static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
{
/*
* The three conditions below determine if we can skip past the
* scan_hint. First, does the scan hint exist. Second, is the
* contig_hint after the scan_hint (possibly not true iff
* contig_hint == scan_hint). Third, is the allocation request
* larger than the scan_hint.
*/
if (block->scan_hint &&
block->contig_hint_start > block->scan_hint_start &&
alloc_bits > block->scan_hint)
return block->scan_hint_start + block->scan_hint;
return block->first_free;
}
/** /**
* pcpu_next_md_free_region - finds the next hint free area * pcpu_next_md_free_region - finds the next hint free area
* @chunk: chunk of interest * @chunk: chunk of interest
@ -413,9 +446,11 @@ static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
if (block->contig_hint && if (block->contig_hint &&
block->contig_hint_start >= block_off && block->contig_hint_start >= block_off &&
block->contig_hint >= *bits + alloc_bits) { block->contig_hint >= *bits + alloc_bits) {
int start = pcpu_next_hint(block, alloc_bits);
*bits += alloc_bits + block->contig_hint_start - *bits += alloc_bits + block->contig_hint_start -
block->first_free; start;
*bit_off = pcpu_block_off_to_off(i, block->first_free); *bit_off = pcpu_block_off_to_off(i, start);
return; return;
} }
/* reset to satisfy the second predicate above */ /* reset to satisfy the second predicate above */
@ -488,6 +523,22 @@ static void pcpu_mem_free(void *ptr)
kvfree(ptr); kvfree(ptr);
} }
static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
bool move_front)
{
if (chunk != pcpu_reserved_chunk) {
if (move_front)
list_move(&chunk->list, &pcpu_slot[slot]);
else
list_move_tail(&chunk->list, &pcpu_slot[slot]);
}
}
static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
{
__pcpu_chunk_move(chunk, slot, true);
}
/** /**
* pcpu_chunk_relocate - put chunk in the appropriate chunk slot * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
* @chunk: chunk of interest * @chunk: chunk of interest
@ -505,110 +556,39 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{ {
int nslot = pcpu_chunk_slot(chunk); int nslot = pcpu_chunk_slot(chunk);
if (chunk != pcpu_reserved_chunk && oslot != nslot) { if (oslot != nslot)
if (oslot < nslot) __pcpu_chunk_move(chunk, nslot, oslot < nslot);
list_move(&chunk->list, &pcpu_slot[nslot]);
else
list_move_tail(&chunk->list, &pcpu_slot[nslot]);
}
} }
/** /*
* pcpu_cnt_pop_pages- counts populated backing pages in range * pcpu_update_empty_pages - update empty page counters
* @chunk: chunk of interest * @chunk: chunk of interest
* @bit_off: start offset * @nr: nr of empty pages
* @bits: size of area to check
* *
* Calculates the number of populated pages in the region * This is used to keep track of the empty pages now based on the premise
* [page_start, page_end). This keeps track of how many empty populated * a md_block covers a page. The hint update functions recognize if a block
* pages are available and decide if async work should be scheduled. * is made full or broken to calculate deltas for keeping track of free pages.
*
* RETURNS:
* The nr of populated pages.
*/ */
static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off, static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
int bits)
{ {
int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE); chunk->nr_empty_pop_pages += nr;
int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
if (page_start >= page_end)
return 0;
/*
* bitmap_weight counts the number of bits set in a bitmap up to
* the specified number of bits. This is counting the populated
* pages up to page_end and then subtracting the populated pages
* up to page_start to count the populated pages in
* [page_start, page_end).
*/
return bitmap_weight(chunk->populated, page_end) -
bitmap_weight(chunk->populated, page_start);
}
/**
* pcpu_chunk_update - updates the chunk metadata given a free area
* @chunk: chunk of interest
* @bit_off: chunk offset
* @bits: size of free area
*
* This updates the chunk's contig hint and starting offset given a free area.
* Choose the best starting offset if the contig hint is equal.
