Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net

Cross-merge networking fixes after downstream PR (net-6.12-rc6).

Conflicts:

drivers/net/wireless/intel/iwlwifi/mvm/mld-mac80211.c
  cbe84e9ad5e2 ("wifi: iwlwifi: mvm: really send iwl_txpower_constraints_cmd")
  188a1bf89432 ("wifi: mac80211: re-order assigning channel in activate links")
https://lore.kernel.org/all/20241028123621.7bbb131b@canb.auug.org.au/

net/mac80211/cfg.c
  c4382d5ca1af ("wifi: mac80211: update the right link for tx power")
  8dd0498983ee ("wifi: mac80211: Fix setting txpower with emulate_chanctx")

drivers/net/ethernet/intel/ice/ice_ptp_hw.h
  6e58c3310622 ("ice: fix crash on probe for DPLL enabled E810 LOM")
  e4291b64e118 ("ice: Align E810T GPIO to other products")
  ebb2693f8fbd ("ice: Read SDP section from NVM for pin definitions")
  ac532f4f4251 ("ice: Cleanup unused declarations")
https://lore.kernel.org/all/20241030120524.1ee1af18@canb.auug.org.au/

No adjacent changes.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This commit is contained in:
Jakub Kicinski 2024-10-31 17:30:16 -07:00
commit 5b1c965956
321 changed files with 3568 additions and 3245 deletions

View File

@ -425,8 +425,8 @@ This governor exposes only one tunable:
``rate_limit_us``
Minimum time (in microseconds) that has to pass between two consecutive
runs of governor computations (default: 1000 times the scaling driver's
transition latency).
runs of governor computations (default: 1.5 times the scaling driver's
transition latency or the maximum 2ms).
The purpose of this tunable is to reduce the scheduler context overhead
of the governor which might be excessive without it.
@ -474,17 +474,17 @@ This governor exposes the following tunables:
This is how often the governor's worker routine should run, in
microseconds.
Typically, it is set to values of the order of 10000 (10 ms). Its
default value is equal to the value of ``cpuinfo_transition_latency``
for each policy this governor is attached to (but since the unit here
is greater by 1000, this means that the time represented by
``sampling_rate`` is 1000 times greater than the transition latency by
default).
Typically, it is set to values of the order of 2000 (2 ms). Its
default value is to add a 50% breathing room
to ``cpuinfo_transition_latency`` on each policy this governor is
attached to. The minimum is typically the length of two scheduler
ticks.
If this tunable is per-policy, the following shell command sets the time
represented by it to be 750 times as high as the transition latency::
represented by it to be 1.5 times as high as the transition latency
(the default)::
# echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) > ondemand/sampling_rate
# echo `$(($(cat cpuinfo_transition_latency) * 3 / 2)) > ondemand/sampling_rate
``up_threshold``
If the estimated CPU load is above this value (in percent), the governor

View File

@ -102,21 +102,21 @@ properties:
default: 2
interrupts:
oneOf:
- minItems: 1
items:
- description: TX interrupt
- description: RX interrupt
- items:
- description: common/combined interrupt
minItems: 1
maxItems: 2
interrupt-names:
oneOf:
- minItems: 1
- description: TX interrupt
const: tx
- description: RX interrupt
const: rx
- description: TX and RX interrupts
items:
- const: tx
- const: rx
- const: common
- description: Common/combined interrupt
const: common
fck_parent:
$ref: /schemas/types.yaml#/definitions/string

View File

@ -48,6 +48,10 @@ properties:
- const: mclk_rx
- const: hclk
port:
$ref: audio-graph-port.yaml#
unevaluatedProperties: false
resets:
maxItems: 1

View File

@ -16,7 +16,7 @@ ii) transmit network traffic, or any other that needs raw
Howto can be found at:
https://sites.google.com/site/packetmmap/
https://web.archive.org/web/20220404160947/https://sites.google.com/site/packetmmap/
Please send your comments to
- Ulisses Alonso Camaró <uaca@i.hate.spam.alumni.uv.es>
@ -166,7 +166,8 @@ As capture, each frame contains two parts::
/* bind socket to eth0 */
bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
A complete tutorial is available at: https://sites.google.com/site/packetmmap/
A complete tutorial is available at:
https://web.archive.org/web/20220404160947/https://sites.google.com/site/packetmmap/
By default, the user should put data at::

View File

@ -23,177 +23,166 @@ applications can additionally seal security critical data at runtime.
A similar feature already exists in the XNU kernel with the
VM_FLAGS_PERMANENT flag [1] and on OpenBSD with the mimmutable syscall [2].
User API
========
mseal()
-----------
The mseal() syscall has the following signature:
SYSCALL
=======
mseal syscall signature
-----------------------
``int mseal(void \* addr, size_t len, unsigned long flags)``
``int mseal(void addr, size_t len, unsigned long flags)``
**addr**/**len**: virtual memory address range.
The address range set by **addr**/**len** must meet:
- The start address must be in an allocated VMA.
- The start address must be page aligned.
- The end address (**addr** + **len**) must be in an allocated VMA.
- no gap (unallocated memory) between start and end address.
**addr/len**: virtual memory address range.
The ``len`` will be paged aligned implicitly by the kernel.
The address range set by ``addr``/``len`` must meet:
- The start address must be in an allocated VMA.
- The start address must be page aligned.
- The end address (``addr`` + ``len``) must be in an allocated VMA.
- no gap (unallocated memory) between start and end address.
**flags**: reserved for future use.
The ``len`` will be paged aligned implicitly by the kernel.
**Return values**:
- **0**: Success.
- **-EINVAL**:
* Invalid input ``flags``.
* The start address (``addr``) is not page aligned.
* Address range (``addr`` + ``len``) overflow.
- **-ENOMEM**:
* The start address (``addr``) is not allocated.
* The end address (``addr`` + ``len``) is not allocated.
* A gap (unallocated memory) between start and end address.
- **-EPERM**:
* sealing is supported only on 64-bit CPUs, 32-bit is not supported.
**flags**: reserved for future use.
**Note about error return**:
- For above error cases, users can expect the given memory range is
unmodified, i.e. no partial update.
- There might be other internal errors/cases not listed here, e.g.
error during merging/splitting VMAs, or the process reaching the maximum
number of supported VMAs. In those cases, partial updates to the given
memory range could happen. However, those cases should be rare.
**return values**:
**Architecture support**:
mseal only works on 64-bit CPUs, not 32-bit CPUs.
- ``0``: Success.
**Idempotent**:
users can call mseal multiple times. mseal on an already sealed memory
is a no-action (not error).
- ``-EINVAL``:
- Invalid input ``flags``.
- The start address (``addr``) is not page aligned.
- Address range (``addr`` + ``len``) overflow.
**no munseal**
Once mapping is sealed, it can't be unsealed. The kernel should never
have munseal, this is consistent with other sealing feature, e.g.
F_SEAL_SEAL for file.
- ``-ENOMEM``:
- The start address (``addr``) is not allocated.
- The end address (``addr`` + ``len``) is not allocated.
- A gap (unallocated memory) between start and end address.
Blocked mm syscall for sealed mapping
-------------------------------------
It might be important to note: **once the mapping is sealed, it will
stay in the process's memory until the process terminates**.
- ``-EPERM``:
- sealing is supported only on 64-bit CPUs, 32-bit is not supported.
Example::
- For above error cases, users can expect the given memory range is
unmodified, i.e. no partial update.
*ptr = mmap(0, 4096, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0);
rc = mseal(ptr, 4096, 0);
/* munmap will fail */
rc = munmap(ptr, 4096);
assert(rc < 0);
- There might be other internal errors/cases not listed here, e.g.
error during merging/splitting VMAs, or the process reaching the max
number of supported VMAs. In those cases, partial updates to the given
memory range could happen. However, those cases should be rare.
Blocked mm syscall:
- munmap
- mmap
- mremap
- mprotect and pkey_mprotect
- some destructive madvise behaviors: MADV_DONTNEED, MADV_FREE,
MADV_DONTNEED_LOCKED, MADV_FREE, MADV_DONTFORK, MADV_WIPEONFORK
**Blocked operations after sealing**:
Unmapping, moving to another location, and shrinking the size,
via munmap() and mremap(), can leave an empty space, therefore
can be replaced with a VMA with a new set of attributes.
The first set of syscalls to block is munmap, mremap, mmap. They can
either leave an empty space in the address space, therefore allowing
replacement with a new mapping with new set of attributes, or can
overwrite the existing mapping with another mapping.
Moving or expanding a different VMA into the current location,
via mremap().
mprotect and pkey_mprotect are blocked because they changes the
protection bits (RWX) of the mapping.
Modifying a VMA via mmap(MAP_FIXED).
Certain destructive madvise behaviors, specifically MADV_DONTNEED,
MADV_FREE, MADV_DONTNEED_LOCKED, and MADV_WIPEONFORK, can introduce
risks when applied to anonymous memory by threads lacking write
permissions. Consequently, these operations are prohibited under such
conditions. The aforementioned behaviors have the potential to modify
region contents by discarding pages, effectively performing a memset(0)
operation on the anonymous memory.
Size expansion, via mremap(), does not appear to pose any
specific risks to sealed VMAs. It is included anyway because
the use case is unclear. In any case, users can rely on
merging to expand a sealed VMA.
Kernel will return -EPERM for blocked syscalls.
mprotect() and pkey_mprotect().
When blocked syscall return -EPERM due to sealing, the memory regions may
or may not be changed, depends on the syscall being blocked:
Some destructive madvice() behaviors (e.g. MADV_DONTNEED)
for anonymous memory, when users don't have write permission to the
memory. Those behaviors can alter region contents by discarding pages,
effectively a memset(0) for anonymous memory.
- munmap: munmap is atomic. If one of VMAs in the given range is
sealed, none of VMAs are updated.
- mprotect, pkey_mprotect, madvise: partial update might happen, e.g.
when mprotect over multiple VMAs, mprotect might update the beginning
VMAs before reaching the sealed VMA and return -EPERM.
- mmap and mremap: undefined behavior.
Kernel will return -EPERM for blocked operations.
For blocked operations, one can expect the given address is unmodified,
i.e. no partial update. Note, this is different from existing mm
system call behaviors, where partial updates are made till an error is
found and returned to userspace. To give an example:
Assume following code sequence:
- ptr = mmap(null, 8192, PROT_NONE);
- munmap(ptr + 4096, 4096);
- ret1 = mprotect(ptr, 8192, PROT_READ);
- mseal(ptr, 4096);
- ret2 = mprotect(ptr, 8192, PROT_NONE);
ret1 will be -ENOMEM, the page from ptr is updated to PROT_READ.
ret2 will be -EPERM, the page remains to be PROT_READ.
**Note**:
- mseal() only works on 64-bit CPUs, not 32-bit CPU.
- users can call mseal() multiple times, mseal() on an already sealed memory
is a no-action (not error).
- munseal() is not supported.
Use cases:
==========
Use cases
=========
- glibc:
The dynamic linker, during loading ELF executables, can apply sealing to
non-writable memory segments.
mapping segments.
- Chrome browser: protect some security sensitive data-structures.
- Chrome browser: protect some security sensitive data structures.
Notes on which memory to seal:
==============================
It might be important to note that sealing changes the lifetime of a mapping,
i.e. the sealed mapping wont be unmapped till the process terminates or the
exec system call is invoked. Applications can apply sealing to any virtual
memory region from userspace, but it is crucial to thoroughly analyze the
mapping's lifetime prior to apply the sealing.
When not to use mseal
=====================
Applications can apply sealing to any virtual memory region from userspace,
but it is *crucial to thoroughly analyze the mapping's lifetime* prior to
apply the sealing. This is because the sealed mapping *wont be unmapped*
until the process terminates or the exec system call is invoked.
For example:
- aio/shm
aio/shm can call mmap and munmap on behalf of userspace, e.g.
ksys_shmdt() in shm.c. The lifetimes of those mapping are not tied to
the lifetime of the process. If those memories are sealed from userspace,
then munmap will fail, causing leaks in VMA address space during the
lifetime of the process.
- aio/shm
- ptr allocated by malloc (heap)
Don't use mseal on the memory ptr return from malloc().
malloc() is implemented by allocator, e.g. by glibc. Heap manager might
allocate a ptr from brk or mapping created by mmap.
If an app calls mseal on a ptr returned from malloc(), this can affect
the heap manager's ability to manage the mappings; the outcome is
non-deterministic.
aio/shm can call mmap()/munmap() on behalf of userspace, e.g. ksys_shmdt() in
shm.c. The lifetime of those mapping are not tied to the lifetime of the
process. If those memories are sealed from userspace, then munmap() will fail,
causing leaks in VMA address space during the lifetime of the process.
Example::
- Brk (heap)
ptr = malloc(size);
/* don't call mseal on ptr return from malloc. */
mseal(ptr, size);
/* free will success, allocator can't shrink heap lower than ptr */
free(ptr);
Currently, userspace applications can seal parts of the heap by calling
malloc() and mseal().
let's assume following calls from user space:
mseal doesn't block
===================
In a nutshell, mseal blocks certain mm syscall from modifying some of VMA's
attributes, such as protection bits (RWX). Sealed mappings doesn't mean the
memory is immutable.
- ptr = malloc(size);
- mprotect(ptr, size, RO);
- mseal(ptr, size);
- free(ptr);
Technically, before mseal() is added, the user can change the protection of
the heap by calling mprotect(RO). As long as the user changes the protection
back to RW before free(), the memory range can be reused.
Adding mseal() into the picture, however, the heap is then sealed partially,
the user can still free it, but the memory remains to be RO. If the address
is re-used by the heap manager for another malloc, the process might crash
soon after. Therefore, it is important not to apply sealing to any memory
that might get recycled.
Furthermore, even if the application never calls the free() for the ptr,
the heap manager may invoke the brk system call to shrink the size of the
heap. In the kernel, the brk-shrink will call munmap(). Consequently,
depending on the location of the ptr, the outcome of brk-shrink is
nondeterministic.
Additional notes:
=================
As Jann Horn pointed out in [3], there are still a few ways to write
to RO memory, which is, in a way, by design. Those cases are not covered
by mseal(). If applications want to block such cases, sandbox tools (such as
seccomp, LSM, etc) might be considered.
to RO memory, which is, in a way, by design. And those could be blocked
by different security measures.
Those cases are:
- Write to read-only memory through /proc/self/mem interface.
- Write to read-only memory through ptrace (such as PTRACE_POKETEXT).
- userfaultfd.
- Write to read-only memory through /proc/self/mem interface (FOLL_FORCE).
- Write to read-only memory through ptrace (such as PTRACE_POKETEXT).
- userfaultfd.
The idea that inspired this patch comes from Stephen Röttgers work in V8
CFI [4]. Chrome browser in ChromeOS will be the first user of this API.
Reference:
==========
[1] https://github.com/apple-oss-distributions/xnu/blob/1031c584a5e37aff177559b9f69dbd3c8c3fd30a/osfmk/mach/vm_statistics.h#L274
[2] https://man.openbsd.org/mimmutable.2
[3] https://lore.kernel.org/lkml/CAG48ez3ShUYey+ZAFsU2i1RpQn0a5eOs2hzQ426FkcgnfUGLvA@mail.gmail.com
[4] https://docs.google.com/document/d/1O2jwK4dxI3nRcOJuPYkonhTkNQfbmwdvxQMyXgeaRHo/edit#heading=h.bvaojj9fu6hc
Reference
=========
- [1] https://github.com/apple-oss-distributions/xnu/blob/1031c584a5e37aff177559b9f69dbd3c8c3fd30a/osfmk/mach/vm_statistics.h#L274
- [2] https://man.openbsd.org/mimmutable.2
- [3] https://lore.kernel.org/lkml/CAG48ez3ShUYey+ZAFsU2i1RpQn0a5eOs2hzQ426FkcgnfUGLvA@mail.gmail.com
- [4] https://docs.google.com/document/d/1O2jwK4dxI3nRcOJuPYkonhTkNQfbmwdvxQMyXgeaRHo/edit#heading=h.bvaojj9fu6hc

View File

@ -9723,6 +9723,7 @@ F: include/dt-bindings/gpio/
F: include/linux/gpio.h
F: include/linux/gpio/
F: include/linux/of_gpio.h
K: (devm_)?gpio_(request|free|direction|get|set)
GPIO UAPI
M: Bartosz Golaszewski <brgl@bgdev.pl>
@ -14992,6 +14993,7 @@ F: drivers/spi/spi-at91-usart.c
MICROCHIP AUDIO ASOC DRIVERS
M: Claudiu Beznea <claudiu.beznea@tuxon.dev>
M: Andrei Simion <andrei.simion@microchip.com>
L: linux-sound@vger.kernel.org
S: Supported
F: Documentation/devicetree/bindings/sound/atmel*
@ -15107,6 +15109,7 @@ F: include/video/atmel_lcdc.h
MICROCHIP MCP16502 PMIC DRIVER
M: Claudiu Beznea <claudiu.beznea@tuxon.dev>
M: Andrei Simion <andrei.simion@microchip.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Supported
F: Documentation/devicetree/bindings/regulator/microchip,mcp16502.yaml
@ -15237,6 +15240,7 @@ F: drivers/spi/spi-atmel.*
MICROCHIP SSC DRIVER
M: Claudiu Beznea <claudiu.beznea@tuxon.dev>
M: Andrei Simion <andrei.simion@microchip.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Supported
F: Documentation/devicetree/bindings/misc/atmel-ssc.txt
@ -23167,7 +23171,7 @@ F: Documentation/devicetree/bindings/iio/adc/ti,lmp92064.yaml
F: drivers/iio/adc/ti-lmp92064.c
TI PCM3060 ASoC CODEC DRIVER
M: Kirill Marinushkin <kmarinushkin@birdec.com>
M: Kirill Marinushkin <k.marinushkin@gmail.com>
L: linux-sound@vger.kernel.org
S: Maintained
F: Documentation/devicetree/bindings/sound/pcm3060.txt

