Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 EFI changes from Ingo Molnar:
 "Main changes:

   - Add support for earlyprintk=efi which uses the EFI framebuffer.
     Very useful for debugging boot problems.

   - EFI stub support for large memory maps (more than 128 entries)

   - EFI ARM support - this was mostly done by generalizing x86 <-> ARM
     platform differences, such as by moving x86 EFI code into
     drivers/firmware/efi/ and sharing it with ARM.

   - Documentation updates

   - misc fixes"

* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
  x86/efi: Add EFI framebuffer earlyprintk support
  boot, efi: Remove redundant memset()
  x86/efi: Fix config_table_type array termination
  x86 efi: bugfix interrupt disabling sequence
  x86: EFI stub support for large memory maps
  efi: resolve warnings found on ARM compile
  efi: Fix types in EFI calls to match EFI function definitions.
  efi: Renames in handle_cmdline_files() to complete generalization.
  efi: Generalize handle_ramdisks() and rename to handle_cmdline_files().
  efi: Allow efi_free() to be called with size of 0
  efi: use efi_get_memory_map() to get final map for x86
  efi: generalize efi_get_memory_map()
  efi: Rename __get_map() to efi_get_memory_map()
  efi: Move unicode to ASCII conversion to shared function.
  efi: Generalize relocate_kernel() for use by other architectures.
  efi: Move relocate_kernel() to shared file.
  efi: Enforce minimum alignment of 1 page on allocations.
  efi: Rename memory allocation/free functions
  efi: Add system table pointer argument to shared functions.
  efi: Move common EFI stub code from x86 arch code to common location
  ...
This commit is contained in:
Linus Torvalds 2013-11-12 10:48:30 +09:00
commit 69019d77c7
17 changed files with 1259 additions and 805 deletions

View File

@ -847,6 +847,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
earlyprintk= [X86,SH,BLACKFIN,ARM]
earlyprintk=vga
earlyprintk=efi
earlyprintk=xen
earlyprintk=serial[,ttySn[,baudrate]]
earlyprintk=serial[,0x...[,baudrate]]
@ -860,7 +861,8 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Append ",keep" to not disable it when the real console
takes over.
Only vga or serial or usb debug port at a time.
Only one of vga, efi, serial, or usb debug port can
be used at a time.
Currently only ttyS0 and ttyS1 may be specified by
name. Other I/O ports may be explicitly specified
@ -874,8 +876,8 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Interaction with the standard serial driver is not
very good.
The VGA output is eventually overwritten by the real
console.
The VGA and EFI output is eventually overwritten by
the real console.
The xen output can only be used by Xen PV guests.

View File

@ -424,6 +424,7 @@ extern void __iomem * ioremap(unsigned long offset, unsigned long size);
extern void __iomem * ioremap_nocache (unsigned long offset, unsigned long size);
extern void iounmap (volatile void __iomem *addr);
extern void __iomem * early_ioremap (unsigned long phys_addr, unsigned long size);
#define early_memremap(phys_addr, size) early_ioremap(phys_addr, size)
extern void early_iounmap (volatile void __iomem *addr, unsigned long size);
static inline void __iomem * ioremap_cache (unsigned long phys_addr, unsigned long size)
{