*/
static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
{
if (bits > chunk->contig_bits) {
chunk->contig_bits_start = bit_off;
chunk->contig_bits = bits;
} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
(!bit_off ||
__ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
/* use the start with the best alignment */
chunk->contig_bits_start = bit_off;
}
}
/**
* pcpu_chunk_refresh_hint - updates metadata about a chunk
* @chunk: chunk of interest
*
* Iterates over the metadata blocks to find the largest contig area.
* It also counts the populated pages and uses the delta to update the
* global count.
*
* Updates:
* chunk->contig_bits
* chunk->contig_bits_start
* nr_empty_pop_pages (chunk and global)
*/
static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
{
int bit_off, bits, nr_empty_pop_pages;
/* clear metadata */
chunk->contig_bits = 0;
bit_off = chunk->first_bit;
bits = nr_empty_pop_pages = 0;
pcpu_for_each_md_free_region(chunk, bit_off, bits) {
pcpu_chunk_update(chunk, bit_off, bits);
nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
}
/*
* Keep track of nr_empty_pop_pages.
*
* The chunk maintains the previous number of free pages it held,
* so the delta is used to update the global counter. The reserved
* chunk is not part of the free page count as they are populated
* at init and are special to serving reserved allocations.
*/
if (chunk != pcpu_reserved_chunk) if (chunk != pcpu_reserved_chunk)
pcpu_nr_empty_pop_pages += pcpu_nr_empty_pop_pages += nr;
(nr_empty_pop_pages - chunk->nr_empty_pop_pages); }
chunk->nr_empty_pop_pages = nr_empty_pop_pages; /*
* pcpu_region_overlap - determines if two regions overlap
* @a: start of first region, inclusive
* @b: end of first region, exclusive
* @x: start of second region, inclusive
* @y: end of second region, exclusive
*
* This is used to determine if the hint region [a, b) overlaps with the
* allocated region [x, y).
*/
static inline bool pcpu_region_overlap(int a, int b, int x, int y)
{
return (a < y) && (x < b);
} }
/** /**
@ -629,16 +609,132 @@ static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
if (start == 0) if (start == 0)
block->left_free = contig; block->left_free = contig;
if (end == PCPU_BITMAP_BLOCK_BITS) if (end == block->nr_bits)
block->right_free = contig; block->right_free = contig;
if (contig > block->contig_hint) { if (contig > block->contig_hint) {
/* promote the old contig_hint to be the new scan_hint */
if (start > block->contig_hint_start) {
if (block->contig_hint > block->scan_hint) {
block->scan_hint_start =
block->contig_hint_start;
block->scan_hint = block->contig_hint;
} else if (start < block->scan_hint_start) {
/*
* The old contig_hint == scan_hint. But, the
* new contig is larger so hold the invariant
* scan_hint_start < contig_hint_start.
*/
block->scan_hint = 0;
}
} else {
block->scan_hint = 0;
}
block->contig_hint_start = start; block->contig_hint_start = start;
block->contig_hint = contig; block->contig_hint = contig;
} else if (block->contig_hint_start && contig == block->contig_hint && } else if (contig == block->contig_hint) {
(!start || __ffs(start) > __ffs(block->contig_hint_start))) { if (block->contig_hint_start &&
/* use the start with the best alignment */ (!start ||
block->contig_hint_start = start; __ffs(start) > __ffs(block->contig_hint_start))) {
/* start has a better alignment so use it */
block->contig_hint_start = start;
if (start < block->scan_hint_start &&
block->contig_hint > block->scan_hint)
block->scan_hint = 0;
} else if (start > block->scan_hint_start ||
block->contig_hint > block->scan_hint) {
/*
* Knowing contig == contig_hint, update the scan_hint
* if it is farther than or larger than the current
* scan_hint.
*/
block->scan_hint_start = start;
block->scan_hint = contig;
}
} else {
/*
* The region is smaller than the contig_hint. So only update
* the scan_hint if it is larger than or equal and farther than
* the current scan_hint.