View File

@ -2,7 +2,7 @@
VERSION = 6
PATCHLEVEL = 12
SUBLEVEL = 0
EXTRAVERSION = -rc4
EXTRAVERSION = -rc5
NAME = Baby Opossum Posse
# *DOCUMENTATION*

View File

@ -2220,7 +2220,11 @@ static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im,
emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
if (flags & BPF_TRAMP_F_CALL_ORIG) {
emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
/* for the first pass, assume the worst case */
if (!ctx->image)
ctx->idx += 4;
else
emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
emit_call((const u64)__bpf_tramp_enter, ctx);
}
@ -2264,7 +2268,11 @@ static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im,
if (flags & BPF_TRAMP_F_CALL_ORIG) {
im->ip_epilogue = ctx->ro_image + ctx->idx;
emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
/* for the first pass, assume the worst case */
if (!ctx->image)
ctx->idx += 4;
else
emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
emit_call((const u64)__bpf_tramp_exit, ctx);
}

View File

@ -2257,6 +2257,7 @@ config RANDOMIZE_MEMORY_PHYSICAL_PADDING
config ADDRESS_MASKING
bool "Linear Address Masking support"
depends on X86_64
depends on COMPILE_TEST || !CPU_MITIGATIONS # wait for LASS
help
Linear Address Masking (LAM) modifies the checking that is applied
to 64-bit linear addresses, allowing software to use of the

View File

@ -6,7 +6,7 @@
typeof(sym) __ret; \
asm_inline("mov %1,%0\n1:\n" \
".pushsection runtime_ptr_" #sym ",\"a\"\n\t" \
".long 1b - %c2 - .\n\t" \
".long 1b - %c2 - .\n" \
".popsection" \
:"=r" (__ret) \
:"i" ((unsigned long)0x0123456789abcdefull), \
@ -20,7 +20,7 @@
typeof(0u+(val)) __ret = (val); \
asm_inline("shrl $12,%k0\n1:\n" \
".pushsection runtime_shift_" #sym ",\"a\"\n\t" \
".long 1b - 1 - .\n\t" \
".long 1b - 1 - .\n" \
".popsection" \
:"+r" (__ret)); \
__ret; })

View File

@ -12,6 +12,13 @@
#include <asm/cpufeatures.h>
#include <asm/page.h>
#include <asm/percpu.h>
#include <asm/runtime-const.h>
/*
* Virtual variable: there's no actual backing store for this,
* it can purely be used as 'runtime_const_ptr(USER_PTR_MAX)'
*/
extern unsigned long USER_PTR_MAX;
#ifdef CONFIG_ADDRESS_MASKING
/*
@ -46,19 +53,24 @@ static inline unsigned long __untagged_addr_remote(struct mm_struct *mm,
#endif
/*
* The virtual address space space is logically divided into a kernel
* half and a user half. When cast to a signed type, user pointers
* are positive and kernel pointers are negative.
*/
#define valid_user_address(x) ((__force long)(x) >= 0)
#define valid_user_address(x) \
((__force unsigned long)(x) <= runtime_const_ptr(USER_PTR_MAX))
/*
* Masking the user address is an alternative to a conditional
* user_access_begin that can avoid the fencing. This only works
* for dense accesses starting at the address.
*/
#define mask_user_address(x) ((typeof(x))((long)(x)|((long)(x)>>63)))
static inline void __user *mask_user_address(const void __user *ptr)
{
unsigned long mask;
asm("cmp %1,%0\n\t"
"sbb %0,%0"
:"=r" (mask)
:"r" (ptr),
"0" (runtime_const_ptr(USER_PTR_MAX)));
return (__force void __user *)(mask | (__force unsigned long)ptr);
}
#define masked_user_access_begin(x) ({ \
__auto_type __masked_ptr = (x); \
__masked_ptr = mask_user_address(__masked_ptr); \
@ -69,23 +81,16 @@ static inline unsigned long __untagged_addr_remote(struct mm_struct *mm,
* arbitrary values in those bits rather then masking them off.
*
* Enforce two rules:
* 1. 'ptr' must be in the user half of the address space
* 1. 'ptr' must be in the user part of the address space
* 2. 'ptr+size' must not overflow into kernel addresses
*
* Note that addresses around the sign change are not valid addresses,
* and will GP-fault even with LAM enabled if the sign bit is set (see
* "CR3.LAM_SUP" that can narrow the canonicality check if we ever
* enable it, but not remove it entirely).
*
* So the "overflow into kernel addresses" does not imply some sudden
* exact boundary at the sign bit, and we can allow a lot of slop on the
* size check.
* Note that we always have at least one guard page between the
* max user address and the non-canonical gap, allowing us to
* ignore small sizes entirely.
*
* In fact, we could probably remove the size check entirely, since
* any kernel accesses will be in increasing address order starting
* at 'ptr', and even if the end might be in kernel space, we'll
* hit the GP faults for non-canonical accesses before we ever get
* there.
* at 'ptr'.
*
* That's a separate optimization, for now just handle the small
* constant case.

View File

@ -69,6 +69,7 @@
#include <asm/sev.h>
#include <asm/tdx.h>
#include <asm/posted_intr.h>
#include <asm/runtime-const.h>
#include "cpu.h"
@ -2389,6 +2390,15 @@ void __init arch_cpu_finalize_init(void)
alternative_instructions();
if (IS_ENABLED(CONFIG_X86_64)) {
unsigned long USER_PTR_MAX = TASK_SIZE_MAX-1;
/*
* Enable this when LAM is gated on LASS support
if (cpu_feature_enabled(X86_FEATURE_LAM))
USER_PTR_MAX = (1ul << 63) - PAGE_SIZE - 1;
*/
runtime_const_init(ptr, USER_PTR_MAX);
/*
* Make sure the first 2MB area is not mapped by huge pages
* There are typically fixed size MTRRs in there and overlapping

View File

@ -584,7 +584,7 @@ void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_
native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy);
}
static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size);
static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size);
static int __init save_microcode_in_initrd(void)
{
@ -605,7 +605,7 @@ static int __init save_microcode_in_initrd(void)
if (!desc.mc)
return -EINVAL;
ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
if (ret > UCODE_UPDATED)
return -EINVAL;
@ -613,16 +613,19 @@ static int __init save_microcode_in_initrd(void)
}
early_initcall(save_microcode_in_initrd);
static inline bool patch_cpus_equivalent(struct ucode_patch *p, struct ucode_patch *n)
static inline bool patch_cpus_equivalent(struct ucode_patch *p,
struct ucode_patch *n,
bool ignore_stepping)
{
/* Zen and newer hardcode the f/m/s in the patch ID */
if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
/* Zap stepping */
p_cid.stepping = 0;
n_cid.stepping = 0;
if (ignore_stepping) {
p_cid.stepping = 0;
n_cid.stepping = 0;
}
return p_cid.full == n_cid.full;
} else {
@ -644,13 +647,13 @@ static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equi
WARN_ON_ONCE(!n.patch_id);
list_for_each_entry(p, &microcode_cache, plist)
if (patch_cpus_equivalent(p, &n))
if (patch_cpus_equivalent(p, &n, false))
return p;
return NULL;
}
static inline bool patch_newer(struct ucode_patch *p, struct ucode_patch *n)
static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
{
/* Zen and newer hardcode the f/m/s in the patch ID */
if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
@ -659,6 +662,9 @@ static inline bool patch_newer(struct ucode_patch *p, struct ucode_patch *n)
zp.ucode_rev = p->patch_id;
zn.ucode_rev = n->patch_id;
if (zn.stepping != zp.stepping)
return -1;
return zn.rev > zp.rev;
} else {
return n->patch_id > p->patch_id;
@ -668,10 +674,14 @@ static inline bool patch_newer(struct ucode_patch *p, struct ucode_patch *n)
static void update_cache(struct ucode_patch *new_patch)
{
struct ucode_patch *p;
int ret;
list_for_each_entry(p, &microcode_cache, plist) {
if (patch_cpus_equivalent(p, new_patch)) {
if (!patch_newer(p, new_patch)) {
if (patch_cpus_equivalent(p, new_patch, true)) {
ret = patch_newer(p, new_patch);
if (ret < 0)
continue;
else if (!ret) {
/* we already have the latest patch */
kfree(new_patch->data);
kfree(new_patch);
@ -944,6 +954,20 @@ static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
return UCODE_OK;
}
static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
{
enum ucode_state ret;
/* free old equiv table */
free_equiv_cpu_table();
ret = __load_microcode_amd(family, data, size);
if (ret != UCODE_OK)
cleanup();
return ret;
}
static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
{
struct cpuinfo_x86 *c;
@ -951,14 +975,9 @@ static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t siz
struct ucode_patch *p;
enum ucode_state ret;
/* free old equiv table */
free_equiv_cpu_table();
ret = __load_microcode_amd(family, data, size);
if (ret != UCODE_OK) {
cleanup();
ret = _load_microcode_amd(family, data, size);
if (ret != UCODE_OK)
return ret;
}
for_each_node(nid) {
cpu = cpumask_first(cpumask_of_node(nid));

View File

@ -261,12 +261,6 @@ static noinstr bool handle_bug(struct pt_regs *regs)
int ud_type;
u32 imm;
/*
* Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
* is a rare case that uses @regs without passing them to
* irqentry_enter().
*/
kmsan_unpoison_entry_regs(regs);
ud_type = decode_bug(regs->ip, &imm);
if (ud_type == BUG_NONE)
return handled;
@ -275,6 +269,12 @@ static noinstr bool handle_bug(struct pt_regs *regs)
* All lies, just get the WARN/BUG out.
*/
instrumentation_begin();
/*
* Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
* is a rare case that uses @regs without passing them to
* irqentry_enter().
*/
kmsan_unpoison_entry_regs(regs);
/*
* Since we're emulating a CALL with exceptions, restore the interrupt
* state to what it was at the exception site.

View File

@ -358,6 +358,7 @@ SECTIONS
#endif
RUNTIME_CONST_VARIABLES
RUNTIME_CONST(ptr, USER_PTR_MAX)
. = ALIGN(PAGE_SIZE);

View File

@ -39,8 +39,13 @@
.macro check_range size:req
.if IS_ENABLED(CONFIG_X86_64)
mov %rax, %rdx
sar $63, %rdx
movq $0x0123456789abcdef,%rdx
1:
.pushsection runtime_ptr_USER_PTR_MAX,"a"
.long 1b - 8 - .
.popsection
cmp %rax, %rdx
sbb %rdx, %rdx
or %rdx, %rax
.else
cmp $TASK_SIZE_MAX-\size+1, %eax

View File

@ -173,6 +173,8 @@ static void __init __snp_fixup_e820_tables(u64 pa)
e820__range_update(pa, PMD_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
e820__range_update_table(e820_table_kexec, pa, PMD_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
e820__range_update_table(e820_table_firmware, pa, PMD_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
if (!memblock_is_region_reserved(pa, PMD_SIZE))
memblock_reserve(pa, PMD_SIZE);
}
}

View File

@ -600,9 +600,7 @@ static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
goto put_bio;
if (bytes + bv->bv_len > nr_iter)
goto put_bio;
if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
goto put_bio;
break;
nsegs++;
bytes += bv->bv_len;

View File

@ -130,6 +130,17 @@ static const struct dmi_system_id dmi_lid_quirks[] = {
},
.driver_data = (void *)(long)ACPI_BUTTON_LID_INIT_OPEN,
},
{
/*
* Samsung galaxybook2 ,initial _LID device notification returns
* lid closed.
*/
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD."),
DMI_MATCH(DMI_PRODUCT_NAME, "750XED"),
},
.driver_data = (void *)(long)ACPI_BUTTON_LID_INIT_OPEN,
},
{}
};

View File

@ -1916,9 +1916,15 @@ unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
u64 mul, div;
if (caps->lowest_freq && caps->nominal_freq) {
mul = caps->nominal_freq - caps->lowest_freq;
/* Avoid special case when nominal_freq is equal to lowest_freq */
if (caps->lowest_freq == caps->nominal_freq) {
mul = caps->nominal_freq;
div = caps->nominal_perf;
} else {
mul = caps->nominal_freq - caps->lowest_freq;
div = caps->nominal_perf - caps->lowest_perf;
}
mul *= KHZ_PER_MHZ;
div = caps->nominal_perf - caps->lowest_perf;
offset = caps->nominal_freq * KHZ_PER_MHZ -
div64_u64(caps->nominal_perf * mul, div);
} else {
@ -1939,11 +1945,17 @@ unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
{
s64 retval, offset = 0;
static u64 max_khz;
u64 mul, div;
u64 mul, div;
if (caps->lowest_freq && caps->nominal_freq) {
mul = caps->nominal_perf - caps->lowest_perf;
div = caps->nominal_freq - caps->lowest_freq;
/* Avoid special case when nominal_freq is equal to lowest_freq */
if (caps->lowest_freq == caps->nominal_freq) {
mul = caps->nominal_perf;
div = caps->nominal_freq;
} else {
mul = caps->nominal_perf - caps->lowest_perf;
div = caps->nominal_freq - caps->lowest_freq;
}
/*
* We don't need to convert to kHz for computing offset and can
* directly use nominal_freq and lowest_freq as the div64_u64

View File

@ -52,7 +52,7 @@ struct prm_context_buffer {
static LIST_HEAD(prm_module_list);
struct prm_handler_info {
guid_t guid;
efi_guid_t guid;
efi_status_t (__efiapi *handler_addr)(u64, void *);
u64 static_data_buffer_addr;
u64 acpi_param_buffer_addr;
@ -72,17 +72,21 @@ struct prm_module_info {
struct prm_handler_info handlers[] __counted_by(handler_count);
};
static u64 efi_pa_va_lookup(u64 pa)
static u64 efi_pa_va_lookup(efi_guid_t *guid, u64 pa)
{
efi_memory_desc_t *md;
u64 pa_offset = pa & ~PAGE_MASK;
u64 page = pa & PAGE_MASK;
for_each_efi_memory_desc(md) {
if (md->phys_addr < pa && pa < md->phys_addr + PAGE_SIZE * md->num_pages)
if ((md->attribute & EFI_MEMORY_RUNTIME) &&
(md->phys_addr < pa && pa < md->phys_addr + PAGE_SIZE * md->num_pages)) {
return pa_offset + md->virt_addr + page - md->phys_addr;
}
}
pr_warn("Failed to find VA for GUID: %pUL, PA: 0x%llx", guid, pa);
return 0;
}
@ -148,9 +152,15 @@ acpi_parse_prmt(union acpi_subtable_headers *header, const unsigned long end)
th = &tm->handlers[cur_handler];
guid_copy(&th->guid, (guid_t *)handler_info->handler_guid);
th->handler_addr = (void *)efi_pa_va_lookup(handler_info->handler_address);
th->static_data_buffer_addr = efi_pa_va_lookup(handler_info->static_data_buffer_address);
th->acpi_param_buffer_addr = efi_pa_va_lookup(handler_info->acpi_param_buffer_address);
th->handler_addr =
(void *)efi_pa_va_lookup(&th->guid, handler_info->handler_address);
th->static_data_buffer_addr =
efi_pa_va_lookup(&th->guid, handler_info->static_data_buffer_address);
th->acpi_param_buffer_addr =
efi_pa_va_lookup(&th->guid, handler_info->acpi_param_buffer_address);
} while (++cur_handler < tm->handler_count && (handler_info = get_next_handler(handler_info)));
return 0;
@ -277,6 +287,13 @@ static acpi_status acpi_platformrt_space_handler(u32 function,
if (!handler || !module)
goto invalid_guid;
if (!handler->handler_addr ||
!handler->static_data_buffer_addr ||
!handler->acpi_param_buffer_addr) {
buffer->prm_status = PRM_HANDLER_ERROR;
return AE_OK;
}
ACPI_COPY_NAMESEG(context.signature, "PRMC");
context.revision = 0x0;
context.reserved = 0x0;

View File

@ -503,6 +503,13 @@ static const struct dmi_system_id irq1_level_low_skip_override[] = {
DMI_MATCH(DMI_BOARD_NAME, "17U70P"),
},
},
{
/* LG Electronics 16T90SP */
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LG Electronics"),
DMI_MATCH(DMI_BOARD_NAME, "16T90SP"),
},
},
{ }
};

View File

@ -651,6 +651,7 @@ void ata_scsi_cmd_error_handler(struct Scsi_Host *host, struct ata_port *ap,
/* the scmd has an associated qc */
if (!(qc->flags & ATA_QCFLAG_EH)) {
/* which hasn't failed yet, timeout */
set_host_byte(scmd, DID_TIME_OUT);
qc->err_mask |= AC_ERR_TIMEOUT;
qc->flags |= ATA_QCFLAG_EH;
nr_timedout++;

View File

@ -674,6 +674,16 @@ EXPORT_SYMBOL_GPL(tpm_chip_register);
*/
void tpm_chip_unregister(struct tpm_chip *chip)
{
#ifdef CONFIG_TCG_TPM2_HMAC
int rc;
rc = tpm_try_get_ops(chip);
if (!rc) {
tpm2_end_auth_session(chip);
tpm_put_ops(chip);
}
#endif
tpm_del_legacy_sysfs(chip);
if (tpm_is_hwrng_enabled(chip))
hwrng_unregister(&chip->hwrng);

View File

@ -27,6 +27,9 @@ static ssize_t tpm_dev_transmit(struct tpm_chip *chip, struct tpm_space *space,
struct tpm_header *header = (void *)buf;
ssize_t ret, len;
if (chip->flags & TPM_CHIP_FLAG_TPM2)
tpm2_end_auth_session(chip);
ret = tpm2_prepare_space(chip, space, buf, bufsiz);
/* If the command is not implemented by the TPM, synthesize a
* response with a TPM2_RC_COMMAND_CODE return for user-space.

