mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-12-29 17:25:38 +00:00
ARM: vfp: Reimplement VFP exception entry in C code
En/disabling softirqs from asm code turned out to be trickier than expected, so vfp_support_entry now returns by tail calling __local_enable_bh_ip() and passing the same arguments that a C call to local_bh_enable() would pass. However, this is slightly hacky, as we don't want to carry our own implementation of local_bh_enable(). So let's bite the bullet, and get rid of the asm logic in vfp_support_entry that reasons about whether or not to save and/or reload the VFP state, and about whether or not an FP exception is pending, and only keep the VFP loading logic as a function that is callable from C. Replicate the removed logic in vfp_entry(), and use the exact same reasoning as in the asm code. To emphasize the correspondence, retain some of the asm comments in the C version as well. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Linus Walleij <linus.walleij@linaro.org>
This commit is contained in:
parent
4a0548c668
commit
4708fb0413
@ -22,10 +22,10 @@
|
||||
@ IRQs enabled.
|
||||
@
|
||||
ENTRY(do_vfp)
|
||||
mov r1, r10
|
||||
str lr, [sp, #-8]!
|
||||
add r3, sp, #4
|
||||
str r9, [r3]
|
||||
bl vfp_entry
|
||||
ldr pc, [sp], #8
|
||||
mov r1, r0 @ pass trigger opcode via R1
|
||||
mov r0, sp @ pass struct pt_regs via R0
|
||||
bl vfp_support_entry @ dispatch the VFP exception
|
||||
cmp r0, #0 @ handled successfully?
|
||||
reteq r9 @ then use R9 as return address
|
||||
ret lr @ pass to undef handler
|
||||
ENDPROC(do_vfp)
|
||||
|
@ -375,3 +375,4 @@ struct op {
|
||||
};
|
||||
|
||||
asmlinkage void vfp_save_state(void *location, u32 fpexc);
|
||||
asmlinkage u32 vfp_load_state(const void *location);
|
||||
|
@ -4,12 +4,6 @@
|
||||
*
|
||||
* Copyright (C) 2004 ARM Limited.
|
||||
* Written by Deep Blue Solutions Limited.
|
||||
*
|
||||
* This code is called from the kernel's undefined instruction trap.
|
||||
* r1 holds the thread_info pointer
|
||||
* r3 holds the return address for successful handling.
|
||||
* lr holds the return address for unrecognised instructions.
|
||||
* sp points to a struct pt_regs (as defined in include/asm/proc/ptrace.h)
|
||||
*/
|
||||
#include <linux/init.h>
|
||||
#include <linux/linkage.h>
|
||||
@ -19,20 +13,6 @@
|
||||
#include <asm/assembler.h>
|
||||
#include <asm/asm-offsets.h>
|
||||
|
||||
.macro DBGSTR, str
|
||||
#ifdef DEBUG
|
||||
stmfd sp!, {r0-r3, ip, lr}
|
||||
ldr r0, =1f
|
||||
bl _printk
|
||||
ldmfd sp!, {r0-r3, ip, lr}
|
||||
|
||||
.pushsection .rodata, "a"
|
||||
1: .ascii KERN_DEBUG "VFP: \str\n"
|
||||
.byte 0
|
||||
.previous
|
||||
#endif
|
||||
.endm
|
||||
|
||||
.macro DBGSTR1, str, arg
|
||||
#ifdef DEBUG
|
||||
stmfd sp!, {r0-r3, ip, lr}
|
||||
@ -48,177 +28,25 @@
|
||||
#endif
|
||||
.endm
|
||||
|
||||
.macro DBGSTR3, str, arg1, arg2, arg3
|
||||
#ifdef DEBUG
|
||||
stmfd sp!, {r0-r3, ip, lr}
|
||||
mov r3, \arg3
|
||||
mov r2, \arg2
|
||||
mov r1, \arg1
|
||||
ldr r0, =1f
|
||||
bl _printk
|
||||
ldmfd sp!, {r0-r3, ip, lr}
|
||||
|
||||
.pushsection .rodata, "a"
|
||||
1: .ascii KERN_DEBUG "VFP: \str\n"
|
||||
.byte 0
|
||||
.previous
|
||||
#endif
|
||||
.endm
|
||||
|
||||
|
||||
@ VFP hardware support entry point.