View File

@ -44,10 +44,15 @@
#define EFI_DEBUG 0
static __initdata unsigned long palo_phys;
static __initdata efi_config_table_type_t arch_tables[] = {
{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
{NULL_GUID, NULL, 0},
};
extern efi_status_t efi_call_phys (void *, ...);
struct efi efi;
EXPORT_SYMBOL(efi);
static efi_runtime_services_t *runtime;
static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
@ -423,9 +428,9 @@ static u8 __init palo_checksum(u8 *buffer, u32 length)
* Parse and handle PALO table which is published at:
* http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
*/
static void __init handle_palo(unsigned long palo_phys)
static void __init handle_palo(unsigned long phys_addr)
{
struct palo_table *palo = __va(palo_phys);
struct palo_table *palo = __va(phys_addr);
u8 checksum;
if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
@ -467,12 +472,10 @@ void __init
efi_init (void)
{
void *efi_map_start, *efi_map_end;
efi_config_table_t *config_tables;
efi_char16_t *c16;
u64 efi_desc_size;
char *cp, vendor[100] = "unknown";
int i;
unsigned long palo_phys;
/*
* It's too early to be able to use the standard kernel command line
@ -514,8 +517,6 @@ efi_init (void)
efi.systab->hdr.revision >> 16,
efi.systab->hdr.revision & 0xffff);
config_tables = __va(efi.systab->tables);
/* Show what we know for posterity */
c16 = __va(efi.systab->fw_vendor);
if (c16) {
@ -528,43 +529,10 @@ efi_init (void)
efi.systab->hdr.revision >> 16,
efi.systab->hdr.revision & 0xffff, vendor);
efi.mps = EFI_INVALID_TABLE_ADDR;
efi.acpi = EFI_INVALID_TABLE_ADDR;
efi.acpi20 = EFI_INVALID_TABLE_ADDR;
efi.smbios = EFI_INVALID_TABLE_ADDR;
efi.sal_systab = EFI_INVALID_TABLE_ADDR;
efi.boot_info = EFI_INVALID_TABLE_ADDR;
efi.hcdp = EFI_INVALID_TABLE_ADDR;
efi.uga = EFI_INVALID_TABLE_ADDR;
palo_phys = EFI_INVALID_TABLE_ADDR;
for (i = 0; i < (int) efi.systab->nr_tables; i++) {
if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
efi.mps = config_tables[i].table;
printk(" MPS=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
efi.acpi20 = config_tables[i].table;
printk(" ACPI 2.0=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
efi.acpi = config_tables[i].table;
printk(" ACPI=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
efi.smbios = config_tables[i].table;
printk(" SMBIOS=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
efi.sal_systab = config_tables[i].table;
printk(" SALsystab=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
efi.hcdp = config_tables[i].table;
printk(" HCDP=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid,
PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
palo_phys = config_tables[i].table;
printk(" PALO=0x%lx", config_tables[i].table);
}
}
printk("\n");
if (efi_config_init(arch_tables) != 0)
return;
if (palo_phys != EFI_INVALID_TABLE_ADDR)
handle_palo(palo_phys);

View File

@ -1597,7 +1597,7 @@ config EFI_STUB
This kernel feature allows a bzImage to be loaded directly
by EFI firmware without the use of a bootloader.
See Documentation/x86/efi-stub.txt for more information.
See Documentation/efi-stub.txt for more information.
config SECCOMP
def_bool y

View File

@ -59,6 +59,16 @@ config EARLY_PRINTK_DBGP
with klogd/syslogd or the X server. You should normally N here,
unless you want to debug such a crash. You need usb debug device.
config EARLY_PRINTK_EFI
bool "Early printk via the EFI framebuffer"
depends on EFI && EARLY_PRINTK
select FONT_SUPPORT
---help---
Write kernel log output directly into the EFI framebuffer.
This is useful for kernel debugging when your machine crashes very
early before the console code is initialized.
config X86_PTDUMP
bool "Export kernel pagetable layout to userspace via debugfs"
depends on DEBUG_KERNEL