View File

@ -379,10 +379,12 @@ int tpm_pm_suspend(struct device *dev)
rc = tpm_try_get_ops(chip);
if (!rc) {
if (chip->flags & TPM_CHIP_FLAG_TPM2)
if (chip->flags & TPM_CHIP_FLAG_TPM2) {
tpm2_end_auth_session(chip);
tpm2_shutdown(chip, TPM2_SU_STATE);
else
} else {
rc = tpm1_pm_suspend(chip, tpm_suspend_pcr);
}
tpm_put_ops(chip);
}

View File

@ -333,6 +333,9 @@ void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
}
#ifdef CONFIG_TCG_TPM2_HMAC
/* The first write to /dev/tpm{rm0} will flush the session. */
attributes |= TPM2_SA_CONTINUE_SESSION;
/*
* The Architecture Guide requires us to strip trailing zeros
* before computing the HMAC
@ -484,7 +487,8 @@ static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
sha256_final(&sctx, out);
}
static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip)
static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip,
struct tpm2_auth *auth)
{
struct crypto_kpp *kpp;
struct kpp_request *req;
@ -543,7 +547,7 @@ static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip)
sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
kpp_request_set_input(req, s, EC_PT_SZ*2);
sg_init_one(d, chip->auth->salt, EC_PT_SZ);
sg_init_one(d, auth->salt, EC_PT_SZ);
kpp_request_set_output(req, d, EC_PT_SZ);
crypto_kpp_compute_shared_secret(req);
kpp_request_free(req);
@ -554,8 +558,7 @@ static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip)
* This works because KDFe fully consumes the secret before it
* writes the salt
*/
tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x,
chip->auth->salt);
tpm2_KDFe(auth->salt, "SECRET", x, chip->null_ec_key_x, auth->salt);
out:
crypto_free_kpp(kpp);
@ -853,7 +856,9 @@ int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
if (rc)
/* manually close the session if it wasn't consumed */
tpm2_flush_context(chip, auth->handle);
memzero_explicit(auth, sizeof(*auth));
kfree_sensitive(auth);
chip->auth = NULL;
} else {
/* reset for next use */
auth->session = TPM_HEADER_SIZE;
@ -881,7 +886,8 @@ void tpm2_end_auth_session(struct tpm_chip *chip)
return;
tpm2_flush_context(chip, auth->handle);
memzero_explicit(auth, sizeof(*auth));
kfree_sensitive(auth);
chip->auth = NULL;
}
EXPORT_SYMBOL(tpm2_end_auth_session);
@ -915,33 +921,37 @@ static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
{
int rc;
unsigned int offset = 0; /* dummy offset for null seed context */
u8 name[SHA256_DIGEST_SIZE + 2];
u32 tmp_null_key;
int rc;
rc = tpm2_load_context(chip, chip->null_key_context, &offset,
null_key);
if (rc != -EINVAL)
return rc;
&tmp_null_key);
if (rc != -EINVAL) {
if (!rc)
*null_key = tmp_null_key;
goto err;
}
/* an integrity failure may mean the TPM has been reset */
dev_err(&chip->dev, "NULL key integrity failure!\n");
/* check the null name against what we know */
tpm2_create_primary(chip, TPM2_RH_NULL, NULL, name);
if (memcmp(name, chip->null_key_name, sizeof(name)) == 0)
/* name unchanged, assume transient integrity failure */
return rc;
/*
* Fatal TPM failure: the NULL seed has actually changed, so
* the TPM must have been illegally reset. All in-kernel TPM
* operations will fail because the NULL primary can't be
* loaded to salt the sessions, but disable the TPM anyway so
* userspace programmes can't be compromised by it.
*/
dev_err(&chip->dev, "NULL name has changed, disabling TPM due to interference\n");
/* Try to re-create null key, given the integrity failure: */
rc = tpm2_create_primary(chip, TPM2_RH_NULL, &tmp_null_key, name);
if (rc)
goto err;
/* Return null key if the name has not been changed: */
if (!memcmp(name, chip->null_key_name, sizeof(name))) {
*null_key = tmp_null_key;
return 0;
}
/* Deduce from the name change TPM interference: */
dev_err(&chip->dev, "null key integrity check failed\n");
tpm2_flush_context(chip, tmp_null_key);
chip->flags |= TPM_CHIP_FLAG_DISABLE;
return rc;
err:
return rc ? -ENODEV : 0;
}
/**
@ -958,16 +968,20 @@ static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
*/
int tpm2_start_auth_session(struct tpm_chip *chip)
{
struct tpm2_auth *auth;
struct tpm_buf buf;
struct tpm2_auth *auth = chip->auth;
int rc;
u32 null_key;
int rc;
if (!auth) {
dev_warn_once(&chip->dev, "auth session is not active\n");
if (chip->auth) {
dev_warn_once(&chip->dev, "auth session is active\n");
return 0;
}
auth = kzalloc(sizeof(*auth), GFP_KERNEL);
if (!auth)
return -ENOMEM;
rc = tpm2_load_null(chip, &null_key);
if (rc)
goto out;
@ -988,7 +1002,7 @@ int tpm2_start_auth_session(struct tpm_chip *chip)
tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
/* append encrypted salt and squirrel away unencrypted in auth */
tpm_buf_append_salt(&buf, chip);
tpm_buf_append_salt(&buf, chip, auth);
/* session type (HMAC, audit or policy) */
tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
@ -1010,10 +1024,13 @@ int tpm2_start_auth_session(struct tpm_chip *chip)
tpm_buf_destroy(&buf);
if (rc)
goto out;
if (rc == TPM2_RC_SUCCESS) {
chip->auth = auth;
return 0;
}
out:
out:
kfree_sensitive(auth);
return rc;
}
EXPORT_SYMBOL(tpm2_start_auth_session);
@ -1347,18 +1364,21 @@ static int tpm2_create_null_primary(struct tpm_chip *chip)
*
* Derive and context save the null primary and allocate memory in the
* struct tpm_chip for the authorizations.
*
* Return:
* * 0 - OK
* * -errno - A system error
* * TPM_RC - A TPM error
*/
int tpm2_sessions_init(struct tpm_chip *chip)
{
int rc;
rc = tpm2_create_null_primary(chip);
if (rc)
dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc);
chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL);
if (!chip->auth)
return -ENOMEM;
if (rc) {
dev_err(&chip->dev, "null key creation failed with %d\n", rc);
return rc;
}
return rc;
}

View File

@ -204,7 +204,7 @@ static struct fw_node *build_tree(struct fw_card *card, const u32 *sid, int self
// the node->ports array where the parent node should be. Later,
// when we handle the parent node, we fix up the reference.
++parent_count;
node->color = i;
node->color = port_index;
break;
case PHY_PACKET_SELF_ID_PORT_STATUS_CHILD:

View File

@ -147,6 +147,7 @@ static union acpi_object *amdgpu_atif_call(struct amdgpu_atif *atif,
struct acpi_buffer *params)
{
acpi_status status;
union acpi_object *obj;
union acpi_object atif_arg_elements[2];
struct acpi_object_list atif_arg;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
@ -169,16 +170,24 @@ static union acpi_object *amdgpu_atif_call(struct amdgpu_atif *atif,
status = acpi_evaluate_object(atif->handle, NULL, &atif_arg,
&buffer);
obj = (union acpi_object *)buffer.pointer;
/* Fail only if calling the method fails and ATIF is supported */
/* Fail if calling the method fails and ATIF is supported */
if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
DRM_DEBUG_DRIVER("failed to evaluate ATIF got %s\n",
acpi_format_exception(status));
kfree(buffer.pointer);
kfree(obj);
return NULL;
}
return buffer.pointer;
if (obj->type != ACPI_TYPE_BUFFER) {
DRM_DEBUG_DRIVER("bad object returned from ATIF: %d\n",
obj->type);
kfree(obj);
return NULL;
}
return obj;
}
/**

View File

@ -51,6 +51,12 @@ MODULE_FIRMWARE("amdgpu/sdma_7_0_1.bin");
#define SDMA0_HYP_DEC_REG_END 0x589a
#define SDMA1_HYP_DEC_REG_OFFSET 0x20
/*define for compression field for sdma7*/
#define SDMA_PKT_CONSTANT_FILL_HEADER_compress_offset 0
#define SDMA_PKT_CONSTANT_FILL_HEADER_compress_mask 0x00000001
#define SDMA_PKT_CONSTANT_FILL_HEADER_compress_shift 16
#define SDMA_PKT_CONSTANT_FILL_HEADER_COMPRESS(x) (((x) & SDMA_PKT_CONSTANT_FILL_HEADER_compress_mask) << SDMA_PKT_CONSTANT_FILL_HEADER_compress_shift)
static const struct amdgpu_hwip_reg_entry sdma_reg_list_7_0[] = {
SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_STATUS_REG),
SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_STATUS1_REG),
@ -1724,7 +1730,8 @@ static void sdma_v7_0_emit_fill_buffer(struct amdgpu_ib *ib,
uint64_t dst_offset,
uint32_t byte_count)
{
ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_CONST_FILL);
ib->ptr[ib->length_dw++] = SDMA_PKT_CONSTANT_FILL_HEADER_OP(SDMA_OP_CONST_FILL) |
SDMA_PKT_CONSTANT_FILL_HEADER_COMPRESS(1);
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = src_data;

View File

@ -8374,7 +8374,8 @@ static void manage_dm_interrupts(struct amdgpu_device *adev,
if (amdgpu_ip_version(adev, DCE_HWIP, 0) <
IP_VERSION(3, 5, 0) ||
acrtc_state->stream->link->psr_settings.psr_version <
DC_PSR_VERSION_UNSUPPORTED) {
DC_PSR_VERSION_UNSUPPORTED ||
!(adev->flags & AMD_IS_APU)) {
timing = &acrtc_state->stream->timing;
/* at least 2 frames */

View File

@ -44,6 +44,7 @@
#include "dm_helpers.h"
#include "ddc_service_types.h"
#include "clk_mgr.h"
static u32 edid_extract_panel_id(struct edid *edid)
{
@ -1121,6 +1122,8 @@ bool dm_helpers_dp_handle_test_pattern_request(
struct pipe_ctx *pipe_ctx = NULL;
struct amdgpu_dm_connector *aconnector = link->priv;
struct drm_device *dev = aconnector->base.dev;
struct dc_state *dc_state = ctx->dc->current_state;
struct clk_mgr *clk_mgr = ctx->dc->clk_mgr;
int i;
for (i = 0; i < MAX_PIPES; i++) {
@ -1221,6 +1224,16 @@ bool dm_helpers_dp_handle_test_pattern_request(
pipe_ctx->stream->test_pattern.type = test_pattern;
pipe_ctx->stream->test_pattern.color_space = test_pattern_color_space;
/* Temp W/A for compliance test failure */
dc_state->bw_ctx.bw.dcn.clk.p_state_change_support = false;
dc_state->bw_ctx.bw.dcn.clk.dramclk_khz = clk_mgr->dc_mode_softmax_enabled ?
clk_mgr->bw_params->dc_mode_softmax_memclk : clk_mgr->bw_params->max_memclk_mhz;
dc_state->bw_ctx.bw.dcn.clk.idle_dramclk_khz = dc_state->bw_ctx.bw.dcn.clk.dramclk_khz;
ctx->dc->clk_mgr->funcs->update_clocks(
ctx->dc->clk_mgr,
dc_state,
false);
dc_link_dp_set_test_pattern(
(struct dc_link *) link,
test_pattern,

View File

@ -841,6 +841,8 @@ bool is_psr_su_specific_panel(struct dc_link *link)
isPSRSUSupported = false;
else if (dpcd_caps->sink_dev_id_str[1] == 0x08 && dpcd_caps->sink_dev_id_str[0] == 0x03)
isPSRSUSupported = false;
else if (dpcd_caps->sink_dev_id_str[1] == 0x08 && dpcd_caps->sink_dev_id_str[0] == 0x01)
isPSRSUSupported = false;
else if (dpcd_caps->psr_info.force_psrsu_cap == 0x1)
isPSRSUSupported = true;
}

View File

@ -1234,6 +1234,14 @@ static void smu_init_xgmi_plpd_mode(struct smu_context *smu)
}
}
static bool smu_is_workload_profile_available(struct smu_context *smu,
u32 profile)
{
if (profile >= PP_SMC_POWER_PROFILE_COUNT)
return false;
return smu->workload_map && smu->workload_map[profile].valid_mapping;
}
static int smu_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
@ -1265,7 +1273,8 @@ static int smu_sw_init(void *handle)
smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;
if (smu->is_apu)
if (smu->is_apu ||
!smu_is_workload_profile_available(smu, PP_SMC_POWER_PROFILE_FULLSCREEN3D))
smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
else
smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D];