*/
if ((start < block->contig_hint_start &&
(contig > block->scan_hint ||
(contig == block->scan_hint &&
start > block->scan_hint_start)))) {
block->scan_hint_start = start;
block->scan_hint = contig;
}
}
}
/*
* pcpu_block_update_scan - update a block given a free area from a scan
* @chunk: chunk of interest
* @bit_off: chunk offset
* @bits: size of free area
*
* Finding the final allocation spot first goes through pcpu_find_block_fit()
* to find a block that can hold the allocation and then pcpu_alloc_area()
* where a scan is used. When allocations require specific alignments,
* we can inadvertently create holes which will not be seen in the alloc
* or free paths.
*
* This takes a given free area hole and updates a block as it may change the
* scan_hint. We need to scan backwards to ensure we don't miss free bits
* from alignment.
*/
static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
int bits)
{
int s_off = pcpu_off_to_block_off(bit_off);
int e_off = s_off + bits;
int s_index, l_bit;
struct pcpu_block_md *block;
if (e_off > PCPU_BITMAP_BLOCK_BITS)
return;
s_index = pcpu_off_to_block_index(bit_off);
block = chunk->md_blocks + s_index;
/* scan backwards in case of alignment skipping free bits */
l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
s_off = (s_off == l_bit) ? 0 : l_bit + 1;
pcpu_block_update(block, s_off, e_off);
}
/**
* pcpu_chunk_refresh_hint - updates metadata about a chunk
* @chunk: chunk of interest
* @full_scan: if we should scan from the beginning
*
* Iterates over the metadata blocks to find the largest contig area.
* A full scan can be avoided on the allocation path as this is triggered
* if we broke the contig_hint. In doing so, the scan_hint will be before
* the contig_hint or after if the scan_hint == contig_hint. This cannot
* be prevented on freeing as we want to find the largest area possibly
* spanning blocks.
*/
static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
{
struct pcpu_block_md *chunk_md = &chunk->chunk_md;
int bit_off, bits;
/* promote scan_hint to contig_hint */
if (!full_scan && chunk_md->scan_hint) {
bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
chunk_md->contig_hint_start = chunk_md->scan_hint_start;
chunk_md->contig_hint = chunk_md->scan_hint;
chunk_md->scan_hint = 0;
} else {
bit_off = chunk_md->first_free;
chunk_md->contig_hint = 0;
}
bits = 0;
pcpu_for_each_md_free_region(chunk, bit_off, bits) {
pcpu_block_update(chunk_md, bit_off, bit_off + bits);
} }
} }
@ -654,14 +750,23 @@ static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
{ {
struct pcpu_block_md *block = chunk->md_blocks + index; struct pcpu_block_md *block = chunk->md_blocks + index;
unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
int rs, re; /* region start, region end */ int rs, re, start; /* region start, region end */
/* clear hints */ /* promote scan_hint to contig_hint */
block->contig_hint = 0; if (block->scan_hint) {
block->left_free = block->right_free = 0; start = block->scan_hint_start + block->scan_hint;
block->contig_hint_start = block->scan_hint_start;
block->contig_hint = block->scan_hint;
block->scan_hint = 0;
} else {
start = block->first_free;
block->contig_hint = 0;
}
block->right_free = 0;
/* iterate over free areas and update the contig hints */ /* iterate over free areas and update the contig hints */
pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free, pcpu_for_each_unpop_region(alloc_map, rs, re, start,
PCPU_BITMAP_BLOCK_BITS) { PCPU_BITMAP_BLOCK_BITS) {
pcpu_block_update(block, rs, re); pcpu_block_update(block, rs, re);
} }
@ -680,6 +785,8 @@ static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
int bits) int bits)
{ {
struct pcpu_block_md *chunk_md = &chunk->chunk_md;
int nr_empty_pages = 0;
struct pcpu_block_md *s_block, *e_block, *block; struct pcpu_block_md *s_block, *e_block, *block;
int s_index, e_index; /* block indexes of the freed allocation */ int s_index, e_index; /* block indexes of the freed allocation */
int s_off, e_off; /* block offsets of the freed allocation */ int s_off, e_off; /* block offsets of the freed allocation */
@ -704,15 +811,29 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
* If the allocation breaks the contig_hint, a scan is required to * If the allocation breaks the contig_hint, a scan is required to
* restore this hint. * restore this hint.