View File

@ -19,214 +19,10 @@
static efi_system_table_t *sys_table;
static void efi_char16_printk(efi_char16_t *str)
{
struct efi_simple_text_output_protocol *out;
out = (struct efi_simple_text_output_protocol *)sys_table->con_out;
efi_call_phys2(out->output_string, out, str);
}
#include "../../../../drivers/firmware/efi/efi-stub-helper.c"
static void efi_printk(char *str)
{
char *s8;
for (s8 = str; *s8; s8++) {
efi_char16_t ch[2] = { 0 };
ch[0] = *s8;
if (*s8 == '\n') {
efi_char16_t nl[2] = { '\r', 0 };
efi_char16_printk(nl);
}
efi_char16_printk(ch);
}
}
static efi_status_t __get_map(efi_memory_desc_t **map, unsigned long *map_size,
unsigned long *desc_size)
{
efi_memory_desc_t *m = NULL;
efi_status_t status;
unsigned long key;
u32 desc_version;
*map_size = sizeof(*m) * 32;
again:
/*
* Add an additional efi_memory_desc_t because we're doing an
* allocation which may be in a new descriptor region.
*/
*map_size += sizeof(*m);
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, *map_size, (void **)&m);
if (status != EFI_SUCCESS)
goto fail;
status = efi_call_phys5(sys_table->boottime->get_memory_map, map_size,
m, &key, desc_size, &desc_version);
if (status == EFI_BUFFER_TOO_SMALL) {
efi_call_phys1(sys_table->boottime->free_pool, m);
goto again;
}
if (status != EFI_SUCCESS)
efi_call_phys1(sys_table->boottime->free_pool, m);
fail:
*map = m;
return status;
}
/*
* Allocate at the highest possible address that is not above 'max'.
*/
static efi_status_t high_alloc(unsigned long size, unsigned long align,
unsigned long *addr, unsigned long max)
{
unsigned long map_size, desc_size;
efi_memory_desc_t *map;
efi_status_t status;
unsigned long nr_pages;
u64 max_addr = 0;
int i;
status = __get_map(&map, &map_size, &desc_size);
if (status != EFI_SUCCESS)
goto fail;
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
again:
for (i = 0; i < map_size / desc_size; i++) {
efi_memory_desc_t *desc;
unsigned long m = (unsigned long)map;
u64 start, end;
desc = (efi_memory_desc_t *)(m + (i * desc_size));
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
if (desc->num_pages < nr_pages)
continue;
start = desc->phys_addr;
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
if ((start + size) > end || (start + size) > max)
continue;
if (end - size > max)
end = max;
if (round_down(end - size, align) < start)
continue;
start = round_down(end - size, align);
/*
* Don't allocate at 0x0. It will confuse code that
* checks pointers against NULL.
*/
if (start == 0x0)
continue;
if (start > max_addr)
max_addr = start;
}
if (!max_addr)
status = EFI_NOT_FOUND;
else {
status = efi_call_phys4(sys_table->boottime->allocate_pages,
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
nr_pages, &max_addr);
if (status != EFI_SUCCESS) {
max = max_addr;
max_addr = 0;
goto again;
}
*addr = max_addr;
}
free_pool:
efi_call_phys1(sys_table->boottime->free_pool, map);
fail:
return status;
}
/*
* Allocate at the lowest possible address.
*/
static efi_status_t low_alloc(unsigned long size, unsigned long align,
unsigned long *addr)
{
unsigned long map_size, desc_size;
efi_memory_desc_t *map;
efi_status_t status;
unsigned long nr_pages;
int i;
status = __get_map(&map, &map_size, &desc_size);
if (status != EFI_SUCCESS)
goto fail;
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
for (i = 0; i < map_size / desc_size; i++) {
efi_memory_desc_t *desc;
unsigned long m = (unsigned long)map;
u64 start, end;
desc = (efi_memory_desc_t *)(m + (i * desc_size));
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
if (desc->num_pages < nr_pages)
continue;
start = desc->phys_addr;
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
/*
* Don't allocate at 0x0. It will confuse code that