View File

@ -25,7 +25,7 @@
#define SMU14_DRIVER_IF_V14_0_H
//Increment this version if SkuTable_t or BoardTable_t change
#define PPTABLE_VERSION 0x18
#define PPTABLE_VERSION 0x1B
#define NUM_GFXCLK_DPM_LEVELS 16
#define NUM_SOCCLK_DPM_LEVELS 8
@ -145,7 +145,7 @@ typedef enum {
} FEATURE_BTC_e;
// Debug Overrides Bitmask
#define DEBUG_OVERRIDE_DISABLE_VOLT_LINK_VCN_FCLK 0x00000001
#define DEBUG_OVERRIDE_NOT_USE 0x00000001
#define DEBUG_OVERRIDE_DISABLE_VOLT_LINK_DCN_FCLK 0x00000002
#define DEBUG_OVERRIDE_DISABLE_VOLT_LINK_MP0_FCLK 0x00000004
#define DEBUG_OVERRIDE_DISABLE_VOLT_LINK_VCN_DCFCLK 0x00000008
@ -161,6 +161,7 @@ typedef enum {
#define DEBUG_OVERRIDE_ENABLE_SOC_VF_BRINGUP_MODE 0x00002000
#define DEBUG_OVERRIDE_ENABLE_PER_WGP_RESIENCY 0x00004000
#define DEBUG_OVERRIDE_DISABLE_MEMORY_VOLTAGE_SCALING 0x00008000
#define DEBUG_OVERRIDE_DFLL_BTC_FCW_LOG 0x00010000
// VR Mapping Bit Defines
#define VR_MAPPING_VR_SELECT_MASK 0x01
@ -391,6 +392,21 @@ typedef struct {
EccInfo_t EccInfo[24];
} EccInfoTable_t;
#define EPCS_HIGH_POWER 600
#define EPCS_NORMAL_POWER 450
#define EPCS_LOW_POWER 300
#define EPCS_SHORTED_POWER 150
#define EPCS_NO_BOOTUP 0
typedef enum{
EPCS_SHORTED_LIMIT,
EPCS_LOW_POWER_LIMIT,
EPCS_NORMAL_POWER_LIMIT,
EPCS_HIGH_POWER_LIMIT,
EPCS_NOT_CONFIGURED,
EPCS_STATUS_COUNT,
} EPCS_STATUS_e;
//D3HOT sequences
typedef enum {
BACO_SEQUENCE,
@ -662,7 +678,7 @@ typedef enum {
} PP_GRTAVFS_FW_SEP_FUSE_e;
#define PP_NUM_RTAVFS_PWL_ZONES 5
#define PP_NUM_PSM_DIDT_PWL_ZONES 3
// VBIOS or PPLIB configures telemetry slope and offset. Only slope expected to be set for SVI3
// Slope Q1.7, Offset Q1.2
@ -746,10 +762,10 @@ typedef struct {
uint16_t Padding;
//Frequency changes
int16_t GfxclkFmin; // MHz
int16_t GfxclkFmax; // MHz
uint16_t UclkFmin; // MHz
uint16_t UclkFmax; // MHz
int16_t GfxclkFoffset;
uint16_t Padding1;
uint16_t UclkFmin;
uint16_t UclkFmax;
uint16_t FclkFmin;
uint16_t FclkFmax;
@ -770,19 +786,23 @@ typedef struct {
uint8_t MaxOpTemp;
uint8_t AdvancedOdModeEnabled;
uint8_t Padding1[3];
uint8_t Padding2[3];
uint16_t GfxVoltageFullCtrlMode;
uint16_t SocVoltageFullCtrlMode;
uint16_t GfxclkFullCtrlMode;
uint16_t UclkFullCtrlMode;
uint16_t FclkFullCtrlMode;
uint16_t Padding2;
uint16_t Padding3;
int16_t GfxEdc;
int16_t GfxPccLimitControl;
uint32_t Spare[10];
uint16_t GfxclkFmaxVmax;
uint8_t GfxclkFmaxVmaxTemperature;
uint8_t Padding4[1];
uint32_t Spare[9];
uint32_t MmHubPadding[8]; // SMU internal use. Adding here instead of external as a workaround
} OverDriveTable_t;
@ -802,8 +822,8 @@ typedef struct {
uint16_t VddSocVmax;
//gfxclk
int16_t GfxclkFmin; // MHz
int16_t GfxclkFmax; // MHz
int16_t GfxclkFoffset;
uint16_t Padding;
//uclk
uint16_t UclkFmin; // MHz
uint16_t UclkFmax; // MHz
@ -828,7 +848,7 @@ typedef struct {
uint8_t FanZeroRpmEnable;
//temperature
uint8_t MaxOpTemp;
uint8_t Padding[2];
uint8_t Padding1[2];
//Full Ctrl
uint16_t GfxVoltageFullCtrlMode;
@ -839,7 +859,7 @@ typedef struct {
//EDC
int16_t GfxEdc;
int16_t GfxPccLimitControl;
int16_t Padding1;
int16_t Padding2;
uint32_t Spare[5];
} OverDriveLimits_t;
@ -987,8 +1007,9 @@ typedef struct {
uint16_t BaseClockDc;
uint16_t GameClockDc;
uint16_t BoostClockDc;
uint32_t Reserved[4];
uint16_t MaxReportedClock;
uint16_t Padding;
uint32_t Reserved[3];
} DriverReportedClocks_t;
typedef struct {
@ -1132,7 +1153,7 @@ typedef struct {
uint32_t DcModeMaxFreq [PPCLK_COUNT ]; // In MHz
uint16_t GfxclkAibFmax;
uint16_t GfxclkFreqCap;
uint16_t GfxDpmPadding;
//GFX Idle Power Settings
uint16_t GfxclkFgfxoffEntry; // Entry in RLC stage (PLL), in Mhz
@ -1172,8 +1193,7 @@ typedef struct {
uint32_t DvoFmaxLowScaler; //Unitless float
// GFX DCS
uint16_t DcsGfxOffVoltage; //Voltage in mV(Q2) applied to VDDGFX when entering DCS GFXOFF phase
uint16_t PaddingDcs;
uint32_t PaddingDcs;
uint16_t DcsMinGfxOffTime; //Minimum amount of time PMFW shuts GFX OFF as part of GFX DCS phase
uint16_t DcsMaxGfxOffTime; //Maximum amount of time PMFW can shut GFX OFF as part of GFX DCS phase at a stretch.
@ -1205,8 +1225,7 @@ typedef struct {
uint16_t DalDcModeMaxUclkFreq;
uint8_t PaddingsMem[2];
//FCLK Section
uint16_t FclkDpmDisallowPstateFreq; //Frequency which FW will target when indicated that display config cannot support P-state. Set to 0 use FW calculated value
uint16_t PaddingFclk;
uint32_t PaddingFclk;
// Link DPM Settings
uint8_t PcieGenSpeed[NUM_LINK_LEVELS]; ///< 0:PciE-gen1 1:PciE-gen2 2:PciE-gen3 3:PciE-gen4 4:PciE-gen5
@ -1215,12 +1234,19 @@ typedef struct {
// SECTION: VDD_GFX AVFS
uint8_t OverrideGfxAvfsFuses;
uint8_t GfxAvfsPadding[3];
uint8_t GfxAvfsPadding[1];
uint16_t DroopGBStDev;
uint32_t SocHwRtAvfsFuses[PP_GRTAVFS_HW_FUSE_COUNT]; //new added for Soc domain
uint32_t GfxL2HwRtAvfsFuses[PP_GRTAVFS_HW_FUSE_COUNT]; //see fusedoc for encoding
//uint32_t GfxSeHwRtAvfsFuses[PP_GRTAVFS_HW_FUSE_COUNT];
uint32_t spare_HwRtAvfsFuses[PP_GRTAVFS_HW_FUSE_COUNT];
uint16_t PsmDidt_Vcross[PP_NUM_PSM_DIDT_PWL_ZONES-1];
uint32_t PsmDidt_StaticDroop_A[PP_NUM_PSM_DIDT_PWL_ZONES];
uint32_t PsmDidt_StaticDroop_B[PP_NUM_PSM_DIDT_PWL_ZONES];
uint32_t PsmDidt_DynDroop_A[PP_NUM_PSM_DIDT_PWL_ZONES];
uint32_t PsmDidt_DynDroop_B[PP_NUM_PSM_DIDT_PWL_ZONES];
uint32_t spare_HwRtAvfsFuses[19];
uint32_t SocCommonRtAvfs[PP_GRTAVFS_FW_COMMON_FUSE_COUNT];
uint32_t GfxCommonRtAvfs[PP_GRTAVFS_FW_COMMON_FUSE_COUNT];
@ -1246,11 +1272,7 @@ typedef struct {
uint32_t dGbV_dT_vmin;
uint32_t dGbV_dT_vmax;
//Unused: PMFW-9370
uint32_t V2F_vmin_range_low;
uint32_t V2F_vmin_range_high;
uint32_t V2F_vmax_range_low;
uint32_t V2F_vmax_range_high;
uint32_t PaddingV2F[4];
AvfsDcBtcParams_t DcBtcGfxParams;
QuadraticInt_t SSCurve_GFX;
@ -1327,18 +1349,18 @@ typedef struct {
uint16_t PsmDidtReleaseTimer;
uint32_t PsmDidtStallPattern; //Will be written to both pattern 1 and didt_static_level_prog
// CAC EDC
uint32_t Leakage_C0; // in IEEE float
uint32_t Leakage_C1; // in IEEE float
uint32_t Leakage_C2; // in IEEE float
uint32_t Leakage_C3; // in IEEE float
uint32_t Leakage_C4; // in IEEE float
uint32_t Leakage_C5; // in IEEE float
uint32_t GFX_CLK_SCALAR; // in IEEE float
uint32_t GFX_CLK_INTERCEPT; // in IEEE float
uint32_t GFX_CAC_M; // in IEEE float
uint32_t GFX_CAC_B; // in IEEE float
uint32_t VDD_GFX_CurrentLimitGuardband; // in IEEE float
uint32_t DynToTotalCacScalar; // in IEEE
uint32_t CacEdcCacLeakageC0;
uint32_t CacEdcCacLeakageC1;
uint32_t CacEdcCacLeakageC2;
uint32_t CacEdcCacLeakageC3;
uint32_t CacEdcCacLeakageC4;
uint32_t CacEdcCacLeakageC5;
uint32_t CacEdcGfxClkScalar;
uint32_t CacEdcGfxClkIntercept;
uint32_t CacEdcCac_m;
uint32_t CacEdcCac_b;
uint32_t CacEdcCurrLimitGuardband;
uint32_t CacEdcDynToTotalCacRatio;
// GFX EDC XVMIN
uint32_t XVmin_Gfx_EdcThreshScalar;
uint32_t XVmin_Gfx_EdcEnableFreq;
@ -1467,7 +1489,7 @@ typedef struct {
uint8_t VddqOffEnabled;
uint8_t PaddingUmcFlags[2];
uint32_t PostVoltageSetBacoDelay; // in microseconds. Amount of time FW will wait after power good is established or PSI0 command is issued
uint32_t Paddign1;
uint32_t BacoEntryDelay; // in milliseconds. Amount of time FW will wait to trigger BACO entry after receiving entry notification from OS
uint8_t FuseWritePowerMuxPresent;
@ -1530,7 +1552,7 @@ typedef struct {
int16_t FuzzyFan_ErrorSetDelta;
int16_t FuzzyFan_ErrorRateSetDelta;
int16_t FuzzyFan_PwmSetDelta;
uint16_t FuzzyFan_Reserved;
uint16_t FanPadding2;
uint16_t FwCtfLimit[TEMP_COUNT];
@ -1547,9 +1569,10 @@ typedef struct {
uint16_t FanSpare[1];
uint8_t FanIntakeSensorSupport;
uint8_t FanIntakePadding;
uint32_t FanAmbientPerfBoostThreshold;
uint32_t FanSpare2[12];
uint32_t ODFeatureCtrlMask;
uint16_t TemperatureLimit_Hynix; // In degrees Celsius. Memory temperature limit associated with Hynix
uint16_t TemperatureLimit_Micron; // In degrees Celsius. Memory temperature limit associated with Micron
uint16_t TemperatureFwCtfLimit_Hynix;
@ -1637,7 +1660,7 @@ typedef struct {
uint16_t AverageDclk0Frequency ;
uint16_t AverageVclk1Frequency ;
uint16_t AverageDclk1Frequency ;
uint16_t PCIeBusy ;
uint16_t AveragePCIeBusy ;
uint16_t dGPU_W_MAX ;
uint16_t padding ;
@ -1665,12 +1688,12 @@ typedef struct {
uint16_t AverageGfxActivity ;
uint16_t AverageUclkActivity ;
uint16_t Vcn0ActivityPercentage ;
uint16_t AverageVcn0ActivityPercentage;
uint16_t Vcn1ActivityPercentage ;
uint32_t EnergyAccumulator;
uint16_t AverageSocketPower;
uint16_t MovingAverageTotalBoardPower;
uint16_t AverageTotalBoardPower;
uint16_t AvgTemperature[TEMP_COUNT];
uint16_t AvgTemperatureFanIntake;
@ -1684,7 +1707,8 @@ typedef struct {
uint8_t ThrottlingPercentage[THROTTLER_COUNT];
uint8_t padding1[3];
uint8_t VmaxThrottlingPercentage;
uint8_t padding1[2];
//metrics for D3hot entry/exit and driver ARM msgs
uint32_t D3HotEntryCountPerMode[D3HOT_SEQUENCE_COUNT];
@ -1693,7 +1717,7 @@ typedef struct {
uint16_t ApuSTAPMSmartShiftLimit;
uint16_t ApuSTAPMLimit;
uint16_t MovingAvgApuSocketPower;
uint16_t AvgApuSocketPower;
uint16_t AverageUclkActivity_MAX;
@ -1823,6 +1847,17 @@ typedef struct {
#define TABLE_TRANSFER_FAILED 0xFF
#define TABLE_TRANSFER_PENDING 0xAB
#define TABLE_PPT_FAILED 0x100
#define TABLE_TDC_FAILED 0x200
#define TABLE_TEMP_FAILED 0x400
#define TABLE_FAN_TARGET_TEMP_FAILED 0x800
#define TABLE_FAN_STOP_TEMP_FAILED 0x1000
#define TABLE_FAN_START_TEMP_FAILED 0x2000
#define TABLE_FAN_PWM_MIN_FAILED 0x4000
#define TABLE_ACOUSTIC_TARGET_RPM_FAILED 0x8000
#define TABLE_ACOUSTIC_LIMIT_RPM_FAILED 0x10000
#define TABLE_MGPU_ACOUSTIC_TARGET_RPM_FAILED 0x20000
// Table types
#define TABLE_PPTABLE 0
#define TABLE_COMBO_PPTABLE 1
@ -1849,5 +1884,6 @@ typedef struct {
#define IH_INTERRUPT_CONTEXT_ID_THERMAL_THROTTLING 0x7
#define IH_INTERRUPT_CONTEXT_ID_FAN_ABNORMAL 0x8
#define IH_INTERRUPT_CONTEXT_ID_FAN_RECOVERY 0x9
#define IH_INTERRUPT_CONTEXT_ID_DYNAMIC_TABLE 0xA
#endif

View File

@ -28,7 +28,7 @@
#define SMU14_DRIVER_IF_VERSION_INV 0xFFFFFFFF
#define SMU14_DRIVER_IF_VERSION_SMU_V14_0_0 0x7
#define SMU14_DRIVER_IF_VERSION_SMU_V14_0_1 0x6
#define SMU14_DRIVER_IF_VERSION_SMU_V14_0_2 0x26
#define SMU14_DRIVER_IF_VERSION_SMU_V14_0_2 0x2E
#define FEATURE_MASK(feature) (1ULL << feature)

View File

@ -1077,12 +1077,9 @@ static void smu_v14_0_2_get_od_setting_limits(struct smu_context *smu,
switch (od_feature_bit) {
case PP_OD_FEATURE_GFXCLK_FMIN:
od_min_setting = overdrive_lowerlimits->GfxclkFmin;
od_max_setting = overdrive_upperlimits->GfxclkFmin;
break;
case PP_OD_FEATURE_GFXCLK_FMAX:
od_min_setting = overdrive_lowerlimits->GfxclkFmax;
od_max_setting = overdrive_upperlimits->GfxclkFmax;
od_min_setting = overdrive_lowerlimits->GfxclkFoffset;
od_max_setting = overdrive_upperlimits->GfxclkFoffset;
break;
case PP_OD_FEATURE_UCLK_FMIN:
od_min_setting = overdrive_lowerlimits->UclkFmin;
@ -1269,10 +1266,16 @@ static int smu_v14_0_2_print_clk_levels(struct smu_context *smu,
PP_OD_FEATURE_GFXCLK_BIT))
break;
size += sysfs_emit_at(buf, size, "OD_SCLK:\n");
size += sysfs_emit_at(buf, size, "0: %uMhz\n1: %uMhz\n",
od_table->OverDriveTable.GfxclkFmin,
od_table->OverDriveTable.GfxclkFmax);
PPTable_t *pptable = smu->smu_table.driver_pptable;
const OverDriveLimits_t * const overdrive_upperlimits =
&pptable->SkuTable.OverDriveLimitsBasicMax;
const OverDriveLimits_t * const overdrive_lowerlimits =
&pptable->SkuTable.OverDriveLimitsBasicMin;
size += sysfs_emit_at(buf, size, "OD_SCLK_OFFSET:\n");
size += sysfs_emit_at(buf, size, "0: %dMhz\n1: %uMhz\n",
overdrive_lowerlimits->GfxclkFoffset,
overdrive_upperlimits->GfxclkFoffset);
break;
case SMU_OD_MCLK:
@ -1414,7 +1417,7 @@ static int smu_v14_0_2_print_clk_levels(struct smu_context *smu,
PP_OD_FEATURE_GFXCLK_FMAX,
NULL,
&max_value);
size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n",
size += sysfs_emit_at(buf, size, "SCLK_OFFSET: %7dMhz %10uMhz\n",
min_value, max_value);
}
@ -1796,7 +1799,7 @@ static int smu_v14_0_2_set_power_profile_mode(struct smu_context *smu,
DpmActivityMonitorCoeffInt_t *activity_monitor =
&(activity_monitor_external.DpmActivityMonitorCoeffInt);
int workload_type, ret = 0;
uint32_t current_profile_mode = smu->power_profile_mode;
smu->power_profile_mode = input[size];
if (smu->power_profile_mode >= PP_SMC_POWER_PROFILE_COUNT) {
@ -1854,6 +1857,11 @@ static int smu_v14_0_2_set_power_profile_mode(struct smu_context *smu,
}
}
if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE)
smu_v14_0_deep_sleep_control(smu, false);
else if (current_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE)
smu_v14_0_deep_sleep_control(smu, true);
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
@ -2158,7 +2166,7 @@ static ssize_t smu_v14_0_2_get_gpu_metrics(struct smu_context *smu,
gpu_metrics->average_gfx_activity = metrics->AverageGfxActivity;
gpu_metrics->average_umc_activity = metrics->AverageUclkActivity;
gpu_metrics->average_mm_activity = max(metrics->Vcn0ActivityPercentage,
gpu_metrics->average_mm_activity = max(metrics->AverageVcn0ActivityPercentage,
metrics->Vcn1ActivityPercentage);
gpu_metrics->average_socket_power = metrics->AverageSocketPower;
@ -2217,8 +2225,7 @@ static void smu_v14_0_2_dump_od_table(struct smu_context *smu,
{
struct amdgpu_device *adev = smu->adev;
dev_dbg(adev->dev, "OD: Gfxclk: (%d, %d)\n", od_table->OverDriveTable.GfxclkFmin,
od_table->OverDriveTable.GfxclkFmax);
dev_dbg(adev->dev, "OD: Gfxclk offset: (%d)\n", od_table->OverDriveTable.GfxclkFoffset);
dev_dbg(adev->dev, "OD: Uclk: (%d, %d)\n", od_table->OverDriveTable.UclkFmin,
od_table->OverDriveTable.UclkFmax);
}
@ -2309,10 +2316,8 @@ static int smu_v14_0_2_set_default_od_settings(struct smu_context *smu)
memcpy(user_od_table,
boot_od_table,
sizeof(OverDriveTableExternal_t));
user_od_table->OverDriveTable.GfxclkFmin =
user_od_table_bak.OverDriveTable.GfxclkFmin;
user_od_table->OverDriveTable.GfxclkFmax =
user_od_table_bak.OverDriveTable.GfxclkFmax;
user_od_table->OverDriveTable.GfxclkFoffset =
user_od_table_bak.OverDriveTable.GfxclkFoffset;
user_od_table->OverDriveTable.UclkFmin =
user_od_table_bak.OverDriveTable.UclkFmin;
user_od_table->OverDriveTable.UclkFmax =
@ -2441,22 +2446,6 @@ static int smu_v14_0_2_od_edit_dpm_table(struct smu_context *smu,
}
switch (input[i]) {
case 0:
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_GFXCLK_FMIN,
&minimum,
&maximum);
if (input[i + 1] < minimum ||
input[i + 1] > maximum) {
dev_info(adev->dev, "GfxclkFmin (%ld) must be within [%u, %u]!\n",
input[i + 1], minimum, maximum);
return -EINVAL;
}
od_table->OverDriveTable.GfxclkFmin = input[i + 1];
od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_GFXCLK_BIT;
break;
case 1:
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_GFXCLK_FMAX,
@ -2469,7 +2458,7 @@ static int smu_v14_0_2_od_edit_dpm_table(struct smu_context *smu,
return -EINVAL;
}
od_table->OverDriveTable.GfxclkFmax = input[i + 1];
od_table->OverDriveTable.GfxclkFoffset = input[i + 1];
od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_GFXCLK_BIT;
break;
@ -2480,13 +2469,6 @@ static int smu_v14_0_2_od_edit_dpm_table(struct smu_context *smu,
}
}
if (od_table->OverDriveTable.GfxclkFmin > od_table->OverDriveTable.GfxclkFmax) {
dev_err(adev->dev,
"Invalid setting: GfxclkFmin(%u) is bigger than GfxclkFmax(%u)\n",
(uint32_t)od_table->OverDriveTable.GfxclkFmin,
(uint32_t)od_table->OverDriveTable.GfxclkFmax);
return -EINVAL;
}
break;
case PP_OD_EDIT_MCLK_VDDC_TABLE:

View File

@ -58,9 +58,10 @@ int drm_aux_bridge_register(struct device *parent)
adev->id = ret;
adev->name = "aux_bridge";
adev->dev.parent = parent;
adev->dev.of_node = of_node_get(parent->of_node);
adev->dev.release = drm_aux_bridge_release;
device_set_of_node_from_dev(&adev->dev, parent);
ret = auxiliary_device_init(adev);
if (ret) {
ida_free(&drm_aux_bridge_ida, adev->id);

View File

@ -2391,6 +2391,7 @@ static int tc_probe_bridge_endpoint(struct tc_data *tc)
if (tc->pre_emphasis[0] < 0 || tc->pre_emphasis[0] > 2 ||
tc->pre_emphasis[1] < 0 || tc->pre_emphasis[1] > 2) {
dev_err(dev, "Incorrect Pre-Emphasis setting, use either 0=0dB 1=3.5dB 2=6dB\n");
of_node_put(node);
return -EINVAL;
}
}

View File

@ -123,9 +123,8 @@ config DRM_I915_USERPTR
config DRM_I915_GVT_KVMGT
tristate "Enable KVM host support Intel GVT-g graphics virtualization"
depends on DRM_I915
depends on X86
depends on KVM_X86
depends on 64BIT
depends on KVM
depends on VFIO
select DRM_I915_GVT
select KVM_EXTERNAL_WRITE_TRACKING

