mm/vmalloc: alloc GFP_NO{FS,IO} for vmalloc

Patch series "extend vmalloc support for constrained allocations", v2.

Based on a recent discussion with Dave and Neil [1] I have tried to
implement NOFS, NOIO, NOFAIL support for the vmalloc to make life of
kvmalloc users easier.

A requirement for NOFAIL support for kvmalloc was new to me but this
seems to be really needed by the xfs code.

NOFS/NOIO was a known and a long term problem which was hoped to be
handled by the scope API.  Those scope should have been used at the
reclaim recursion boundaries both to document them and also to remove
the necessity of NOFS/NOIO constrains for all allocations within that
scope.  Instead workarounds were developed to wrap a single allocation
instead (like ceph_kvmalloc).

First patch implements NOFS/NOIO support for vmalloc.  The second one
adds NOFAIL support and the third one bundles all together into kvmalloc
and drops ceph_kvmalloc which can use kvmalloc directly now.

[1] http://lkml.kernel.org/r/163184741778.29351.16920832234899124642.stgit@noble.brown

This patch (of 4):

vmalloc historically hasn't supported GFP_NO{FS,IO} requests because
page table allocations do not support externally provided gfp mask and
performed GFP_KERNEL like allocations.

Since few years we have scope (memalloc_no{fs,io}_{save,restore}) APIs
to enforce NOFS and NOIO constrains implicitly to all allocators within
the scope.  There was a hope that those scopes would be defined on a
higher level when the reclaim recursion boundary starts/stops (e.g.
when a lock required during the memory reclaim is required etc.).  It
seems that not all NOFS/NOIO users have adopted this approach and
instead they have taken a workaround approach to wrap a single
[k]vmalloc allocation by a scope API.

These workarounds do not serve the purpose of a better reclaim recursion
documentation and reduction of explicit GFP_NO{FS,IO} usege so let's
just provide them with the semantic they are asking for without a need
for workarounds.

Add support for GFP_NOFS and GFP_NOIO to vmalloc directly.  All internal
allocations already comply with the given gfp_mask.  The only current
exception is vmap_pages_range which maps kernel page tables.  Infer the
proper scope API based on the given gfp mask.

[sfr@canb.auug.org.au: mm/vmalloc.c needs linux/sched/mm.h]
 Link: https://lkml.kernel.org/r/20211217232641.0148710c@canb.auug.org.au

Link: https://lkml.kernel.org/r/20211122153233.9924-1-mhocko@kernel.org
Link: https://lkml.kernel.org/r/20211122153233.9924-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Neil Brown <neilb@suse.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Michal Hocko 2022-01-14 14:06:57 -08:00 committed by Linus Torvalds
parent cc6266f032
commit 451769ebb7

View File

@ -39,6 +39,7 @@
#include <linux/pgtable.h> #include <linux/pgtable.h>
#include <linux/uaccess.h> #include <linux/uaccess.h>
#include <linux/hugetlb.h> #include <linux/hugetlb.h>
#include <linux/sched/mm.h>
#include <asm/tlbflush.h> #include <asm/tlbflush.h>
#include <asm/shmparam.h> #include <asm/shmparam.h>
@ -2928,6 +2929,8 @@ static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
unsigned long array_size; unsigned long array_size;
unsigned int nr_small_pages = size >> PAGE_SHIFT; unsigned int nr_small_pages = size >> PAGE_SHIFT;
unsigned int page_order; unsigned int page_order;
unsigned int flags;
int ret;
array_size = (unsigned long)nr_small_pages * sizeof(struct page *); array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
gfp_mask |= __GFP_NOWARN; gfp_mask |= __GFP_NOWARN;
@ -2976,8 +2979,24 @@ static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
goto fail; goto fail;
} }
if (vmap_pages_range(addr, addr + size, prot, area->pages, /*
page_shift) < 0) { * page tables allocations ignore external gfp mask, enforce it
* by the scope API
*/
if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
flags = memalloc_nofs_save();
else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
flags = memalloc_noio_save();
ret = vmap_pages_range(addr, addr + size, prot, area->pages,
page_shift);
if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
memalloc_nofs_restore(flags);
else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
memalloc_noio_restore(flags);
if (ret < 0) {
warn_alloc(orig_gfp_mask, NULL, warn_alloc(orig_gfp_mask, NULL,
"vmalloc error: size %lu, failed to map pages", "vmalloc error: size %lu, failed to map pages",
area->nr_pages * PAGE_SIZE); area->nr_pages * PAGE_SIZE);