* checks pointers against NULL. Skip the first 8
* bytes so we start at a nice even number.
*/
if (start == 0x0)
start += 8;
start = round_up(start, align);
if ((start + size) > end)
continue;
status = efi_call_phys4(sys_table->boottime->allocate_pages,
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
nr_pages, &start);
if (status == EFI_SUCCESS) {
*addr = start;
break;
}
}
if (i == map_size / desc_size)
status = EFI_NOT_FOUND;
free_pool:
efi_call_phys1(sys_table->boottime->free_pool, map);
fail:
return status;
}
static void low_free(unsigned long size, unsigned long addr)
{
unsigned long nr_pages;
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
efi_call_phys2(sys_table->boottime->free_pages, addr, nr_pages);
}
static void find_bits(unsigned long mask, u8 *pos, u8 *size)
{
@ -624,242 +420,6 @@ void setup_graphics(struct boot_params *boot_params)
}
}
struct initrd {
efi_file_handle_t *handle;
u64 size;
};
/*
* Check the cmdline for a LILO-style initrd= arguments.
*
* We only support loading an initrd from the same filesystem as the
* kernel image.
*/
static efi_status_t handle_ramdisks(efi_loaded_image_t *image,
struct setup_header *hdr)
{
struct initrd *initrds;
unsigned long initrd_addr;
efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
u64 initrd_total;
efi_file_io_interface_t *io;
efi_file_handle_t *fh;
efi_status_t status;
int nr_initrds;
char *str;
int i, j, k;
initrd_addr = 0;
initrd_total = 0;
str = (char *)(unsigned long)hdr->cmd_line_ptr;
j = 0; /* See close_handles */
if (!str || !*str)
return EFI_SUCCESS;
for (nr_initrds = 0; *str; nr_initrds++) {
str = strstr(str, "initrd=");
if (!str)
break;
str += 7;
/* Skip any leading slashes */
while (*str == '/' || *str == '\\')
str++;
while (*str && *str != ' ' && *str != '\n')
str++;
}
if (!nr_initrds)
return EFI_SUCCESS;
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA,
nr_initrds * sizeof(*initrds),
&initrds);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for initrds\n");
goto fail;
}
str = (char *)(unsigned long)hdr->cmd_line_ptr;
for (i = 0; i < nr_initrds; i++) {
struct initrd *initrd;
efi_file_handle_t *h;
efi_file_info_t *info;
efi_char16_t filename_16[256];
unsigned long info_sz;
efi_guid_t info_guid = EFI_FILE_INFO_ID;
efi_char16_t *p;
u64 file_sz;
str = strstr(str, "initrd=");
if (!str)
break;
str += 7;
initrd = &initrds[i];
p = filename_16;
/* Skip any leading slashes */
while (*str == '/' || *str == '\\')
str++;
while (*str && *str != ' ' && *str != '\n') {
if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
break;
if (*str == '/') {
*p++ = '\\';
*str++;
} else {
*p++ = *str++;
}
}
*p = '\0';
/* Only open the volume once. */
if (!i) {
efi_boot_services_t *boottime;
boottime = sys_table->boottime;
status = efi_call_phys3(boottime->handle_protocol,
image->device_handle, &fs_proto, &io);
if (status != EFI_SUCCESS) {
efi_printk("Failed to handle fs_proto\n");
goto free_initrds;
}
status = efi_call_phys2(io->open_volume, io, &fh);
if (status != EFI_SUCCESS) {
efi_printk("Failed to open volume\n");
goto free_initrds;
}
}
status = efi_call_phys5(fh->open, fh, &h, filename_16,
EFI_FILE_MODE_READ, (u64)0);
if (status != EFI_SUCCESS) {
efi_printk("Failed to open initrd file: ");
efi_char16_printk(filename_16);
efi_printk("\n");
goto close_handles;
}
initrd->handle = h;
info_sz = 0;
status = efi_call_phys4(h->get_info, h, &info_guid,
&info_sz, NULL);
if (status != EFI_BUFFER_TOO_SMALL) {
efi_printk("Failed to get initrd info size\n");
goto close_handles;
}
grow:
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, info_sz, &info);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for initrd info\n");