View File

@ -890,7 +890,7 @@ void xe_device_l2_flush(struct xe_device *xe)
spin_lock(&gt->global_invl_lock);
xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1);
if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 150, NULL, true))
if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
xe_gt_err_once(gt, "Global invalidation timeout\n");
spin_unlock(&gt->global_invl_lock);

View File

@ -115,9 +115,15 @@ static int __domain_wait(struct xe_gt *gt, struct xe_force_wake_domain *domain,
XE_FORCE_WAKE_ACK_TIMEOUT_MS * USEC_PER_MSEC,
&value, true);
if (ret)
xe_gt_notice(gt, "Force wake domain %d failed to ack %s (%pe) reg[%#x] = %#x\n",
domain->id, str_wake_sleep(wake), ERR_PTR(ret),
domain->reg_ack.addr, value);
xe_gt_err(gt, "Force wake domain %d failed to ack %s (%pe) reg[%#x] = %#x\n",
domain->id, str_wake_sleep(wake), ERR_PTR(ret),
domain->reg_ack.addr, value);
if (value == ~0) {
xe_gt_err(gt,
"Force wake domain %d: %s. MMIO unreliable (forcewake register returns 0xFFFFFFFF)!\n",
domain->id, str_wake_sleep(wake));
ret = -EIO;
}
return ret;
}

View File

@ -897,6 +897,24 @@ retry_same_fence:
ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
/*
* Occasionally it is seen that the G2H worker starts running after a delay of more than
* a second even after being queued and activated by the Linux workqueue subsystem. This
* leads to G2H timeout error. The root cause of issue lies with scheduling latency of
* Lunarlake Hybrid CPU. Issue dissappears if we disable Lunarlake atom cores from BIOS
* and this is beyond xe kmd.
*
* TODO: Drop this change once workqueue scheduling delay issue is fixed on LNL Hybrid CPU.
*/
if (!ret) {
flush_work(&ct->g2h_worker);
if (g2h_fence.done) {
xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
g2h_fence.seqno, action[0]);
ret = 1;
}
}
/*
* Ensure we serialize with completion side to prevent UAF with fence going out of scope on
* the stack, since we have no clue if it will fire after the timeout before we can erase

View File

@ -1726,8 +1726,13 @@ void xe_guc_submit_stop(struct xe_guc *guc)
mutex_lock(&guc->submission_state.lock);
xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
/* Prevent redundant attempts to stop parallel queues */
if (q->guc->id != index)
continue;
guc_exec_queue_stop(guc, q);
}
mutex_unlock(&guc->submission_state.lock);
@ -1765,8 +1770,13 @@ int xe_guc_submit_start(struct xe_guc *guc)
mutex_lock(&guc->submission_state.lock);
atomic_dec(&guc->submission_state.stopped);
xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
/* Prevent redundant attempts to start parallel queues */
if (q->guc->id != index)
continue;
guc_exec_queue_start(q);
}
mutex_unlock(&guc->submission_state.lock);
wake_up_all(&guc->ct.wq);

View File

@ -54,8 +54,9 @@ static struct xe_user_fence *user_fence_create(struct xe_device *xe, u64 addr,
{
struct xe_user_fence *ufence;
u64 __user *ptr = u64_to_user_ptr(addr);
u64 __maybe_unused prefetch_val;
if (!access_ok(ptr, sizeof(*ptr)))
if (get_user(prefetch_val, ptr))
return ERR_PTR(-EFAULT);
ufence = kzalloc(sizeof(*ufence), GFP_KERNEL);

View File

@ -546,6 +546,26 @@ static int mddev_set_closing_and_sync_blockdev(struct mddev *mddev, int opener_n
return 0;
}
/*
* The only difference from bio_chain_endio() is that the current
* bi_status of bio does not affect the bi_status of parent.
*/
static void md_end_flush(struct bio *bio)
{
struct bio *parent = bio->bi_private;
/*
* If any flush io error before the power failure,
* disk data may be lost.
*/
if (bio->bi_status)
pr_err("md: %pg flush io error %d\n", bio->bi_bdev,
blk_status_to_errno(bio->bi_status));
bio_put(bio);
bio_endio(parent);
}
bool md_flush_request(struct mddev *mddev, struct bio *bio)
{
struct md_rdev *rdev;
@ -565,7 +585,9 @@ bool md_flush_request(struct mddev *mddev, struct bio *bio)
new = bio_alloc_bioset(rdev->bdev, 0,
REQ_OP_WRITE | REQ_PREFLUSH, GFP_NOIO,
&mddev->bio_set);
bio_chain(new, bio);
new->bi_private = bio;
new->bi_end_io = md_end_flush;
bio_inc_remaining(bio);
submit_bio(new);
}

View File

@ -4061,9 +4061,12 @@ static int raid10_run(struct mddev *mddev)
}
if (!mddev_is_dm(conf->mddev)) {
ret = raid10_set_queue_limits(mddev);
if (ret)
int err = raid10_set_queue_limits(mddev);
if (err) {
ret = err;
goto out_free_conf;
}
}
/* need to check that every block has at least one working mirror */

View File

@ -1293,8 +1293,10 @@ static ssize_t hns3_dbg_read(struct file *filp, char __user *buffer,
/* save the buffer addr until the last read operation */
*save_buf = read_buf;
}
/* get data ready for the first time to read */
/* get data ready for the first time to read */
if (!*ppos) {
ret = hns3_dbg_read_cmd(dbg_data, hns3_dbg_cmd[index].cmd,
read_buf, hns3_dbg_cmd[index].buf_len);
if (ret)

View File

@ -11,6 +11,7 @@
#include <linux/irq.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/iommu.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
@ -380,6 +381,24 @@ static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
#define HNS3_INVALID_PTYPE \
ARRAY_SIZE(hns3_rx_ptype_tbl)
static void hns3_dma_map_sync(struct device *dev, unsigned long iova)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_iotlb_gather iotlb_gather;
size_t granule;
if (!domain || !iommu_is_dma_domain(domain))
return;
granule = 1 << __ffs(domain->pgsize_bitmap);
iova = ALIGN_DOWN(iova, granule);
iotlb_gather.start = iova;
iotlb_gather.end = iova + granule - 1;
iotlb_gather.pgsize = granule;
iommu_iotlb_sync(domain, &iotlb_gather);
}
static irqreturn_t hns3_irq_handle(int irq, void *vector)
{
struct hns3_enet_tqp_vector *tqp_vector = vector;
@ -1032,6 +1051,8 @@ static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
{
u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
struct net_device *netdev = ring_to_netdev(ring);
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hns3_tx_spare *tx_spare;
struct page *page;
dma_addr_t dma;
@ -1073,6 +1094,7 @@ static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
tx_spare->buf = page_address(page);
tx_spare->len = PAGE_SIZE << order;
ring->tx_spare = tx_spare;
ring->tx_copybreak = priv->tx_copybreak;
return;
dma_mapping_error:
@ -1724,7 +1746,9 @@ static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
unsigned int type)
{
struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
struct hnae3_handle *handle = ring->tqp->handle;
struct device *dev = ring_to_dev(ring);
struct hnae3_ae_dev *ae_dev;
unsigned int size;
dma_addr_t dma;
@ -1756,6 +1780,13 @@ static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
return -ENOMEM;
}
/* Add a SYNC command to sync io-pgtale to avoid errors in pgtable
* prefetch
*/
ae_dev = hns3_get_ae_dev(handle);
if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
hns3_dma_map_sync(dev, dma);
desc_cb->priv = priv;
desc_cb->length = size;
desc_cb->dma = dma;
@ -2452,7 +2483,6 @@ static int hns3_nic_set_features(struct net_device *netdev,
return ret;
}
netdev->features = features;
return 0;
}
@ -4868,6 +4898,30 @@ static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
devm_kfree(&pdev->dev, priv->tqp_vector);
}
static void hns3_update_tx_spare_buf_config(struct hns3_nic_priv *priv)
{
#define HNS3_MIN_SPARE_BUF_SIZE (2 * 1024 * 1024)
#define HNS3_MAX_PACKET_SIZE (64 * 1024)
struct iommu_domain *domain = iommu_get_domain_for_dev(priv->dev);
struct hnae3_ae_dev *ae_dev = hns3_get_ae_dev(priv->ae_handle);
struct hnae3_handle *handle = priv->ae_handle;
if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3)
return;
if (!(domain && iommu_is_dma_domain(domain)))
return;
priv->min_tx_copybreak = HNS3_MAX_PACKET_SIZE;
priv->min_tx_spare_buf_size = HNS3_MIN_SPARE_BUF_SIZE;
if (priv->tx_copybreak < priv->min_tx_copybreak)
priv->tx_copybreak = priv->min_tx_copybreak;
if (handle->kinfo.tx_spare_buf_size < priv->min_tx_spare_buf_size)
handle->kinfo.tx_spare_buf_size = priv->min_tx_spare_buf_size;
}
static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
unsigned int ring_type)
{
@ -5101,6 +5155,7 @@ int hns3_init_all_ring(struct hns3_nic_priv *priv)
int i, j;
int ret;
hns3_update_tx_spare_buf_config(priv);
for (i = 0; i < ring_num; i++) {
ret = hns3_alloc_ring_memory(&priv->ring[i]);
if (ret) {
@ -5305,6 +5360,8 @@ static int hns3_client_init(struct hnae3_handle *handle)
priv->ae_handle = handle;
priv->tx_timeout_count = 0;
priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
priv->min_tx_copybreak = 0;
priv->min_tx_spare_buf_size = 0;
set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);

View File

@ -596,6 +596,8 @@ struct hns3_nic_priv {
struct hns3_enet_coalesce rx_coal;
u32 tx_copybreak;
u32 rx_copybreak;
u32 min_tx_copybreak;
u32 min_tx_spare_buf_size;
};
union l3_hdr_info {

View File

@ -1933,6 +1933,31 @@ static int hns3_set_tx_spare_buf_size(struct net_device *netdev,
return ret;
}
static int hns3_check_tx_copybreak(struct net_device *netdev, u32 copybreak)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
if (copybreak < priv->min_tx_copybreak) {
netdev_err(netdev, "tx copybreak %u should be no less than %u!\n",
copybreak, priv->min_tx_copybreak);
return -EINVAL;
}
return 0;
}
static int hns3_check_tx_spare_buf_size(struct net_device *netdev, u32 buf_size)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
if (buf_size < priv->min_tx_spare_buf_size) {
netdev_err(netdev,
"tx spare buf size %u should be no less than %u!\n",
buf_size, priv->min_tx_spare_buf_size);
return -EINVAL;
}
return 0;
}
static int hns3_set_tunable(struct net_device *netdev,
const struct ethtool_tunable *tuna,
const void *data)
@ -1949,6 +1974,10 @@ static int hns3_set_tunable(struct net_device *netdev,
switch (tuna->id) {
case ETHTOOL_TX_COPYBREAK:
ret = hns3_check_tx_copybreak(netdev, *(u32 *)data);
if (ret)
return ret;
priv->tx_copybreak = *(u32 *)data;
for (i = 0; i < h->kinfo.num_tqps; i++)
@ -1963,6 +1992,10 @@ static int hns3_set_tunable(struct net_device *netdev,
break;
case ETHTOOL_TX_COPYBREAK_BUF_SIZE:
ret = hns3_check_tx_spare_buf_size(netdev, *(u32 *)data);
if (ret)
return ret;
old_tx_spare_buf_size = h->kinfo.tx_spare_buf_size;
new_tx_spare_buf_size = *(u32 *)data;
netdev_info(netdev, "request to set tx spare buf size from %u to %u\n",

View File

@ -6,6 +6,7 @@
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
@ -3584,6 +3585,17 @@ static int hclge_set_vf_link_state(struct hnae3_handle *handle, int vf,
return ret;
}
static void hclge_set_reset_pending(struct hclge_dev *hdev,
enum hnae3_reset_type reset_type)
{
/* When an incorrect reset type is executed, the get_reset_level
* function generates the HNAE3_NONE_RESET flag. As a result, this
* type do not need to pending.
*/
if (reset_type != HNAE3_NONE_RESET)
set_bit(reset_type, &hdev->reset_pending);
}
static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
{
u32 cmdq_src_reg, msix_src_reg, hw_err_src_reg;
@ -3604,7 +3616,7 @@ static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
*/
if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & msix_src_reg) {
dev_info(&hdev->pdev->dev, "IMP reset interrupt\n");
set_bit(HNAE3_IMP_RESET, &hdev->reset_pending);
hclge_set_reset_pending(hdev, HNAE3_IMP_RESET);
set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
*clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
hdev->rst_stats.imp_rst_cnt++;
@ -3614,7 +3626,7 @@ static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & msix_src_reg) {
dev_info(&hdev->pdev->dev, "global reset interrupt\n");
set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending);
hclge_set_reset_pending(hdev, HNAE3_GLOBAL_RESET);
*clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
hdev->rst_stats.global_rst_cnt++;
return HCLGE_VECTOR0_EVENT_RST;
@ -3769,7 +3781,7 @@ static int hclge_misc_irq_init(struct hclge_dev *hdev)
snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
HCLGE_NAME, pci_name(hdev->pdev));
ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle,
0, hdev->misc_vector.name, hdev);
IRQ_NOAUTOEN, hdev->misc_vector.name, hdev);
if (ret) {
hclge_free_vector(hdev, 0);
dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n",
@ -4062,7 +4074,7 @@ static void hclge_do_reset(struct hclge_dev *hdev)
case HNAE3_FUNC_RESET:
dev_info(&pdev->dev, "PF reset requested\n");
/* schedule again to check later */
set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending);
hclge_set_reset_pending(hdev, HNAE3_FUNC_RESET);
hclge_reset_task_schedule(hdev);
break;
default:
@ -4096,6 +4108,8 @@ static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
clear_bit(HNAE3_FLR_RESET, addr);
}
clear_bit(HNAE3_NONE_RESET, addr);
if (hdev->reset_type != HNAE3_NONE_RESET &&
rst_level < hdev->reset_type)
return HNAE3_NONE_RESET;
@ -4237,7 +4251,7 @@ static bool hclge_reset_err_handle(struct hclge_dev *hdev)
return false;
} else if (hdev->rst_stats.reset_fail_cnt < MAX_RESET_FAIL_CNT) {
hdev->rst_stats.reset_fail_cnt++;
set_bit(hdev->reset_type, &hdev->reset_pending);
hclge_set_reset_pending(hdev, hdev->reset_type);
dev_info(&hdev->pdev->dev,
"re-schedule reset task(%u)\n",
hdev->rst_stats.reset_fail_cnt);
@ -4480,8 +4494,20 @@ static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle)
static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
enum hnae3_reset_type rst_type)
{
#define HCLGE_SUPPORT_RESET_TYPE \
(BIT(HNAE3_FLR_RESET) | BIT(HNAE3_FUNC_RESET) | \
BIT(HNAE3_GLOBAL_RESET) | BIT(HNAE3_IMP_RESET))
struct hclge_dev *hdev = ae_dev->priv;
if (!(BIT(rst_type) & HCLGE_SUPPORT_RESET_TYPE)) {
/* To prevent reset triggered by hclge_reset_event */
set_bit(HNAE3_NONE_RESET, &hdev->default_reset_request);
dev_warn(&hdev->pdev->dev, "unsupported reset type %d\n",
rst_type);
return;
}
set_bit(rst_type, &hdev->default_reset_request);
}
@ -11891,9 +11917,6 @@ static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev)
hclge_init_rxd_adv_layout(hdev);
/* Enable MISC vector(vector0) */
hclge_enable_vector(&hdev->misc_vector, true);
ret = hclge_init_wol(hdev);
if (ret)
dev_warn(&pdev->dev,
@ -11906,6 +11929,10 @@ static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev)
hclge_state_init(hdev);
hdev->last_reset_time = jiffies;
/* Enable MISC vector(vector0) */
enable_irq(hdev->misc_vector.vector_irq);
hclge_enable_vector(&hdev->misc_vector, true);
dev_info(&hdev->pdev->dev, "%s driver initialization finished.\n",
HCLGE_DRIVER_NAME);
@ -12311,7 +12338,7 @@ static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
/* Disable MISC vector(vector0) */
hclge_enable_vector(&hdev->misc_vector, false);
synchronize_irq(hdev->misc_vector.vector_irq);
disable_irq(hdev->misc_vector.vector_irq);
/* Disable all hw interrupts */
hclge_config_mac_tnl_int(hdev, false);

View File

@ -58,6 +58,9 @@ bool hclge_ptp_set_tx_info(struct hnae3_handle *handle, struct sk_buff *skb)
struct hclge_dev *hdev = vport->back;
struct hclge_ptp *ptp = hdev->ptp;
if (!ptp)
return false;
if (!test_bit(HCLGE_PTP_FLAG_TX_EN, &ptp->flags) ||
test_and_set_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state)) {
ptp->tx_skipped++;

View File

@ -510,9 +510,9 @@ out:
static int hclge_fetch_pf_reg(struct hclge_dev *hdev, void *data,
struct hnae3_knic_private_info *kinfo)
{
#define HCLGE_RING_REG_OFFSET 0x200
#define HCLGE_RING_INT_REG_OFFSET 0x4
struct hnae3_queue *tqp;
int i, j, reg_num;
int data_num_sum;
u32 *reg = data;
@ -533,10 +533,11 @@ static int hclge_fetch_pf_reg(struct hclge_dev *hdev, void *data,
reg_num = ARRAY_SIZE(ring_reg_addr_list);
for (j = 0; j < kinfo->num_tqps; j++) {
reg += hclge_reg_get_tlv(HCLGE_REG_TAG_RING, reg_num, reg);
tqp = kinfo->tqp[j];
for (i = 0; i < reg_num; i++)
*reg++ = hclge_read_dev(&hdev->hw,
ring_reg_addr_list[i] +
HCLGE_RING_REG_OFFSET * j);
*reg++ = readl_relaxed(tqp->io_base -
HCLGE_TQP_REG_OFFSET +
ring_reg_addr_list[i]);
}
data_num_sum += (reg_num + HCLGE_REG_TLV_SPACE) * kinfo->num_tqps;