|
||||
@
|
||||
@ r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
|
||||
@ r1 = thread_info pointer
|
||||
@ r2 = PC value to resume execution after successful emulation
|
||||
@ r3 = normal "successful" return address
|
||||
@ lr = unrecognised instruction return address
|
||||
@ IRQs enabled.
|
||||
ENTRY(vfp_support_entry)
|
||||
ldr r11, [r1, #TI_CPU] @ CPU number
|
||||
add r10, r1, #TI_VFPSTATE @ r10 = workspace
|
||||
|
||||
DBGSTR3 "instr %08x pc %08x state %p", r0, r2, r10
|
||||
|
||||
.fpu vfpv2
|
||||
VFPFMRX r1, FPEXC @ Is the VFP enabled?
|
||||
DBGSTR1 "fpexc %08x", r1
|
||||
tst r1, #FPEXC_EN
|
||||
bne look_for_VFP_exceptions @ VFP is already enabled
|
||||
|
||||
DBGSTR1 "enable %x", r10
|
||||
ldr r9, vfp_current_hw_state_address
|
||||
orr r1, r1, #FPEXC_EN @ user FPEXC has the enable bit set
|
||||
ldr r4, [r9, r11, lsl #2] @ vfp_current_hw_state pointer
|
||||
bic r5, r1, #FPEXC_EX @ make sure exceptions are disabled
|
||||
cmp r4, r10 @ this thread owns the hw context?
|
||||
#ifndef CONFIG_SMP
|
||||
@ For UP, checking that this thread owns the hw context is
|
||||
@ sufficient to determine that the hardware state is valid.
|
||||
beq vfp_hw_state_valid
|
||||
|
||||
@ On UP, we lazily save the VFP context. As a different
|
||||
@ thread wants ownership of the VFP hardware, save the old
|
||||
@ state if there was a previous (valid) owner.
|
||||
|
||||
VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
|
||||
@ exceptions, so we can get at the
|
||||
@ rest of it
|
||||
|
||||
DBGSTR1 "save old state %p", r4
|
||||
cmp r4, #0 @ if the vfp_current_hw_state is NULL
|
||||
beq vfp_reload_hw @ then the hw state needs reloading
|
||||
VFPFSTMIA r4, r5 @ save the working registers
|
||||
VFPFMRX r5, FPSCR @ current status
|
||||
tst r1, #FPEXC_EX @ is there additional state to save?
|
||||
beq 1f
|
||||
VFPFMRX r6, FPINST @ FPINST (only if FPEXC.EX is set)
|
||||
tst r1, #FPEXC_FP2V @ is there an FPINST2 to read?
|
||||
beq 1f
|
||||
VFPFMRX r8, FPINST2 @ FPINST2 if needed (and present)
|
||||
1:
|
||||
stmia r4, {r1, r5, r6, r8} @ save FPEXC, FPSCR, FPINST, FPINST2
|
||||
vfp_reload_hw:
|
||||
|
||||
#else
|
||||
@ For SMP, if this thread does not own the hw context, then we
|
||||
@ need to reload it. No need to save the old state as on SMP,
|
||||
@ we always save the state when we switch away from a thread.
|
||||
bne vfp_reload_hw
|
||||
|
||||
@ This thread has ownership of the current hardware context.
|
||||
@ However, it may have been migrated to another CPU, in which
|
||||
@ case the saved state is newer than the hardware context.
|
||||
@ Check this by looking at the CPU number which the state was
|
||||
@ last loaded onto.
|
||||
ldr ip, [r10, #VFP_CPU]
|
||||
teq ip, r11
|
||||
beq vfp_hw_state_valid
|
||||
|
||||
vfp_reload_hw:
|
||||
@ We're loading this threads state into the VFP hardware. Update
|
||||
@ the CPU number which contains the most up to date VFP context.