*/ */
if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
nr_empty_pages++;
if (s_off == s_block->first_free) if (s_off == s_block->first_free)
s_block->first_free = find_next_zero_bit( s_block->first_free = find_next_zero_bit(
pcpu_index_alloc_map(chunk, s_index), pcpu_index_alloc_map(chunk, s_index),
PCPU_BITMAP_BLOCK_BITS, PCPU_BITMAP_BLOCK_BITS,
s_off + bits); s_off + bits);
if (s_off >= s_block->contig_hint_start && if (pcpu_region_overlap(s_block->scan_hint_start,
s_off < s_block->contig_hint_start + s_block->contig_hint) { s_block->scan_hint_start + s_block->scan_hint,
s_off,
s_off + bits))
s_block->scan_hint = 0;
if (pcpu_region_overlap(s_block->contig_hint_start,
s_block->contig_hint_start +
s_block->contig_hint,
s_off,
s_off + bits)) {
/* block contig hint is broken - scan to fix it */ /* block contig hint is broken - scan to fix it */
if (!s_off)
s_block->left_free = 0;
pcpu_block_refresh_hint(chunk, s_index); pcpu_block_refresh_hint(chunk, s_index);
} else { } else {
/* update left and right contig manually */ /* update left and right contig manually */
@ -728,6 +849,9 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
* Update e_block. * Update e_block.
*/ */
if (s_index != e_index) { if (s_index != e_index) {
if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
nr_empty_pages++;
/* /*
* When the allocation is across blocks, the end is along * When the allocation is across blocks, the end is along
* the left part of the e_block. * the left part of the e_block.
@ -740,11 +864,14 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
/* reset the block */ /* reset the block */
e_block++; e_block++;
} else { } else {
if (e_off > e_block->scan_hint_start)
e_block->scan_hint = 0;
e_block->left_free = 0;
if (e_off > e_block->contig_hint_start) { if (e_off > e_block->contig_hint_start) {
/* contig hint is broken - scan to fix it */ /* contig hint is broken - scan to fix it */
pcpu_block_refresh_hint(chunk, e_index); pcpu_block_refresh_hint(chunk, e_index);
} else { } else {
e_block->left_free = 0;
e_block->right_free = e_block->right_free =
min_t(int, e_block->right_free, min_t(int, e_block->right_free,
PCPU_BITMAP_BLOCK_BITS - e_off); PCPU_BITMAP_BLOCK_BITS - e_off);
@ -752,21 +879,36 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
} }
/* update in-between md_blocks */ /* update in-between md_blocks */
nr_empty_pages += (e_index - s_index - 1);
for (block = s_block + 1; block < e_block; block++) { for (block = s_block + 1; block < e_block; block++) {
block->scan_hint = 0;
block->contig_hint = 0; block->contig_hint = 0;
block->left_free = 0; block->left_free = 0;
block->right_free = 0; block->right_free = 0;
} }
} }
if (nr_empty_pages)
pcpu_update_empty_pages(chunk, -nr_empty_pages);
if (pcpu_region_overlap(chunk_md->scan_hint_start,
chunk_md->scan_hint_start +
chunk_md->scan_hint,
bit_off,
bit_off + bits))
chunk_md->scan_hint = 0;
/* /*
* The only time a full chunk scan is required is if the chunk * The only time a full chunk scan is required is if the chunk
* contig hint is broken. Otherwise, it means a smaller space * contig hint is broken. Otherwise, it means a smaller space
* was used and therefore the chunk contig hint is still correct. * was used and therefore the chunk contig hint is still correct.