View File

@ -1395,6 +1395,17 @@ static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
return ret;
}
static void hclgevf_set_reset_pending(struct hclgevf_dev *hdev,
enum hnae3_reset_type reset_type)
{
/* When an incorrect reset type is executed, the get_reset_level
* function generates the HNAE3_NONE_RESET flag. As a result, this
* type do not need to pending.
*/
if (reset_type != HNAE3_NONE_RESET)
set_bit(reset_type, &hdev->reset_pending);
}
static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RESET_WAIT_US 20000
@ -1544,7 +1555,7 @@ static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
hdev->rst_stats.rst_fail_cnt);
if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
set_bit(hdev->reset_type, &hdev->reset_pending);
hclgevf_set_reset_pending(hdev, hdev->reset_type);
if (hclgevf_is_reset_pending(hdev)) {
set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
@ -1664,6 +1675,8 @@ static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
clear_bit(HNAE3_FLR_RESET, addr);
}
clear_bit(HNAE3_NONE_RESET, addr);
return rst_level;
}
@ -1673,14 +1686,15 @@ static void hclgevf_reset_event(struct pci_dev *pdev,
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
struct hclgevf_dev *hdev = ae_dev->priv;
dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
if (hdev->default_reset_request)
hdev->reset_level =
hclgevf_get_reset_level(&hdev->default_reset_request);
else
hdev->reset_level = HNAE3_VF_FUNC_RESET;
dev_info(&hdev->pdev->dev, "received reset request from VF enet, reset level is %d\n",
hdev->reset_level);
/* reset of this VF requested */
set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
hclgevf_reset_task_schedule(hdev);
@ -1691,8 +1705,20 @@ static void hclgevf_reset_event(struct pci_dev *pdev,
static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
enum hnae3_reset_type rst_type)
{
#define HCLGEVF_SUPPORT_RESET_TYPE \
(BIT(HNAE3_VF_RESET) | BIT(HNAE3_VF_FUNC_RESET) | \
BIT(HNAE3_VF_PF_FUNC_RESET) | BIT(HNAE3_VF_FULL_RESET) | \
BIT(HNAE3_FLR_RESET) | BIT(HNAE3_VF_EXP_RESET))
struct hclgevf_dev *hdev = ae_dev->priv;
if (!(BIT(rst_type) & HCLGEVF_SUPPORT_RESET_TYPE)) {
/* To prevent reset triggered by hclge_reset_event */
set_bit(HNAE3_NONE_RESET, &hdev->default_reset_request);
dev_info(&hdev->pdev->dev, "unsupported reset type %d\n",
rst_type);
return;
}
set_bit(rst_type, &hdev->default_reset_request);
}
@ -1849,14 +1875,14 @@ static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
*/
if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
/* prepare for full reset of stack + pcie interface */
set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
hclgevf_set_reset_pending(hdev, HNAE3_VF_FULL_RESET);
/* "defer" schedule the reset task again */
set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
} else {
hdev->reset_attempts++;
set_bit(hdev->reset_level, &hdev->reset_pending);
hclgevf_set_reset_pending(hdev, hdev->reset_level);
set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
}
hclgevf_reset_task_schedule(hdev);
@ -1979,7 +2005,7 @@ static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
dev_info(&hdev->pdev->dev,
"receive reset interrupt 0x%x!\n", rst_ing_reg);
set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
hclgevf_set_reset_pending(hdev, HNAE3_VF_RESET);
set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
@ -2289,6 +2315,7 @@ static void hclgevf_state_init(struct hclgevf_dev *hdev)
clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
mutex_init(&hdev->mbx_resp.mbx_mutex);
sema_init(&hdev->reset_sem, 1);
@ -2988,7 +3015,6 @@ static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
HCLGEVF_DRIVER_NAME);
hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
return 0;

View File

@ -123,10 +123,10 @@ int hclgevf_get_regs_len(struct hnae3_handle *handle)
void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
void *data)
{
#define HCLGEVF_RING_REG_OFFSET 0x200
#define HCLGEVF_RING_INT_REG_OFFSET 0x4
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct hnae3_queue *tqp;
int i, j, reg_um;
u32 *reg = data;
@ -147,10 +147,11 @@ void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
reg_um = ARRAY_SIZE(ring_reg_addr_list);
for (j = 0; j < hdev->num_tqps; j++) {
reg += hclgevf_reg_get_tlv(HCLGEVF_REG_TAG_RING, reg_um, reg);
tqp = &hdev->htqp[j].q;
for (i = 0; i < reg_um; i++)
*reg++ = hclgevf_read_dev(&hdev->hw,
ring_reg_addr_list[i] +
HCLGEVF_RING_REG_OFFSET * j);
*reg++ = readl_relaxed(tqp->io_base -
HCLGEVF_TQP_REG_OFFSET +
ring_reg_addr_list[i]);
}
reg_um = ARRAY_SIZE(tqp_intr_reg_addr_list);

View File

@ -989,5 +989,11 @@ ice_devlink_port_new(struct devlink *devlink,
if (err)
return err;
if (!ice_is_eswitch_mode_switchdev(pf)) {
NL_SET_ERR_MSG_MOD(extack,
"SF ports are only supported in eswitch switchdev mode");
return -EOPNOTSUPP;
}
return ice_alloc_dynamic_port(pf, new_attr, extack, devlink_port);
}

View File

@ -10,6 +10,7 @@
#define ICE_DPLL_PIN_IDX_INVALID 0xff
#define ICE_DPLL_RCLK_NUM_PER_PF 1
#define ICE_DPLL_PIN_ESYNC_PULSE_HIGH_PERCENT 25
#define ICE_DPLL_PIN_GEN_RCLK_FREQ 1953125
/**
* enum ice_dpll_pin_type - enumerate ice pin types:
@ -2063,6 +2064,73 @@ static int ice_dpll_init_worker(struct ice_pf *pf)
return 0;
}
/**
* ice_dpll_init_info_pins_generic - initializes generic pins info
* @pf: board private structure
* @input: if input pins initialized
*
* Init information for generic pins, cache them in PF's pins structures.
*
* Return:
* * 0 - success
* * negative - init failure reason
*/
static int ice_dpll_init_info_pins_generic(struct ice_pf *pf, bool input)
{
struct ice_dpll *de = &pf->dplls.eec, *dp = &pf->dplls.pps;
static const char labels[][sizeof("99")] = {
"0", "1", "2", "3", "4", "5", "6", "7", "8",
"9", "10", "11", "12", "13", "14", "15" };
u32 cap = DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
enum ice_dpll_pin_type pin_type;
int i, pin_num, ret = -EINVAL;
struct ice_dpll_pin *pins;
u32 phase_adj_max;
if (input) {
pin_num = pf->dplls.num_inputs;
pins = pf->dplls.inputs;
phase_adj_max = pf->dplls.input_phase_adj_max;
pin_type = ICE_DPLL_PIN_TYPE_INPUT;
cap |= DPLL_PIN_CAPABILITIES_PRIORITY_CAN_CHANGE;
} else {
pin_num = pf->dplls.num_outputs;
pins = pf->dplls.outputs;
phase_adj_max = pf->dplls.output_phase_adj_max;
pin_type = ICE_DPLL_PIN_TYPE_OUTPUT;
}
if (pin_num > ARRAY_SIZE(labels))
return ret;
for (i = 0; i < pin_num; i++) {
pins[i].idx = i;
pins[i].prop.board_label = labels[i];
pins[i].prop.phase_range.min = phase_adj_max;
pins[i].prop.phase_range.max = -phase_adj_max;
pins[i].prop.capabilities = cap;
pins[i].pf = pf;
ret = ice_dpll_pin_state_update(pf, &pins[i], pin_type, NULL);
if (ret)
break;
if (input && pins[i].freq == ICE_DPLL_PIN_GEN_RCLK_FREQ)
pins[i].prop.type = DPLL_PIN_TYPE_MUX;
else
pins[i].prop.type = DPLL_PIN_TYPE_EXT;
if (!input)
continue;
ret = ice_aq_get_cgu_ref_prio(&pf->hw, de->dpll_idx, i,
&de->input_prio[i]);
if (ret)
break;
ret = ice_aq_get_cgu_ref_prio(&pf->hw, dp->dpll_idx, i,
&dp->input_prio[i]);
if (ret)
break;
}
return ret;
}
/**
* ice_dpll_init_info_direct_pins - initializes direct pins info
* @pf: board private structure
@ -2101,6 +2169,8 @@ ice_dpll_init_info_direct_pins(struct ice_pf *pf,
default:
return -EINVAL;
}
if (num_pins != ice_cgu_get_num_pins(hw, input))
return ice_dpll_init_info_pins_generic(pf, input);
for (i = 0; i < num_pins; i++) {
caps = 0;

View File

@ -34,7 +34,6 @@ static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0, },
};
static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
@ -52,7 +51,6 @@ static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, },
};
static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
@ -6047,6 +6045,25 @@ ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
return t;
}
/**
* ice_cgu_get_num_pins - get pin description array size
* @hw: pointer to the hw struct
* @input: if request is done against input or output pins
*
* Return: size of pin description array for given hw.
*/
int ice_cgu_get_num_pins(struct ice_hw *hw, bool input)
{
const struct ice_cgu_pin_desc *t;
int size;
t = ice_cgu_get_pin_desc(hw, input, &size);
if (t)
return size;
return 0;
}
/**
* ice_cgu_get_pin_type - get pin's type
* @hw: pointer to the hw struct

View File

@ -406,6 +406,7 @@ int ice_read_sma_ctrl(struct ice_hw *hw, u8 *data);
int ice_write_sma_ctrl(struct ice_hw *hw, u8 data);
int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data);
int ice_ptp_read_sdp_ac(struct ice_hw *hw, __le16 *entries, uint *num_entries);
int ice_cgu_get_num_pins(struct ice_hw *hw, bool input);
enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input);
struct dpll_pin_frequency *
ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num);

View File

@ -907,7 +907,7 @@ static int igb_request_msix(struct igb_adapter *adapter)
int i, err = 0, vector = 0, free_vector = 0;
err = request_irq(adapter->msix_entries[vector].vector,
igb_msix_other, 0, netdev->name, adapter);
igb_msix_other, IRQF_NO_THREAD, netdev->name, adapter);
if (err)
goto err_out;

View File

@ -91,8 +91,8 @@ enum mtk_wed_dummy_cr_idx {
#define MT7981_FIRMWARE_WO "mediatek/mt7981_wo.bin"
#define MT7986_FIRMWARE_WO0 "mediatek/mt7986_wo_0.bin"
#define MT7986_FIRMWARE_WO1 "mediatek/mt7986_wo_1.bin"
#define MT7988_FIRMWARE_WO0 "mediatek/mt7988_wo_0.bin"
#define MT7988_FIRMWARE_WO1 "mediatek/mt7988_wo_1.bin"
#define MT7988_FIRMWARE_WO0 "mediatek/mt7988/mt7988_wo_0.bin"
#define MT7988_FIRMWARE_WO1 "mediatek/mt7988/mt7988_wo_1.bin"
#define MTK_WO_MCU_CFG_LS_BASE 0
#define MTK_WO_MCU_CFG_LS_HW_VER_ADDR (MTK_WO_MCU_CFG_LS_BASE + 0x000)

View File

@ -389,15 +389,27 @@ static void mlxsw_pci_wqe_frag_unmap(struct mlxsw_pci *mlxsw_pci, char *wqe,
dma_unmap_single(&pdev->dev, mapaddr, frag_len, direction);
}
static struct sk_buff *mlxsw_pci_rdq_build_skb(struct page *pages[],
static struct sk_buff *mlxsw_pci_rdq_build_skb(struct mlxsw_pci_queue *q,
struct page *pages[],
u16 byte_count)
{
struct mlxsw_pci_queue *cq = q->u.rdq.cq;
unsigned int linear_data_size;
struct page_pool *page_pool;
struct sk_buff *skb;
int page_index = 0;
bool linear_only;
void *data;
linear_only = byte_count + MLXSW_PCI_RX_BUF_SW_OVERHEAD <= PAGE_SIZE;
linear_data_size = linear_only ? byte_count :
PAGE_SIZE -
MLXSW_PCI_RX_BUF_SW_OVERHEAD;
page_pool = cq->u.cq.page_pool;
page_pool_dma_sync_for_cpu(page_pool, pages[page_index],
MLXSW_PCI_SKB_HEADROOM, linear_data_size);
data = page_address(pages[page_index]);
net_prefetch(data);
@ -405,11 +417,6 @@ static struct sk_buff *mlxsw_pci_rdq_build_skb(struct page *pages[],
if (unlikely(!skb))
return ERR_PTR(-ENOMEM);
linear_only = byte_count + MLXSW_PCI_RX_BUF_SW_OVERHEAD <= PAGE_SIZE;
linear_data_size = linear_only ? byte_count :
PAGE_SIZE -
MLXSW_PCI_RX_BUF_SW_OVERHEAD;
skb_reserve(skb, MLXSW_PCI_SKB_HEADROOM);
skb_put(skb, linear_data_size);
@ -425,6 +432,7 @@ static struct sk_buff *mlxsw_pci_rdq_build_skb(struct page *pages[],
page = pages[page_index];
frag_size = min(byte_count, PAGE_SIZE);
page_pool_dma_sync_for_cpu(page_pool, page, 0, frag_size);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
page, 0, frag_size, PAGE_SIZE);
byte_count -= frag_size;
@ -760,7 +768,7 @@ static void mlxsw_pci_cqe_rdq_handle(struct mlxsw_pci *mlxsw_pci,
if (err)
goto out;
skb = mlxsw_pci_rdq_build_skb(pages, byte_count);
skb = mlxsw_pci_rdq_build_skb(q, pages, byte_count);
if (IS_ERR(skb)) {
dev_err_ratelimited(&pdev->dev, "Failed to build skb for RDQ\n");
mlxsw_pci_rdq_pages_recycle(q, pages, num_sg_entries);
@ -988,12 +996,13 @@ static int mlxsw_pci_cq_page_pool_init(struct mlxsw_pci_queue *q,
if (cq_type != MLXSW_PCI_CQ_RDQ)
return 0;
pp_params.flags = PP_FLAG_DMA_MAP;
pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
pp_params.pool_size = MLXSW_PCI_WQE_COUNT * mlxsw_pci->num_sg_entries;
pp_params.nid = dev_to_node(&mlxsw_pci->pdev->dev);
pp_params.dev = &mlxsw_pci->pdev->dev;
pp_params.napi = &q->u.cq.napi;
pp_params.dma_dir = DMA_FROM_DEVICE;
pp_params.max_len = PAGE_SIZE;
page_pool = page_pool_create(&pp_params);
if (IS_ERR(page_pool))

View File

@ -481,11 +481,33 @@ mlxsw_sp_ipip_ol_netdev_change_gre6(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp_ipip_entry *ipip_entry,
struct netlink_ext_ack *extack)
{
u32 new_kvdl_index, old_kvdl_index = ipip_entry->dip_kvdl_index;
struct in6_addr old_addr6 = ipip_entry->parms.daddr.addr6;
struct mlxsw_sp_ipip_parms new_parms;
int err;
new_parms = mlxsw_sp_ipip_netdev_parms_init_gre6(ipip_entry->ol_dev);
return mlxsw_sp_ipip_ol_netdev_change_gre(mlxsw_sp, ipip_entry,
&new_parms, extack);
err = mlxsw_sp_ipv6_addr_kvdl_index_get(mlxsw_sp,
&new_parms.daddr.addr6,
&new_kvdl_index);
if (err)
return err;
ipip_entry->dip_kvdl_index = new_kvdl_index;
err = mlxsw_sp_ipip_ol_netdev_change_gre(mlxsw_sp, ipip_entry,
&new_parms, extack);
if (err)
goto err_change_gre;
mlxsw_sp_ipv6_addr_put(mlxsw_sp, &old_addr6);
return 0;
err_change_gre:
ipip_entry->dip_kvdl_index = old_kvdl_index;
mlxsw_sp_ipv6_addr_put(mlxsw_sp, &new_parms.daddr.addr6);
return err;
}
static int

View File

@ -16,6 +16,7 @@
#include "spectrum.h"
#include "spectrum_ptp.h"
#include "core.h"
#include "txheader.h"
#define MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT 29
#define MLXSW_SP1_PTP_CLOCK_FREQ_KHZ 156257 /* 6.4nSec */
@ -1684,6 +1685,12 @@ int mlxsw_sp_ptp_txhdr_construct(struct mlxsw_core *mlxsw_core,
struct sk_buff *skb,
const struct mlxsw_tx_info *tx_info)
{
if (skb_cow_head(skb, MLXSW_TXHDR_LEN)) {
this_cpu_inc(mlxsw_sp_port->pcpu_stats->tx_dropped);
dev_kfree_skb_any(skb);
return -ENOMEM;
}
mlxsw_sp_txhdr_construct(skb, tx_info);
return 0;
}