|
||||
str r11, [r10, #VFP_CPU]
|
||||
|
||||
VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
|
||||
@ exceptions, so we can get at the
|
||||
@ rest of it
|
||||
#endif
|
||||
|
||||
DBGSTR1 "load state %p", r10
|
||||
str r10, [r9, r11, lsl #2] @ update the vfp_current_hw_state pointer
|
||||
ENTRY(vfp_load_state)
|
||||
@ Load the current VFP state
|
||||
@ r0 - load location
|
||||
@ returns FPEXC
|
||||
DBGSTR1 "load VFP state %p", r0
|
||||
@ Load the saved state back into the VFP
|
||||
VFPFLDMIA r10, r5 @ reload the working registers while
|
||||
VFPFLDMIA r0, r1 @ reload the working registers while
|
||||
@ FPEXC is in a safe state
|
||||
ldmia r10, {r1, r5, r6, r8} @ load FPEXC, FPSCR, FPINST, FPINST2
|
||||
tst r1, #FPEXC_EX @ is there additional state to restore?
|
||||
ldmia r0, {r0-r3} @ load FPEXC, FPSCR, FPINST, FPINST2
|
||||
tst r0, #FPEXC_EX @ is there additional state to restore?
|
||||
beq 1f
|
||||
VFPFMXR FPINST, r6 @ restore FPINST (only if FPEXC.EX is set)
|
||||
tst r1, #FPEXC_FP2V @ is there an FPINST2 to write?
|
||||
VFPFMXR FPINST, r2 @ restore FPINST (only if FPEXC.EX is set)
|
||||
tst r0, #FPEXC_FP2V @ is there an FPINST2 to write?
|
||||
beq 1f
|
||||
VFPFMXR FPINST2, r8 @ FPINST2 if needed (and present)
|
||||
VFPFMXR FPINST2, r3 @ FPINST2 if needed (and present)
|
||||
1:
|
||||
VFPFMXR FPSCR, r5 @ restore status
|
||||
|
||||
@ The context stored in the VFP hardware is up to date with this thread
|
||||
vfp_hw_state_valid:
|
||||
tst r1, #FPEXC_EX
|
||||
bne process_exception @ might as well handle the pending
|
||||
@ exception before retrying branch
|
||||
@ out before setting an FPEXC that
|
||||
@ stops us reading stuff
|
||||
VFPFMXR FPEXC, r1 @ Restore FPEXC last
|
||||
mov sp, r3 @ we think we have handled things
|
||||
pop {lr}
|
||||
sub r2, r2, #4 @ Retry current instruction - if Thumb
|
||||
str r2, [sp, #S_PC] @ mode it's two 16-bit instructions,
|
||||
@ else it's one 32-bit instruction, so
|
||||
@ always subtract 4 from the following
|
||||
@ instruction address.
|
||||
|
||||
local_bh_enable_and_ret:
|
||||
adr r0, .
|
||||
mov r1, #SOFTIRQ_DISABLE_OFFSET
|
||||
b __local_bh_enable_ip @ tail call
|
||||
|
||||
look_for_VFP_exceptions:
|
||||
@ Check for synchronous or asynchronous exception
|
||||
tst r1, #FPEXC_EX | FPEXC_DEX
|
||||
bne process_exception
|
||||
@ On some implementations of the VFP subarch 1, setting FPSCR.IXE
|
||||
@ causes all the CDP instructions to be bounced synchronously without
|
||||
@ setting the FPEXC.EX bit
|
||||
VFPFMRX r5, FPSCR
|
||||
tst r5, #FPSCR_IXE
|
||||
bne process_exception
|
||||
|
||||
tst r5, #FPSCR_LENGTH_MASK
|
||||
beq skip
|
||||
orr r1, r1, #FPEXC_DEX
|
||||
b process_exception
|
||||
skip:
|
||||
|
||||
@ Fall into hand on to next handler - appropriate coproc instr
|
||||
@ not recognised by VFP
|
||||
|
||||
DBGSTR "not VFP"
|
||||
b local_bh_enable_and_ret
|
||||
|
||||
process_exception:
|
||||
DBGSTR "bounce"
|
||||
mov sp, r3 @ setup for a return to the user code.