*/ */
if (bit_off >= chunk->contig_bits_start && if (pcpu_region_overlap(chunk_md->contig_hint_start,
bit_off < chunk->contig_bits_start + chunk->contig_bits) chunk_md->contig_hint_start +
pcpu_chunk_refresh_hint(chunk); chunk_md->contig_hint,
bit_off,
bit_off + bits))
pcpu_chunk_refresh_hint(chunk, false);
} }
/** /**
@ -782,13 +924,15 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
* *
* A chunk update is triggered if a page becomes free, a block becomes free, * A chunk update is triggered if a page becomes free, a block becomes free,
* or the free spans across blocks. This tradeoff is to minimize iterating * or the free spans across blocks. This tradeoff is to minimize iterating
* over the block metadata to update chunk->contig_bits. chunk->contig_bits * over the block metadata to update chunk_md->contig_hint.
* may be off by up to a page, but it will never be more than the available * chunk_md->contig_hint may be off by up to a page, but it will never be more
* space. If the contig hint is contained in one block, it will be accurate. * than the available space. If the contig hint is contained in one block, it
* will be accurate.
*/ */
static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
int bits) int bits)
{ {
int nr_empty_pages = 0;
struct pcpu_block_md *s_block, *e_block, *block; struct pcpu_block_md *s_block, *e_block, *block;
int s_index, e_index; /* block indexes of the freed allocation */ int s_index, e_index; /* block indexes of the freed allocation */
int s_off, e_off; /* block offsets of the freed allocation */ int s_off, e_off; /* block offsets of the freed allocation */
@ -842,16 +986,22 @@ static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
/* update s_block */ /* update s_block */
e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
nr_empty_pages++;
pcpu_block_update(s_block, start, e_off); pcpu_block_update(s_block, start, e_off);
/* freeing in the same block */ /* freeing in the same block */
if (s_index != e_index) { if (s_index != e_index) {
/* update e_block */ /* update e_block */
if (end == PCPU_BITMAP_BLOCK_BITS)
nr_empty_pages++;
pcpu_block_update(e_block, 0, end); pcpu_block_update(e_block, 0, end);
/* reset md_blocks in the middle */ /* reset md_blocks in the middle */
nr_empty_pages += (e_index - s_index - 1);
for (block = s_block + 1; block < e_block; block++) { for (block = s_block + 1; block < e_block; block++) {
block->first_free = 0; block->first_free = 0;
block->scan_hint = 0;
block->contig_hint_start = 0; block->contig_hint_start = 0;
block->contig_hint = PCPU_BITMAP_BLOCK_BITS; block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
block->left_free = PCPU_BITMAP_BLOCK_BITS; block->left_free = PCPU_BITMAP_BLOCK_BITS;
@ -859,19 +1009,21 @@ static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
} }
} }
if (nr_empty_pages)
pcpu_update_empty_pages(chunk, nr_empty_pages);
/* /*
* Refresh chunk metadata when the free makes a page free, a block * Refresh chunk metadata when the free makes a block free or spans
* free, or spans across blocks. The contig hint may be off by up to * across blocks. The contig_hint may be off by up to a page, but if
* a page, but if the hint is contained in a block, it will be accurate * the contig_hint is contained in a block, it will be accurate with
* with the else condition below. * the else condition below.
*/ */
if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) > if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) || pcpu_chunk_refresh_hint(chunk, true);
s_index != e_index)
pcpu_chunk_refresh_hint(chunk);
else else
pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start), pcpu_block_update(&chunk->chunk_md,
s_block->contig_hint); pcpu_block_off_to_off(s_index, start),
end);
} }
/** /**
@ -926,6 +1078,7 @@ static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
size_t align, bool pop_only) size_t align, bool pop_only)
{ {
struct pcpu_block_md *chunk_md = &chunk->chunk_md;
int bit_off, bits, next_off; int bit_off, bits, next_off;
/* /*
@ -934,12 +1087,12 @@ static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
* cannot fit in the global hint, there is memory pressure and creating * cannot fit in the global hint, there is memory pressure and creating
* a new chunk would happen soon. * a new chunk would happen soon.