View File

@ -203,8 +203,12 @@ static void _dwmac4_dump_dma_regs(struct stmmac_priv *priv,
readl(ioaddr + DMA_CHAN_TX_CONTROL(dwmac4_addrs, channel));
reg_space[DMA_CHAN_RX_CONTROL(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_RX_CONTROL(dwmac4_addrs, channel));
reg_space[DMA_CHAN_TX_BASE_ADDR_HI(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_TX_BASE_ADDR_HI(dwmac4_addrs, channel));
reg_space[DMA_CHAN_TX_BASE_ADDR(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_TX_BASE_ADDR(dwmac4_addrs, channel));
reg_space[DMA_CHAN_RX_BASE_ADDR_HI(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_RX_BASE_ADDR_HI(dwmac4_addrs, channel));
reg_space[DMA_CHAN_RX_BASE_ADDR(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_RX_BASE_ADDR(dwmac4_addrs, channel));
reg_space[DMA_CHAN_TX_END_ADDR(default_addrs, channel) / 4] =
@ -225,8 +229,12 @@ static void _dwmac4_dump_dma_regs(struct stmmac_priv *priv,
readl(ioaddr + DMA_CHAN_CUR_TX_DESC(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_RX_DESC(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_RX_DESC(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_TX_BUF_ADDR_HI(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_TX_BUF_ADDR_HI(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_TX_BUF_ADDR(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_TX_BUF_ADDR(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_RX_BUF_ADDR_HI(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_RX_BUF_ADDR_HI(dwmac4_addrs, channel));
reg_space[DMA_CHAN_CUR_RX_BUF_ADDR(default_addrs, channel) / 4] =
readl(ioaddr + DMA_CHAN_CUR_RX_BUF_ADDR(dwmac4_addrs, channel));
reg_space[DMA_CHAN_STATUS(default_addrs, channel) / 4] =

View File

@ -127,7 +127,9 @@ static inline u32 dma_chanx_base_addr(const struct dwmac4_addrs *addrs,
#define DMA_CHAN_SLOT_CTRL_STATUS(addrs, x) (dma_chanx_base_addr(addrs, x) + 0x3c)
#define DMA_CHAN_CUR_TX_DESC(addrs, x) (dma_chanx_base_addr(addrs, x) + 0x44)
#define DMA_CHAN_CUR_RX_DESC(addrs, x) (dma_chanx_base_addr(addrs, x) + 0x4c)
#define DMA_CHAN_CUR_TX_BUF_ADDR_HI(addrs, x) (dma_chanx_base_addr(addrs, x) + 0x50)
#define DMA_CHAN_CUR_TX_BUF_ADDR(addrs, x) (dma_chanx_base_addr(addrs, x) + 0x54)
#define DMA_CHAN_CUR_RX_BUF_ADDR_HI(addrs, x) (dma_chanx_base_addr(addrs, x) + 0x58)
#define DMA_CHAN_CUR_RX_BUF_ADDR(addrs, x) (dma_chanx_base_addr(addrs, x) + 0x5c)
#define DMA_CHAN_STATUS(addrs, x) (dma_chanx_base_addr(addrs, x) + 0x60)

View File

@ -4304,11 +4304,6 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
if (dma_mapping_error(priv->device, des))
goto dma_map_err;
tx_q->tx_skbuff_dma[first_entry].buf = des;
tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
if (priv->dma_cap.addr64 <= 32) {
first->des0 = cpu_to_le32(des);
@ -4327,6 +4322,23 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
/* In case two or more DMA transmit descriptors are allocated for this
* non-paged SKB data, the DMA buffer address should be saved to
* tx_q->tx_skbuff_dma[].buf corresponding to the last descriptor,
* and leave the other tx_q->tx_skbuff_dma[].buf as NULL to guarantee
* that stmmac_tx_clean() does not unmap the entire DMA buffer too early
* since the tail areas of the DMA buffer can be accessed by DMA engine
* sooner or later.
* By saving the DMA buffer address to tx_q->tx_skbuff_dma[].buf
* corresponding to the last descriptor, stmmac_tx_clean() will unmap
* this DMA buffer right after the DMA engine completely finishes the
* full buffer transmission.
*/
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_headlen(skb);
tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = false;
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
/* Prepare fragments */
for (i = 0; i < nfrags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

View File

@ -1702,20 +1702,24 @@ static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[])
return -EINVAL;
if (data[IFLA_GTP_FD0]) {
u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]);
int fd0 = nla_get_u32(data[IFLA_GTP_FD0]);
sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
if (IS_ERR(sk0))
return PTR_ERR(sk0);
if (fd0 >= 0) {
sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
if (IS_ERR(sk0))
return PTR_ERR(sk0);
}
}
if (data[IFLA_GTP_FD1]) {
u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]);
int fd1 = nla_get_u32(data[IFLA_GTP_FD1]);
sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
if (IS_ERR(sk1u)) {
gtp_encap_disable_sock(sk0);
return PTR_ERR(sk1u);
if (fd1 >= 0) {
sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
if (IS_ERR(sk1u)) {
gtp_encap_disable_sock(sk0);
return PTR_ERR(sk1u);
}
}
}

View File

@ -3798,8 +3798,7 @@ static void macsec_free_netdev(struct net_device *dev)
{
struct macsec_dev *macsec = macsec_priv(dev);
if (macsec->secy.tx_sc.md_dst)
metadata_dst_free(macsec->secy.tx_sc.md_dst);
dst_release(&macsec->secy.tx_sc.md_dst->dst);
free_percpu(macsec->stats);
free_percpu(macsec->secy.tx_sc.stats);

View File

@ -588,6 +588,9 @@ static int mctp_i2c_header_create(struct sk_buff *skb, struct net_device *dev,
if (len > MCTP_I2C_MAXMTU)
return -EMSGSIZE;
if (!daddr || !saddr)
return -EINVAL;
lldst = *((u8 *)daddr);
llsrc = *((u8 *)saddr);

View File

@ -1377,10 +1377,12 @@ static ssize_t nsim_nexthop_bucket_activity_write(struct file *file,
if (pos != 0)
return -EINVAL;
if (size > sizeof(buf))
if (size > sizeof(buf) - 1)
return -EINVAL;
if (copy_from_user(buf, user_buf, size))
return -EFAULT;
buf[size] = 0;
if (sscanf(buf, "%u %hu", &nhid, &bucket_index) != 2)
return -EINVAL;

View File

@ -1076,6 +1076,7 @@ static const struct usb_device_id products[] = {
USB_DEVICE_AND_INTERFACE_INFO(0x03f0, 0x581d, USB_CLASS_VENDOR_SPEC, 1, 7),
.driver_info = (unsigned long)&qmi_wwan_info,
},
{QMI_MATCH_FF_FF_FF(0x2c7c, 0x0122)}, /* Quectel RG650V */
{QMI_MATCH_FF_FF_FF(0x2c7c, 0x0125)}, /* Quectel EC25, EC20 R2.0 Mini PCIe */
{QMI_MATCH_FF_FF_FF(0x2c7c, 0x0306)}, /* Quectel EP06/EG06/EM06 */
{QMI_MATCH_FF_FF_FF(0x2c7c, 0x0512)}, /* Quectel EG12/EM12 */

View File

@ -10069,6 +10069,7 @@ static const struct usb_device_id rtl8152_table[] = {
{ USB_DEVICE(VENDOR_ID_LENOVO, 0x3062) },
{ USB_DEVICE(VENDOR_ID_LENOVO, 0x3069) },
{ USB_DEVICE(VENDOR_ID_LENOVO, 0x3082) },
{ USB_DEVICE(VENDOR_ID_LENOVO, 0x3098) },
{ USB_DEVICE(VENDOR_ID_LENOVO, 0x7205) },
{ USB_DEVICE(VENDOR_ID_LENOVO, 0x720c) },
{ USB_DEVICE(VENDOR_ID_LENOVO, 0x7214) },

View File

@ -3043,9 +3043,14 @@ ath10k_wmi_tlv_op_cleanup_mgmt_tx_send(struct ath10k *ar,
struct sk_buff *msdu)
{
struct ath10k_skb_cb *cb = ATH10K_SKB_CB(msdu);
struct ath10k_mgmt_tx_pkt_addr *pkt_addr;
struct ath10k_wmi *wmi = &ar->wmi;
idr_remove(&wmi->mgmt_pending_tx, cb->msdu_id);
spin_lock_bh(&ar->data_lock);
pkt_addr = idr_remove(&wmi->mgmt_pending_tx, cb->msdu_id);
spin_unlock_bh(&ar->data_lock);
kfree(pkt_addr);
return 0;
}

View File

@ -2441,6 +2441,7 @@ wmi_process_mgmt_tx_comp(struct ath10k *ar, struct mgmt_tx_compl_params *param)
dma_unmap_single(ar->dev, pkt_addr->paddr,
msdu->len, DMA_TO_DEVICE);
info = IEEE80211_SKB_CB(msdu);
kfree(pkt_addr);
if (param->status) {
info->flags &= ~IEEE80211_TX_STAT_ACK;
@ -9612,6 +9613,7 @@ static int ath10k_wmi_mgmt_tx_clean_up_pending(int msdu_id, void *ptr,
dma_unmap_single(ar->dev, pkt_addr->paddr,
msdu->len, DMA_TO_DEVICE);
ieee80211_free_txskb(ar->hw, msdu);
kfree(pkt_addr);
return 0;
}

View File

@ -5291,8 +5291,11 @@ int ath11k_dp_rx_process_mon_status(struct ath11k_base *ab, int mac_id,
hal_status == HAL_TLV_STATUS_PPDU_DONE) {
rx_mon_stats->status_ppdu_done++;
pmon->mon_ppdu_status = DP_PPDU_STATUS_DONE;
ath11k_dp_rx_mon_dest_process(ar, mac_id, budget, napi);
pmon->mon_ppdu_status = DP_PPDU_STATUS_START;
if (!ab->hw_params.full_monitor_mode) {
ath11k_dp_rx_mon_dest_process(ar, mac_id,
budget, napi);
pmon->mon_ppdu_status = DP_PPDU_STATUS_START;
}
}
if (ppdu_info->peer_id == HAL_INVALID_PEERID ||

View File

@ -306,7 +306,7 @@ static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
struct sk_buff *skb)
{
struct wil6210_rtap {
struct ieee80211_radiotap_header rthdr;
struct ieee80211_radiotap_header_fixed rthdr;
/* fields should be in the order of bits in rthdr.it_present */
/* flags */
u8 flags;

View File

@ -27,6 +27,7 @@ source "drivers/net/wireless/broadcom/brcm80211/brcmfmac/Kconfig"
config BRCM_TRACING
bool "Broadcom device tracing"
depends on BRCMSMAC || BRCMFMAC
depends on TRACING
help
If you say Y here, the Broadcom wireless drivers will register
with ftrace to dump event information into the trace ringbuffer.

View File

@ -2515,7 +2515,7 @@ static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
* to build this manually element by element, we can write it much
* more efficiently than we can parse it. ORDER MATTERS HERE */
struct ipw_rt_hdr {
struct ieee80211_radiotap_header rt_hdr;
struct ieee80211_radiotap_header_fixed rt_hdr;
s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
} *ipw_rt;

View File

@ -1141,7 +1141,7 @@ struct ipw_prom_priv {
* structure is provided regardless of any bits unset.
*/
struct ipw_rt_hdr {
struct ieee80211_radiotap_header rt_hdr;
struct ieee80211_radiotap_header_fixed rt_hdr;
u64 rt_tsf; /* TSF */ /* XXX */
u8 rt_flags; /* radiotap packet flags */
u8 rt_rate; /* rate in 500kb/s */

View File

@ -3122,6 +3122,7 @@ il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
struct il_cmd_meta *out_meta;
dma_addr_t phys_addr;
unsigned long flags;
u8 *out_payload;
u32 idx;
u16 fix_size;
@ -3157,6 +3158,16 @@ il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
out_cmd = txq->cmd[idx];
out_meta = &txq->meta[idx];
/* The payload is in the same place in regular and huge
* command buffers, but we need to let the compiler know when
* we're using a larger payload buffer to avoid "field-
* spanning write" warnings at run-time for huge commands.
*/
if (cmd->flags & CMD_SIZE_HUGE)
out_payload = ((struct il_device_cmd_huge *)out_cmd)->cmd.payload;
else
out_payload = out_cmd->cmd.payload;
if (WARN_ON(out_meta->flags & CMD_MAPPED)) {
spin_unlock_irqrestore(&il->hcmd_lock, flags);
return -ENOSPC;
@ -3170,7 +3181,7 @@ il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
out_meta->callback = cmd->callback;
out_cmd->hdr.cmd = cmd->id;
memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len);
memcpy(out_payload, cmd->data, cmd->len);
/* At this point, the out_cmd now has all of the incoming cmd
* information */
@ -4962,6 +4973,8 @@ il_pci_resume(struct device *device)
*/
pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
_il_wr(il, CSR_INT, 0xffffffff);
_il_wr(il, CSR_FH_INT_STATUS, 0xffffffff);
il_enable_interrupts(il);
if (!(_il_rd(il, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW))

View File

@ -560,6 +560,18 @@ struct il_device_cmd {
#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct il_device_cmd))
/**
* struct il_device_cmd_huge
*
* For use when sending huge commands.
*/
struct il_device_cmd_huge {
struct il_cmd_header hdr; /* uCode API */
union {
u8 payload[IL_MAX_CMD_SIZE - sizeof(struct il_cmd_header)];
} __packed cmd;
} __packed;
struct il_host_cmd {
const void *data;
unsigned long reply_page;

View File

@ -429,38 +429,28 @@ out_free:
return ret;
}
static int iwl_acpi_sar_set_profile(union acpi_object *table,
struct iwl_sar_profile *profile,
bool enabled, u8 num_chains,
u8 num_sub_bands)
static int
iwl_acpi_parse_chains_table(union acpi_object *table,
struct iwl_sar_profile_chain *chains,
u8 num_chains, u8 num_sub_bands)
{
int i, j, idx = 0;
/*
* The table from ACPI is flat, but we store it in a
* structured array.
*/
for (i = 0; i < BIOS_SAR_MAX_CHAINS_PER_PROFILE; i++) {
for (j = 0; j < BIOS_SAR_MAX_SUB_BANDS_NUM; j++) {
for (u8 chain = 0; chain < num_chains; chain++) {
for (u8 subband = 0; subband < BIOS_SAR_MAX_SUB_BANDS_NUM;
subband++) {
/* if we don't have the values, use the default */
if (i >= num_chains || j >= num_sub_bands) {
profile->chains[i].subbands[j] = 0;
if (subband >= num_sub_bands) {
chains[chain].subbands[subband] = 0;
} else if (table->type != ACPI_TYPE_INTEGER ||
table->integer.value > U8_MAX) {
return -EINVAL;
} else {
if (table[idx].type != ACPI_TYPE_INTEGER ||
table[idx].integer.value > U8_MAX)
return -EINVAL;
profile->chains[i].subbands[j] =
table[idx].integer.value;
idx++;
chains[chain].subbands[subband] =
table->integer.value;
table++;
}
}
}
/* Only if all values were valid can the profile be enabled */
profile->enabled = enabled;
return 0;
}
@ -543,9 +533,11 @@ read_table:
/* The profile from WRDS is officially profile 1, but goes
* into sar_profiles[0] (because we don't have a profile 0).
*/
ret = iwl_acpi_sar_set_profile(table, &fwrt->sar_profiles[0],
flags & IWL_SAR_ENABLE_MSK,
num_chains, num_sub_bands);
ret = iwl_acpi_parse_chains_table(table, fwrt->sar_profiles[0].chains,
num_chains, num_sub_bands);
if (!ret && flags & IWL_SAR_ENABLE_MSK)
fwrt->sar_profiles[0].enabled = true;
out_free:
kfree(data);
return ret;
@ -557,7 +549,7 @@ int iwl_acpi_get_ewrd_table(struct iwl_fw_runtime *fwrt)
bool enabled;
int i, n_profiles, tbl_rev, pos;
int ret = 0;
u8 num_chains, num_sub_bands;
u8 num_sub_bands;
data = iwl_acpi_get_object(fwrt->dev, ACPI_EWRD_METHOD);
if (IS_ERR(data))
@ -573,7 +565,6 @@ int iwl_acpi_get_ewrd_table(struct iwl_fw_runtime *fwrt)
goto out_free;
}
num_chains = ACPI_SAR_NUM_CHAINS_REV2;
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV2;
goto read_table;
@ -589,7 +580,6 @@ int iwl_acpi_get_ewrd_table(struct iwl_fw_runtime *fwrt)
goto out_free;
}
num_chains = ACPI_SAR_NUM_CHAINS_REV1;
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV1;
goto read_table;
@ -605,7 +595,6 @@ int iwl_acpi_get_ewrd_table(struct iwl_fw_runtime *fwrt)
goto out_free;
}
num_chains = ACPI_SAR_NUM_CHAINS_REV0;
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV0;
goto read_table;
@ -637,23 +626,54 @@ read_table:
/* the tables start at element 3 */
pos = 3;
BUILD_BUG_ON(ACPI_SAR_NUM_CHAINS_REV0 != ACPI_SAR_NUM_CHAINS_REV1);
BUILD_BUG_ON(ACPI_SAR_NUM_CHAINS_REV2 != 2 * ACPI_SAR_NUM_CHAINS_REV0);
/* parse non-cdb chains for all profiles */
for (i = 0; i < n_profiles; i++) {
union acpi_object *table = &wifi_pkg->package.elements[pos];
/* The EWRD profiles officially go from 2 to 4, but we
* save them in sar_profiles[1-3] (because we don't
* have profile 0). So in the array we start from 1.
*/
ret = iwl_acpi_sar_set_profile(table,
&fwrt->sar_profiles[i + 1],
enabled, num_chains,
num_sub_bands);
ret = iwl_acpi_parse_chains_table(table,
fwrt->sar_profiles[i + 1].chains,
ACPI_SAR_NUM_CHAINS_REV0,
num_sub_bands);
if (ret < 0)
break;
goto out_free;
/* go to the next table */
pos += num_chains * num_sub_bands;
pos += ACPI_SAR_NUM_CHAINS_REV0 * num_sub_bands;
}
/* non-cdb table revisions */
if (tbl_rev < 2)
goto set_enabled;
/* parse cdb chains for all profiles */
for (i = 0; i < n_profiles; i++) {
struct iwl_sar_profile_chain *chains;
union acpi_object *table;
table = &wifi_pkg->package.elements[pos];
chains = &fwrt->sar_profiles[i + 1].chains[ACPI_SAR_NUM_CHAINS_REV0];
ret = iwl_acpi_parse_chains_table(table,
chains,
ACPI_SAR_NUM_CHAINS_REV0,
num_sub_bands);
if (ret < 0)
goto out_free;
/* go to the next table */
pos += ACPI_SAR_NUM_CHAINS_REV0 * num_sub_bands;
}
set_enabled:
for (i = 0; i < n_profiles; i++)
fwrt->sar_profiles[i + 1].enabled = enabled;
out_free:
kfree(data);
return ret;