|
||||
pop {lr}
|
||||
mov r2, sp @ nothing stacked - regdump is at TOS
|
||||
|
||||
@ Now call the C code to package up the bounce to the support code
|
||||
@ r0 holds the trigger instruction
|
||||
@ r1 holds the FPEXC value
|
||||
@ r2 pointer to register dump
|
||||
b VFP_bounce @ we have handled this - the support
|
||||
@ code will raise an exception if
|
||||
@ required. If not, the user code will
|
||||
@ retry the faulted instruction
|
||||
ENDPROC(vfp_support_entry)
|
||||
VFPFMXR FPSCR, r1 @ restore status
|
||||
ret lr
|
||||
ENDPROC(vfp_load_state)
|
||||
|
||||
ENTRY(vfp_save_state)
|
||||
@ Save the current VFP state
|
||||
@ -238,10 +66,6 @@ ENTRY(vfp_save_state)
|
||||
ret lr
|
||||
ENDPROC(vfp_save_state)
|
||||
|
||||
.align
|
||||
vfp_current_hw_state_address:
|
||||
.word vfp_current_hw_state
|
||||
|
||||
.macro tbl_branch, base, tmp, shift
|
||||
#ifdef CONFIG_THUMB2_KERNEL
|
||||
adr \tmp, 1f
|
||||
|
@ -30,11 +30,6 @@
|
||||
#include "vfpinstr.h"
|
||||
#include "vfp.h"
|
||||
|
||||
/*
|
||||
* Our undef handlers (in entry.S)
|
||||
*/
|
||||
asmlinkage void vfp_support_entry(u32, void *, u32, u32);
|
||||
|
||||
static bool have_vfp __ro_after_init;
|
||||
|
||||
/*
|
||||
@ -325,7 +320,7 @@ static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
|
||||
/*
|
||||
* Package up a bounce condition.
|
||||
*/
|
||||
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
{
|
||||
u32 fpscr, orig_fpscr, fpsid, exceptions;
|
||||
|
||||
@ -374,7 +369,7 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
* on VFP subarch 1.
|
||||
*/
|
||||
vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
|
||||
goto exit;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -405,7 +400,7 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
* the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
|
||||
*/
|
||||
if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
|
||||
goto exit;
|
||||
return;
|
||||
|
||||
/*
|
||||
* The barrier() here prevents fpinst2 being read
|
||||
@ -418,8 +413,6 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
|
||||
if (exceptions)
|
||||
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
|
||||
exit:
|
||||
local_bh_enable();
|
||||
}
|
||||
|
||||
static void vfp_enable(void *unused)
|
||||
@ -649,22 +642,112 @@ static int vfp_starting_cpu(unsigned int unused)
|
||||
}
|
||||
|
||||
/*
|
||||
* Entered with:
|
||||
* vfp_support_entry - Handle VFP exception from user mode
|
||||
*
|
||||
* r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
|
||||
* r1 = thread_info pointer
|
||||
* r2 = PC value to resume execution after successful emulation
|
||||
* r3 = normal "successful" return address
|
||||
* lr = unrecognised instruction return address
|
||||
* @regs: pt_regs structure holding the register state at exception entry
|
||||
* @trigger: The opcode of the instruction that triggered the exception
|
||||
*
|
||||
* Returns 0 if the exception was handled, or an error code otherwise.