*/ */
bit_off = ALIGN(chunk->contig_bits_start, align) - bit_off = ALIGN(chunk_md->contig_hint_start, align) -
chunk->contig_bits_start; chunk_md->contig_hint_start;
if (bit_off + alloc_bits > chunk->contig_bits) if (bit_off + alloc_bits > chunk_md->contig_hint)
return -1; return -1;
bit_off = chunk->first_bit; bit_off = pcpu_next_hint(chunk_md, alloc_bits);
bits = 0; bits = 0;
pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
@ -956,6 +1109,62 @@ static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
return bit_off; return bit_off;
} }
/*
* pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
* @map: the address to base the search on
* @size: the bitmap size in bits
* @start: the bitnumber to start searching at
* @nr: the number of zeroed bits we're looking for
* @align_mask: alignment mask for zero area
* @largest_off: offset of the largest area skipped
* @largest_bits: size of the largest area skipped
*
* The @align_mask should be one less than a power of 2.
*
* This is a modified version of bitmap_find_next_zero_area_off() to remember
* the largest area that was skipped. This is imperfect, but in general is
* good enough. The largest remembered region is the largest failed region
* seen. This does not include anything we possibly skipped due to alignment.
* pcpu_block_update_scan() does scan backwards to try and recover what was
* lost to alignment. While this can cause scanning to miss earlier possible
* free areas, smaller allocations will eventually fill those holes.
*/
static unsigned long pcpu_find_zero_area(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned long nr,
unsigned long align_mask,
unsigned long *largest_off,
unsigned long *largest_bits)
{
unsigned long index, end, i, area_off, area_bits;
again:
index = find_next_zero_bit(map, size, start);
/* Align allocation */
index = __ALIGN_MASK(index, align_mask);
area_off = index;
end = index + nr;
if (end > size)
return end;
i = find_next_bit(map, end, index);
if (i < end) {
area_bits = i - area_off;
/* remember largest unused area with best alignment */
if (area_bits > *largest_bits ||
(area_bits == *largest_bits && *largest_off &&
(!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
*largest_off = area_off;
*largest_bits = area_bits;
}
start = i + 1;
goto again;
}
return index;
}
/** /**
* pcpu_alloc_area - allocates an area from a pcpu_chunk * pcpu_alloc_area - allocates an area from a pcpu_chunk
* @chunk: chunk of interest * @chunk: chunk of interest
@ -978,7 +1187,9 @@ static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
size_t align, int start) size_t align, int start)
{ {
struct pcpu_block_md *chunk_md = &chunk->chunk_md;
size_t align_mask = (align) ? (align - 1) : 0; size_t align_mask = (align) ? (align - 1) : 0;
unsigned long area_off = 0, area_bits = 0;
int bit_off, end, oslot; int bit_off, end, oslot;
lockdep_assert_held(&pcpu_lock); lockdep_assert_held(&pcpu_lock);
@ -988,12 +1199,16 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
/* /*
* Search to find a fit. * Search to find a fit.