goto close_handles;
}
status = efi_call_phys4(h->get_info, h, &info_guid,
&info_sz, info);
if (status == EFI_BUFFER_TOO_SMALL) {
efi_call_phys1(sys_table->boottime->free_pool, info);
goto grow;
}
file_sz = info->file_size;
efi_call_phys1(sys_table->boottime->free_pool, info);
if (status != EFI_SUCCESS) {
efi_printk("Failed to get initrd info\n");
goto close_handles;
}
initrd->size = file_sz;
initrd_total += file_sz;
}
if (initrd_total) {
unsigned long addr;
/*
* Multiple initrd's need to be at consecutive
* addresses in memory, so allocate enough memory for
* all the initrd's.
*/
status = high_alloc(initrd_total, 0x1000,
&initrd_addr, hdr->initrd_addr_max);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc highmem for initrds\n");
goto close_handles;
}
/* We've run out of free low memory. */
if (initrd_addr > hdr->initrd_addr_max) {
efi_printk("We've run out of free low memory\n");
status = EFI_INVALID_PARAMETER;
goto free_initrd_total;
}
addr = initrd_addr;
for (j = 0; j < nr_initrds; j++) {
u64 size;
size = initrds[j].size;
while (size) {
u64 chunksize;
if (size > EFI_READ_CHUNK_SIZE)
chunksize = EFI_READ_CHUNK_SIZE;
else
chunksize = size;
status = efi_call_phys3(fh->read,
initrds[j].handle,
&chunksize, addr);
if (status != EFI_SUCCESS) {
efi_printk("Failed to read initrd\n");
goto free_initrd_total;
}
addr += chunksize;
size -= chunksize;
}
efi_call_phys1(fh->close, initrds[j].handle);
}
}
efi_call_phys1(sys_table->boottime->free_pool, initrds);
hdr->ramdisk_image = initrd_addr;
hdr->ramdisk_size = initrd_total;
return status;
free_initrd_total:
low_free(initrd_total, initrd_addr);
close_handles:
for (k = j; k < i; k++)
efi_call_phys1(fh->close, initrds[k].handle);
free_initrds:
efi_call_phys1(sys_table->boottime->free_pool, initrds);
fail:
hdr->ramdisk_image = 0;
hdr->ramdisk_size = 0;
return status;
}
/*
* Because the x86 boot code expects to be passed a boot_params we
@ -875,14 +435,15 @@ struct boot_params *make_boot_params(void *handle, efi_system_table_t *_table)
struct efi_info *efi;
efi_loaded_image_t *image;
void *options;
u32 load_options_size;
efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
int options_size = 0;
efi_status_t status;
unsigned long cmdline;
char *cmdline_ptr;
u16 *s2;
u8 *s1;
int i;
unsigned long ramdisk_addr;
unsigned long ramdisk_size;
sys_table = _table;
@ -893,13 +454,14 @@ struct boot_params *make_boot_params(void *handle, efi_system_table_t *_table)
status = efi_call_phys3(sys_table->boottime->handle_protocol,
handle, &proto, (void *)&image);
if (status != EFI_SUCCESS) {
efi_printk("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
efi_printk(sys_table, "Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
return NULL;
}
status = low_alloc(0x4000, 1, (unsigned long *)&boot_params);
status = efi_low_alloc(sys_table, 0x4000, 1,
(unsigned long *)&boot_params);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc lowmem for boot params\n");
efi_printk(sys_table, "Failed to alloc lowmem for boot params\n");
return NULL;
}
@ -926,40 +488,11 @@ struct boot_params *make_boot_params(void *handle, efi_system_table_t *_table)
hdr->type_of_loader = 0x21;
/* Convert unicode cmdline to ascii */
options = image->load_options;
load_options_size = image->load_options_size / 2; /* ASCII */
cmdline = 0;
s2 = (u16 *)options;
if (s2) {
while (*s2 && *s2 != '\n' && options_size < load_options_size) {
s2++;
options_size++;
}
if (options_size) {
if (options_size > hdr->cmdline_size)
options_size = hdr->cmdline_size;
options_size++; /* NUL termination */
status = low_alloc(options_size, 1, &cmdline);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for cmdline\n");