|
||||
*/
|
||||
asmlinkage void vfp_entry(u32 trigger, struct thread_info *ti, u32 resume_pc,
|
||||
u32 resume_return_address)
|
||||
asmlinkage int vfp_support_entry(struct pt_regs *regs, u32 trigger)
|
||||
{
|
||||
struct thread_info *ti = current_thread_info();
|
||||
u32 fpexc;
|
||||
|
||||
if (unlikely(!have_vfp))
|
||||
return;
|
||||
return -ENODEV;
|
||||
|
||||
local_bh_disable();
|
||||
vfp_support_entry(trigger, ti, resume_pc, resume_return_address);
|
||||
fpexc = fmrx(FPEXC);
|
||||
|
||||
/*
|
||||
* If the VFP unit was not enabled yet, we have to check whether the
|
||||
* VFP state in the CPU's registers is the most recent VFP state
|
||||
* associated with the process. On UP systems, we don't save the VFP
|
||||
* state eagerly on a context switch, so we may need to save the
|
||||
* VFP state to memory first, as it may belong to another process.
|
||||
*/
|
||||
if (!(fpexc & FPEXC_EN)) {
|
||||
/*
|
||||
* Enable the VFP unit but mask the FP exception flag for the
|
||||
* time being, so we can access all the registers.
|
||||
*/
|
||||
fpexc |= FPEXC_EN;
|
||||
fmxr(FPEXC, fpexc & ~FPEXC_EX);
|
||||
|
||||
/*
|
||||
* Check whether or not the VFP state in the CPU's registers is
|
||||
* the most recent VFP state associated with this task. On SMP,
|
||||
* migration may result in multiple CPUs holding VFP states
|
||||
* that belong to the same task, but only the most recent one
|
||||
* is valid.
|
||||
*/
|
||||
if (!vfp_state_in_hw(ti->cpu, ti)) {
|
||||
if (!IS_ENABLED(CONFIG_SMP) &&
|
||||
vfp_current_hw_state[ti->cpu] != NULL) {
|
||||
/*
|
||||
* This CPU is currently holding the most
|
||||
* recent VFP state associated with another
|
||||
* task, and we must save that to memory first.
|
||||
*/
|
||||
vfp_save_state(vfp_current_hw_state[ti->cpu],
|
||||
fpexc);
|
||||
}
|
||||
|
||||
/*
|
||||
* We can now proceed with loading the task's VFP state
|
||||
* from memory into the CPU registers.
|
||||
*/
|
||||
fpexc = vfp_load_state(&ti->vfpstate);
|
||||
vfp_current_hw_state[ti->cpu] = &ti->vfpstate;
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* Record that this CPU is now the one holding the most
|
||||
* recent VFP state of the task.
|
||||
*/
|
||||
ti->vfpstate.hard.cpu = ti->cpu;
|
||||
#endif
|
||||
}
|
||||
|
||||
if (fpexc & FPEXC_EX)
|
||||
/*
|
||||
* Might as well handle the pending exception before
|
||||
* retrying branch out before setting an FPEXC that
|
||||
* stops us reading stuff.
|
||||
*/
|
||||
goto bounce;
|
||||
|
||||
/*
|
||||
* No FP exception is pending: just enable the VFP and
|
||||
* replay the instruction that trapped.
|
||||
*/
|
||||
fmxr(FPEXC, fpexc);
|
||||
regs->ARM_pc -= 4;
|
||||
} else {
|
||||
/* Check for synchronous or asynchronous exceptions */
|
||||
if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
|
||||
u32 fpscr = fmrx(FPSCR);
|
||||
|
||||
/*
|
||||
* On some implementations of the VFP subarch 1,
|
||||
* setting FPSCR.IXE causes all the CDP instructions to
|
||||
* be bounced synchronously without setting the
|
||||
* FPEXC.EX bit
|
||||
*/
|
||||
if (!(fpscr & FPSCR_IXE)) {
|
||||
if (!(fpscr & FPSCR_LENGTH_MASK)) {
|
||||
pr_debug("not VFP\n");
|
||||
local_bh_enable();
|
||||
return -ENOEXEC;
|
||||
}
|
||||
fpexc |= FPEXC_DEX;
|
||||
}
|
||||
}
|
||||
bounce: VFP_bounce(trigger, fpexc, regs);
|
||||
}
|
||||
|
||||
local_bh_enable();
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_KERNEL_MODE_NEON
|
||||
|
Loading…
Reference in New Issue
Block a user