*/ */
end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS; end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start, pcpu_chunk_map_bits(chunk));
alloc_bits, align_mask); bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
align_mask, &area_off, &area_bits);
if (bit_off >= end) if (bit_off >= end)
return -1; return -1;
if (area_bits)
pcpu_block_update_scan(chunk, area_off, area_bits);
/* update alloc map */ /* update alloc map */
bitmap_set(chunk->alloc_map, bit_off, alloc_bits); bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
@ -1005,8 +1220,8 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
/* update first free bit */ /* update first free bit */
if (bit_off == chunk->first_bit) if (bit_off == chunk_md->first_free)
chunk->first_bit = find_next_zero_bit( chunk_md->first_free = find_next_zero_bit(
chunk->alloc_map, chunk->alloc_map,
pcpu_chunk_map_bits(chunk), pcpu_chunk_map_bits(chunk),
bit_off + alloc_bits); bit_off + alloc_bits);
@ -1028,6 +1243,7 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
*/ */
static void pcpu_free_area(struct pcpu_chunk *chunk, int off) static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
{ {
struct pcpu_block_md *chunk_md = &chunk->chunk_md;
int bit_off, bits, end, oslot; int bit_off, bits, end, oslot;
lockdep_assert_held(&pcpu_lock); lockdep_assert_held(&pcpu_lock);
@ -1047,24 +1263,34 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
/* update first free bit */ /* update first free bit */
chunk->first_bit = min(chunk->first_bit, bit_off); chunk_md->first_free = min(chunk_md->first_free, bit_off);
pcpu_block_update_hint_free(chunk, bit_off, bits); pcpu_block_update_hint_free(chunk, bit_off, bits);
pcpu_chunk_relocate(chunk, oslot); pcpu_chunk_relocate(chunk, oslot);
} }
static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
{
block->scan_hint = 0;
block->contig_hint = nr_bits;
block->left_free = nr_bits;
block->right_free = nr_bits;
block->first_free = 0;
block->nr_bits = nr_bits;
}
static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
{ {
struct pcpu_block_md *md_block; struct pcpu_block_md *md_block;
/* init the chunk's block */
pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
for (md_block = chunk->md_blocks; for (md_block = chunk->md_blocks;
md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
md_block++) { md_block++)
md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS; pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
}
} }
/** /**
@ -1143,11 +1369,8 @@ static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
chunk->immutable = true; chunk->immutable = true;
bitmap_fill(chunk->populated, chunk->nr_pages); bitmap_fill(chunk->populated, chunk->nr_pages);
chunk->nr_populated = chunk->nr_pages; chunk->nr_populated = chunk->nr_pages;
chunk->nr_empty_pop_pages = chunk->nr_empty_pop_pages = chunk->nr_pages;
pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
map_size / PCPU_MIN_ALLOC_SIZE);
chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
chunk->free_bytes = map_size; chunk->free_bytes = map_size;
if (chunk->start_offset) { if (chunk->start_offset) {
@ -1157,7 +1380,7 @@ static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
set_bit(0, chunk->bound_map); set_bit(0, chunk->bound_map);
set_bit(offset_bits, chunk->bound_map); set_bit(offset_bits, chunk->bound_map);
chunk->first_bit = offset_bits; chunk->chunk_md.first_free = offset_bits;
pcpu_block_update_hint_alloc(chunk, 0, offset_bits); pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
} }
@ -1210,7 +1433,6 @@ static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
pcpu_init_md_blocks(chunk); pcpu_init_md_blocks(chunk);
/* init metadata */ /* init metadata */
chunk->contig_bits = region_bits;
chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
return chunk; return chunk;
@ -1240,7 +1462,6 @@ static void pcpu_free_chunk(struct pcpu_chunk *chunk)
* @chunk: pcpu_chunk which got populated * @chunk: pcpu_chunk which got populated
* @page_start: the start page * @page_start: the start page
* @page_end: the end page * @page_end: the end page
* @for_alloc: if this is to populate for allocation
* *
* Pages in [@page_start,@page_end) have been populated to @chunk. Update * Pages in [@page_start,@page_end) have been populated to @chunk. Update
* the bookkeeping information accordingly. Must be called after each * the bookkeeping information accordingly. Must be called after each
@ -1250,7 +1471,7 @@ static void pcpu_free_chunk(struct pcpu_chunk *chunk)
* is to serve an allocation in that area. * is to serve an allocation in that area.