goto fail;
}
s1 = (u8 *)(unsigned long)cmdline;
s2 = (u16 *)options;
for (i = 0; i < options_size - 1; i++)
*s1++ = *s2++;
*s1 = '\0';
}
}
hdr->cmd_line_ptr = cmdline;
cmdline_ptr = efi_convert_cmdline_to_ascii(sys_table, image,
&options_size);
if (!cmdline_ptr)
goto fail;
hdr->cmd_line_ptr = (unsigned long)cmdline_ptr;
hdr->ramdisk_image = 0;
hdr->ramdisk_size = 0;
@ -969,96 +502,64 @@ struct boot_params *make_boot_params(void *handle, efi_system_table_t *_table)
memset(sdt, 0, sizeof(*sdt));
status = handle_ramdisks(image, hdr);
status = handle_cmdline_files(sys_table, image,
(char *)(unsigned long)hdr->cmd_line_ptr,
"initrd=", hdr->initrd_addr_max,
&ramdisk_addr, &ramdisk_size);
if (status != EFI_SUCCESS)
goto fail2;
hdr->ramdisk_image = ramdisk_addr;
hdr->ramdisk_size = ramdisk_size;
return boot_params;
fail2:
if (options_size)
low_free(options_size, hdr->cmd_line_ptr);
efi_free(sys_table, options_size, hdr->cmd_line_ptr);
fail:
low_free(0x4000, (unsigned long)boot_params);
efi_free(sys_table, 0x4000, (unsigned long)boot_params);
return NULL;
}
static efi_status_t exit_boot(struct boot_params *boot_params,
void *handle)
static void add_e820ext(struct boot_params *params,
struct setup_data *e820ext, u32 nr_entries)
{
struct efi_info *efi = &boot_params->efi_info;
struct e820entry *e820_map = &boot_params->e820_map[0];
struct e820entry *prev = NULL;
unsigned long size, key, desc_size, _size;
efi_memory_desc_t *mem_map;
struct setup_data *data;
efi_status_t status;
__u32 desc_version;
bool called_exit = false;
u8 nr_entries;
unsigned long size;
e820ext->type = SETUP_E820_EXT;
e820ext->len = nr_entries * sizeof(struct e820entry);
e820ext->next = 0;
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
while (data && data->next)
data = (struct setup_data *)(unsigned long)data->next;
if (data)
data->next = (unsigned long)e820ext;
else
params->hdr.setup_data = (unsigned long)e820ext;
}
static efi_status_t setup_e820(struct boot_params *params,
struct setup_data *e820ext, u32 e820ext_size)
{
struct e820entry *e820_map = &params->e820_map[0];
struct efi_info *efi = &params->efi_info;
struct e820entry *prev = NULL;
u32 nr_entries;
u32 nr_desc;
int i;
size = sizeof(*mem_map) * 32;
again:
size += sizeof(*mem_map) * 2;
_size = size;
status = low_alloc(size, 1, (unsigned long *)&mem_map);
if (status != EFI_SUCCESS)
return status;
get_map:
status = efi_call_phys5(sys_table->boottime->get_memory_map, &size,
mem_map, &key, &desc_size, &desc_version);
if (status == EFI_BUFFER_TOO_SMALL) {
low_free(_size, (unsigned long)mem_map);
goto again;
}
if (status != EFI_SUCCESS)
goto free_mem_map;
memcpy(&efi->efi_loader_signature, EFI_LOADER_SIGNATURE, sizeof(__u32));
efi->efi_systab = (unsigned long)sys_table;
efi->efi_memdesc_size = desc_size;
efi->efi_memdesc_version = desc_version;
efi->efi_memmap = (unsigned long)mem_map;
efi->efi_memmap_size = size;
#ifdef CONFIG_X86_64
efi->efi_systab_hi = (unsigned long)sys_table >> 32;
efi->efi_memmap_hi = (unsigned long)mem_map >> 32;
#endif
/* Might as well exit boot services now */
status = efi_call_phys2(sys_table->boottime->exit_boot_services,
handle, key);
if (status != EFI_SUCCESS) {
/*
* ExitBootServices() will fail if any of the event
* handlers change the memory map. In which case, we
* must be prepared to retry, but only once so that
* we're guaranteed to exit on repeated failures instead
* of spinning forever.
*/
if (called_exit)
goto free_mem_map;
called_exit = true;
goto get_map;
}
/* Historic? */
boot_params->alt_mem_k = 32 * 1024;
/*
* Convert the EFI memory map to E820.
*/
nr_entries = 0;
for (i = 0; i < size / desc_size; i++) {
nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