View File

@ -39,10 +39,12 @@ void iwl_fw_runtime_init(struct iwl_fw_runtime *fwrt, struct iwl_trans *trans,
}
IWL_EXPORT_SYMBOL(iwl_fw_runtime_init);
/* Assumes the appropriate lock is held by the caller */
void iwl_fw_runtime_suspend(struct iwl_fw_runtime *fwrt)
{
iwl_fw_suspend_timestamp(fwrt);
iwl_dbg_tlv_time_point(fwrt, IWL_FW_INI_TIME_POINT_HOST_D3_START, NULL);
iwl_dbg_tlv_time_point_sync(fwrt, IWL_FW_INI_TIME_POINT_HOST_D3_START,
NULL);
}
IWL_EXPORT_SYMBOL(iwl_fw_runtime_suspend);

View File

@ -1413,26 +1413,36 @@ _iwl_op_mode_start(struct iwl_drv *drv, struct iwlwifi_opmode_table *op)
const struct iwl_op_mode_ops *ops = op->ops;
struct dentry *dbgfs_dir = NULL;
struct iwl_op_mode *op_mode = NULL;
int retry, max_retry = !!iwlwifi_mod_params.fw_restart * IWL_MAX_INIT_RETRY;
/* also protects start/stop from racing against each other */
lockdep_assert_held(&iwlwifi_opmode_table_mtx);
#ifdef CONFIG_IWLWIFI_DEBUGFS
drv->dbgfs_op_mode = debugfs_create_dir(op->name,
drv->dbgfs_drv);
dbgfs_dir = drv->dbgfs_op_mode;
#endif
op_mode = ops->start(drv->trans, drv->trans->cfg,
&drv->fw, dbgfs_dir);
if (op_mode)
return op_mode;
for (retry = 0; retry <= max_retry; retry++) {
#ifdef CONFIG_IWLWIFI_DEBUGFS
debugfs_remove_recursive(drv->dbgfs_op_mode);
drv->dbgfs_op_mode = NULL;
drv->dbgfs_op_mode = debugfs_create_dir(op->name,
drv->dbgfs_drv);
dbgfs_dir = drv->dbgfs_op_mode;
#endif
op_mode = ops->start(drv->trans, drv->trans->cfg,
&drv->fw, dbgfs_dir);
if (op_mode)
return op_mode;
if (test_bit(STATUS_TRANS_DEAD, &drv->trans->status))
break;
IWL_ERR(drv, "retry init count %d\n", retry);
#ifdef CONFIG_IWLWIFI_DEBUGFS
debugfs_remove_recursive(drv->dbgfs_op_mode);
drv->dbgfs_op_mode = NULL;
#endif
}
return NULL;
}

View File

@ -98,6 +98,9 @@ void iwl_drv_stop(struct iwl_drv *drv);
#define VISIBLE_IF_IWLWIFI_KUNIT static
#endif
/* max retry for init flow */
#define IWL_MAX_INIT_RETRY 2
#define FW_NAME_PRE_BUFSIZE 64
struct iwl_trans;
const char *iwl_drv_get_fwname_pre(struct iwl_trans *trans, char *buf);

View File

@ -1398,7 +1398,9 @@ int iwl_mvm_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan)
iwl_mvm_pause_tcm(mvm, true);
mutex_lock(&mvm->mutex);
iwl_fw_runtime_suspend(&mvm->fwrt);
mutex_unlock(&mvm->mutex);
return __iwl_mvm_suspend(hw, wowlan, false);
}

View File

@ -1307,8 +1307,8 @@ static void iwl_mvm_disconnect_iterator(void *data, u8 *mac,
void iwl_mvm_send_recovery_cmd(struct iwl_mvm *mvm, u32 flags)
{
u32 error_log_size = mvm->fw->ucode_capa.error_log_size;
u32 status = 0;
int ret;
u32 resp;
struct iwl_fw_error_recovery_cmd recovery_cmd = {
.flags = cpu_to_le32(flags),
@ -1316,7 +1316,6 @@ void iwl_mvm_send_recovery_cmd(struct iwl_mvm *mvm, u32 flags)
};
struct iwl_host_cmd host_cmd = {
.id = WIDE_ID(SYSTEM_GROUP, FW_ERROR_RECOVERY_CMD),
.flags = CMD_WANT_SKB,
.data = {&recovery_cmd, },
.len = {sizeof(recovery_cmd), },
};
@ -1336,7 +1335,7 @@ void iwl_mvm_send_recovery_cmd(struct iwl_mvm *mvm, u32 flags)
recovery_cmd.buf_size = cpu_to_le32(error_log_size);
}
ret = iwl_mvm_send_cmd(mvm, &host_cmd);
ret = iwl_mvm_send_cmd_status(mvm, &host_cmd, &status);
kfree(mvm->error_recovery_buf);
mvm->error_recovery_buf = NULL;
@ -1347,11 +1346,10 @@ void iwl_mvm_send_recovery_cmd(struct iwl_mvm *mvm, u32 flags)
/* skb respond is only relevant in ERROR_RECOVERY_UPDATE_DB */
if (flags & ERROR_RECOVERY_UPDATE_DB) {
resp = le32_to_cpu(*(__le32 *)host_cmd.resp_pkt->data);
if (resp) {
if (status) {
IWL_ERR(mvm,
"Failed to send recovery cmd blob was invalid %d\n",
resp);
status);
ieee80211_iterate_interfaces(mvm->hw, 0,
iwl_mvm_disconnect_iterator,

View File

@ -1293,12 +1293,14 @@ int iwl_mvm_mac_start(struct ieee80211_hw *hw)
{
struct iwl_mvm *mvm = IWL_MAC80211_GET_MVM(hw);
int ret;
int retry, max_retry = 0;
mutex_lock(&mvm->mutex);
/* we are starting the mac not in error flow, and restart is enabled */
if (!test_bit(IWL_MVM_STATUS_HW_RESTART_REQUESTED, &mvm->status) &&
iwlwifi_mod_params.fw_restart) {
max_retry = IWL_MAX_INIT_RETRY;
/*
* This will prevent mac80211 recovery flows to trigger during
* init failures
@ -1306,7 +1308,13 @@ int iwl_mvm_mac_start(struct ieee80211_hw *hw)
set_bit(IWL_MVM_STATUS_STARTING, &mvm->status);
}
ret = __iwl_mvm_mac_start(mvm);
for (retry = 0; retry <= max_retry; retry++) {
ret = __iwl_mvm_mac_start(mvm);
if (!ret)
break;
IWL_ERR(mvm, "mac start retry %d\n", retry);
}
clear_bit(IWL_MVM_STATUS_STARTING, &mvm->status);
mutex_unlock(&mvm->mutex);
@ -1992,7 +2000,6 @@ static void iwl_mvm_mac_remove_interface(struct ieee80211_hw *hw,
mvm->p2p_device_vif = NULL;
}
iwl_mvm_unset_link_mapping(mvm, vif, &vif->bss_conf);
iwl_mvm_mac_ctxt_remove(mvm, vif);
RCU_INIT_POINTER(mvm->vif_id_to_mac[mvmvif->id], NULL);
@ -2001,6 +2008,7 @@ static void iwl_mvm_mac_remove_interface(struct ieee80211_hw *hw,
mvm->monitor_on = false;
out:
iwl_mvm_unset_link_mapping(mvm, vif, &vif->bss_conf);
if (vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_ADHOC) {
iwl_mvm_dealloc_int_sta(mvm, &mvmvif->deflink.mcast_sta);

View File

@ -41,8 +41,6 @@ static int iwl_mvm_mld_mac_add_interface(struct ieee80211_hw *hw,
/* reset deflink MLO parameters */
mvmvif->deflink.fw_link_id = IWL_MVM_FW_LINK_ID_INVALID;
mvmvif->deflink.active = 0;
/* the first link always points to the default one */
mvmvif->link[0] = &mvmvif->deflink;
ret = iwl_mvm_mld_mac_ctxt_add(mvm, vif);
if (ret)
@ -60,9 +58,19 @@ static int iwl_mvm_mld_mac_add_interface(struct ieee80211_hw *hw,
IEEE80211_VIF_SUPPORTS_CQM_RSSI;
}
ret = iwl_mvm_add_link(mvm, vif, &vif->bss_conf);
if (ret)
goto out_free_bf;
/* We want link[0] to point to the default link, unless we have MLO and
* in this case this will be modified later by .change_vif_links()
* If we are in the restart flow with an MLD connection, we will wait
* to .change_vif_links() to setup the links.
*/
if (!test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status) ||
!ieee80211_vif_is_mld(vif)) {
mvmvif->link[0] = &mvmvif->deflink;
ret = iwl_mvm_add_link(mvm, vif, &vif->bss_conf);
if (ret)
goto out_free_bf;
}
/* Save a pointer to p2p device vif, so it can later be used to
* update the p2p device MAC when a GO is started/stopped
@ -1186,7 +1194,11 @@ iwl_mvm_mld_change_vif_links(struct ieee80211_hw *hw,
mutex_lock(&mvm->mutex);
if (old_links == 0) {
/* If we're in RESTART flow, the default link wasn't added in
* drv_add_interface(), and link[0] doesn't point to it.
*/
if (old_links == 0 && !test_bit(IWL_MVM_STATUS_IN_HW_RESTART,
&mvm->status)) {
err = iwl_mvm_disable_link(mvm, vif, &vif->bss_conf);
if (err)
goto out_err;

View File

@ -1774,7 +1774,7 @@ iwl_mvm_umac_scan_cfg_channels_v7_6g(struct iwl_mvm *mvm,
&cp->channel_config[ch_cnt];
u32 s_ssid_bitmap = 0, bssid_bitmap = 0, flags = 0;
u8 j, k, n_s_ssids = 0, n_bssids = 0;
u8 k, n_s_ssids = 0, n_bssids = 0;
u8 max_s_ssids, max_bssids;
bool force_passive = false, found = false, allow_passive = true,
unsolicited_probe_on_chan = false, psc_no_listen = false;
@ -1799,7 +1799,7 @@ iwl_mvm_umac_scan_cfg_channels_v7_6g(struct iwl_mvm *mvm,
cfg->v5.iter_count = 1;
cfg->v5.iter_interval = 0;
for (j = 0; j < params->n_6ghz_params; j++) {
for (u32 j = 0; j < params->n_6ghz_params; j++) {
s8 tmp_psd_20;
if (!(scan_6ghz_params[j].channel_idx == i))
@ -1873,7 +1873,7 @@ iwl_mvm_umac_scan_cfg_channels_v7_6g(struct iwl_mvm *mvm,
* SSID.
* TODO: improve this logic
*/
for (j = 0; j < params->n_6ghz_params; j++) {
for (u32 j = 0; j < params->n_6ghz_params; j++) {
if (!(scan_6ghz_params[j].channel_idx == i))
continue;

View File

@ -2,7 +2,7 @@
#include <net/ieee80211_radiotap.h>
struct tx_radiotap_hdr {
struct ieee80211_radiotap_header hdr;
struct ieee80211_radiotap_header_fixed hdr;
u8 rate;
u8 txpower;
u8 rts_retries;
@ -31,7 +31,7 @@ struct tx_radiotap_hdr {
#define IEEE80211_FC_DSTODS 0x0300
struct rx_radiotap_hdr {
struct ieee80211_radiotap_header hdr;
struct ieee80211_radiotap_header_fixed hdr;
u8 flags;
u8 rate;
u8 antsignal;

View File

@ -84,13 +84,16 @@ int mt76_mcu_skb_send_and_get_msg(struct mt76_dev *dev, struct sk_buff *skb,
mutex_lock(&dev->mcu.mutex);
if (dev->mcu_ops->mcu_skb_prepare_msg) {
orig_skb = skb;
ret = dev->mcu_ops->mcu_skb_prepare_msg(dev, skb, cmd, &seq);
if (ret < 0)
goto out;
}
retry:
orig_skb = skb_get(skb);
/* orig skb might be needed for retry, mcu_skb_send_msg consumes it */
if (orig_skb)
skb_get(orig_skb);
ret = dev->mcu_ops->mcu_skb_send_msg(dev, skb, cmd, &seq);
if (ret < 0)
goto out;
@ -105,7 +108,7 @@ retry:
do {
skb = mt76_mcu_get_response(dev, expires);
if (!skb && !test_bit(MT76_MCU_RESET, &dev->phy.state) &&
retry++ < dev->mcu_ops->max_retry) {
orig_skb && retry++ < dev->mcu_ops->max_retry) {
dev_err(dev->dev, "Retry message %08x (seq %d)\n",
cmd, seq);
skb = orig_skb;

View File

@ -7,12 +7,12 @@
#include "cfg80211.h"
struct wilc_wfi_radiotap_hdr {
struct ieee80211_radiotap_header hdr;
struct ieee80211_radiotap_header_fixed hdr;
u8 rate;
} __packed;
struct wilc_wfi_radiotap_cb_hdr {
struct ieee80211_radiotap_header hdr;
struct ieee80211_radiotap_header_fixed hdr;
u8 rate;
u8 dump;
u16 tx_flags;

View File

@ -352,7 +352,6 @@ static const struct usb_device_id rtl8192d_usb_ids[] = {
{RTL_USB_DEVICE(USB_VENDOR_ID_REALTEK, 0x8194, rtl92du_hal_cfg)},
{RTL_USB_DEVICE(USB_VENDOR_ID_REALTEK, 0x8111, rtl92du_hal_cfg)},
{RTL_USB_DEVICE(USB_VENDOR_ID_REALTEK, 0x0193, rtl92du_hal_cfg)},
{RTL_USB_DEVICE(USB_VENDOR_ID_REALTEK, 0x8171, rtl92du_hal_cfg)},
{RTL_USB_DEVICE(USB_VENDOR_ID_REALTEK, 0xe194, rtl92du_hal_cfg)},
{RTL_USB_DEVICE(0x2019, 0xab2c, rtl92du_hal_cfg)},
{RTL_USB_DEVICE(0x2019, 0xab2d, rtl92du_hal_cfg)},

View File

@ -772,7 +772,6 @@ static void rtw_usb_dynamic_rx_agg_v1(struct rtw_dev *rtwdev, bool enable)
u8 size, timeout;
u16 val16;
rtw_write32_set(rtwdev, REG_RXDMA_AGG_PG_TH, BIT_EN_PRE_CALC);
rtw_write8_set(rtwdev, REG_TXDMA_PQ_MAP, BIT_RXDMA_AGG_EN);
rtw_write8_clr(rtwdev, REG_RXDMA_AGG_PG_TH + 3, BIT(7));

View File

@ -6506,6 +6506,8 @@ static void _update_wl_info_v7(struct rtw89_dev *rtwdev, u8 rid)
/* todo DBCC related event */
rtw89_debug(rtwdev, RTW89_DBG_BTC, "[BTC] wl_info phy_now=%d\n", phy_now);
rtw89_debug(rtwdev, RTW89_DBG_BTC,
"[BTC] rlink cnt_2g=%d cnt_5g=%d\n", cnt_2g, cnt_5g);
if (wl_rinfo->dbcc_en != rtwdev->dbcc_en) {
wl_rinfo->dbcc_chg = 1;

View File

@ -3050,23 +3050,53 @@ static void rtw89_pci_declaim_device(struct rtw89_dev *rtwdev,
pci_disable_device(pdev);
}
static void rtw89_pci_cfg_dac(struct rtw89_dev *rtwdev)
static bool rtw89_pci_chip_is_manual_dac(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_chip_info *chip = rtwdev->chip;
if (!rtwpci->enable_dac)
return;
switch (chip->chip_id) {
case RTL8852A:
case RTL8852B:
case RTL8851B:
case RTL8852BT:
break;
return true;
default:
return;
return false;
}
}
static bool rtw89_pci_is_dac_compatible_bridge(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct pci_dev *bridge = pci_upstream_bridge(rtwpci->pdev);
if (!rtw89_pci_chip_is_manual_dac(rtwdev))
return true;
if (!bridge)
return false;
switch (bridge->vendor) {
case PCI_VENDOR_ID_INTEL:
return true;
case PCI_VENDOR_ID_ASMEDIA:
if (bridge->device == 0x2806)
return true;
break;
}
return false;
}
static void rtw89_pci_cfg_dac(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
if (!rtwpci->enable_dac)
return;
if (!rtw89_pci_chip_is_manual_dac(rtwdev))
return;
rtw89_pci_config_byte_set(rtwdev, RTW89_PCIE_L1_CTRL, RTW89_PCIE_BIT_EN_64BITS);
}
@ -3085,6 +3115,9 @@ static int rtw89_pci_setup_mapping(struct rtw89_dev *rtwdev,
goto err;
}
if (!rtw89_pci_is_dac_compatible_bridge(rtwdev))
goto no_dac;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(36));
if (!ret) {
rtwpci->enable_dac = true;
@ -3097,6 +3130,7 @@ static int rtw89_pci_setup_mapping(struct rtw89_dev *rtwdev,
goto err_release_regions;
}
}
no_dac:
resource_len = pci_resource_len(pdev, bar_id);
rtwpci->mmap = pci_iomap(pdev, bar_id, resource_len);

View File

@ -763,7 +763,7 @@ static const struct rhashtable_params hwsim_rht_params = {
};
struct hwsim_radiotap_hdr {
struct ieee80211_radiotap_header hdr;
struct ieee80211_radiotap_header_fixed hdr;
__le64 rt_tsft;
u8 rt_flags;
u8 rt_rate;
@ -772,7 +772,7 @@ struct hwsim_radiotap_hdr {
} __packed;
struct hwsim_radiotap_ack_hdr {
struct ieee80211_radiotap_header hdr;
struct ieee80211_radiotap_header_fixed hdr;
u8 rt_flags;
u8 pad;
__le16 rt_channel;

Some files were not shown because too many files have changed in this diff Show More