*/ */
static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
int page_end, bool for_alloc) int page_end)
{ {
int nr = page_end - page_start; int nr = page_end - page_start;
@ -1260,10 +1481,7 @@ static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
chunk->nr_populated += nr; chunk->nr_populated += nr;
pcpu_nr_populated += nr; pcpu_nr_populated += nr;
if (!for_alloc) { pcpu_update_empty_pages(chunk, nr);
chunk->nr_empty_pop_pages += nr;
pcpu_nr_empty_pop_pages += nr;
}
} }
/** /**
@ -1285,9 +1503,9 @@ static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
bitmap_clear(chunk->populated, page_start, nr); bitmap_clear(chunk->populated, page_start, nr);
chunk->nr_populated -= nr; chunk->nr_populated -= nr;
chunk->nr_empty_pop_pages -= nr;
pcpu_nr_empty_pop_pages -= nr;
pcpu_nr_populated -= nr; pcpu_nr_populated -= nr;
pcpu_update_empty_pages(chunk, -nr);
} }
/* /*
@ -1374,7 +1592,7 @@ static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
bool do_warn = !(gfp & __GFP_NOWARN); bool do_warn = !(gfp & __GFP_NOWARN);
static int warn_limit = 10; static int warn_limit = 10;
struct pcpu_chunk *chunk; struct pcpu_chunk *chunk, *next;
const char *err; const char *err;
int slot, off, cpu, ret; int slot, off, cpu, ret;
unsigned long flags; unsigned long flags;
@ -1436,11 +1654,14 @@ static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
restart: restart:
/* search through normal chunks */ /* search through normal chunks */
for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
list_for_each_entry(chunk, &pcpu_slot[slot], list) { list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
off = pcpu_find_block_fit(chunk, bits, bit_align, off = pcpu_find_block_fit(chunk, bits, bit_align,
is_atomic); is_atomic);
if (off < 0) if (off < 0) {
if (slot < PCPU_SLOT_FAIL_THRESHOLD)
pcpu_chunk_move(chunk, 0);
continue; continue;
}
off = pcpu_alloc_area(chunk, bits, bit_align, off); off = pcpu_alloc_area(chunk, bits, bit_align, off);
if (off >= 0) if (off >= 0)
@ -1499,7 +1720,7 @@ static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
err = "failed to populate"; err = "failed to populate";
goto fail_unlock; goto fail_unlock;
} }
pcpu_chunk_populated(chunk, rs, re, true); pcpu_chunk_populated(chunk, rs, re);
spin_unlock_irqrestore(&pcpu_lock, flags); spin_unlock_irqrestore(&pcpu_lock, flags);
} }
@ -1698,7 +1919,7 @@ static void pcpu_balance_workfn(struct work_struct *work)
if (!ret) { if (!ret) {
nr_to_pop -= nr; nr_to_pop -= nr;
spin_lock_irq(&pcpu_lock); spin_lock_irq(&pcpu_lock);
pcpu_chunk_populated(chunk, rs, rs + nr, false); pcpu_chunk_populated(chunk, rs, rs + nr);
spin_unlock_irq(&pcpu_lock); spin_unlock_irq(&pcpu_lock);
} else { } else {
nr_to_pop = 0; nr_to_pop = 0;
@ -1738,6 +1959,7 @@ void free_percpu(void __percpu *ptr)
struct pcpu_chunk *chunk; struct pcpu_chunk *chunk;
unsigned long flags; unsigned long flags;
int off; int off;
bool need_balance = false;
if (!ptr) if (!ptr)
return; return;
@ -1759,7 +1981,7 @@ void free_percpu(void __percpu *ptr)
list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
if (pos != chunk) { if (pos != chunk) {
pcpu_schedule_balance_work(); need_balance = true;
break; break;
} }
} }
@ -1767,6 +1989,9 @@ void free_percpu(void __percpu *ptr)
trace_percpu_free_percpu(chunk->base_addr, off, ptr); trace_percpu_free_percpu(chunk->base_addr, off, ptr);
spin_unlock_irqrestore(&pcpu_lock, flags); spin_unlock_irqrestore(&pcpu_lock, flags);
if (need_balance)
pcpu_schedule_balance_work();
} }
EXPORT_SYMBOL_GPL(free_percpu); EXPORT_SYMBOL_GPL(free_percpu);