for (i = 0; i < nr_desc; i++) {
efi_memory_desc_t *d;
unsigned int e820_type = 0;
unsigned long m = (unsigned long)mem_map;
unsigned long m = efi->efi_memmap;
d = (efi_memory_desc_t *)(m + (i * desc_size));
d = (efi_memory_desc_t *)(m + (i * efi->efi_memdesc_size));
switch (d->type) {
case EFI_RESERVED_TYPE:
case EFI_RUNTIME_SERVICES_CODE:
@ -1095,60 +596,150 @@ static efi_status_t exit_boot(struct boot_params *boot_params,
/* Merge adjacent mappings */
if (prev && prev->type == e820_type &&
(prev->addr + prev->size) == d->phys_addr)
(prev->addr + prev->size) == d->phys_addr) {
prev->size += d->num_pages << 12;
else {
e820_map->addr = d->phys_addr;
e820_map->size = d->num_pages << 12;
e820_map->type = e820_type;
prev = e820_map++;
nr_entries++;
continue;
}
if (nr_entries == ARRAY_SIZE(params->e820_map)) {
u32 need = (nr_desc - i) * sizeof(struct e820entry) +
sizeof(struct setup_data);
if (!e820ext || e820ext_size < need)
return EFI_BUFFER_TOO_SMALL;
/* boot_params map full, switch to e820 extended */
e820_map = (struct e820entry *)e820ext->data;
}
e820_map->addr = d->phys_addr;
e820_map->size = d->num_pages << PAGE_SHIFT;
e820_map->type = e820_type;
prev = e820_map++;
nr_entries++;
}
boot_params->e820_entries = nr_entries;
if (nr_entries > ARRAY_SIZE(params->e820_map)) {
u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_map);
add_e820ext(params, e820ext, nr_e820ext);
nr_entries -= nr_e820ext;
}
params->e820_entries = (u8)nr_entries;
return EFI_SUCCESS;
}
static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
u32 *e820ext_size)
{
efi_status_t status;
unsigned long size;
size = sizeof(struct setup_data) +
sizeof(struct e820entry) * nr_desc;
if (*e820ext) {
efi_call_phys1(sys_table->boottime->free_pool, *e820ext);
*e820ext = NULL;
*e820ext_size = 0;
}
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, size, e820ext);
if (status == EFI_SUCCESS)
*e820ext_size = size;
return status;
}
static efi_status_t exit_boot(struct boot_params *boot_params,
void *handle)
{
struct efi_info *efi = &boot_params->efi_info;
unsigned long map_sz, key, desc_size;
efi_memory_desc_t *mem_map;
struct setup_data *e820ext;
__u32 e820ext_size;
__u32 nr_desc, prev_nr_desc;
efi_status_t status;
__u32 desc_version;
bool called_exit = false;
u8 nr_entries;
int i;
nr_desc = 0;
e820ext = NULL;
e820ext_size = 0;
get_map:
status = efi_get_memory_map(sys_table, &mem_map, &map_sz, &desc_size,
&desc_version, &key);
if (status != EFI_SUCCESS)
return status;
prev_nr_desc = nr_desc;
nr_desc = map_sz / desc_size;
if (nr_desc > prev_nr_desc &&
nr_desc > ARRAY_SIZE(boot_params->e820_map)) {
u32 nr_e820ext = nr_desc - ARRAY_SIZE(boot_params->e820_map);
status = alloc_e820ext(nr_e820ext, &e820ext, &e820ext_size);
if (status != EFI_SUCCESS)
goto free_mem_map;
efi_call_phys1(sys_table->boottime->free_pool, mem_map);
goto get_map; /* Allocated memory, get map again */
}
memcpy(&efi->efi_loader_signature, EFI_LOADER_SIGNATURE, sizeof(__u32));
efi->efi_systab = (unsigned long)sys_table;
efi->efi_memdesc_size = desc_size;
efi->efi_memdesc_version = desc_version;
efi->efi_memmap = (unsigned long)mem_map;
efi->efi_memmap_size = map_sz;
#ifdef CONFIG_X86_64
efi->efi_systab_hi = (unsigned long)sys_table >> 32;
efi->efi_memmap_hi = (unsigned long)mem_map >> 32;
#endif
/* Might as well exit boot services now */
status = efi_call_phys2(sys_table->boottime->exit_boot_services,
handle, key);
if (status != EFI_SUCCESS) {
/*
* ExitBootServices() will fail if any of the event
* handlers change the memory map. In which case, we
* must be prepared to retry, but only once so that
* we're guaranteed to exit on repeated failures instead
* of spinning forever.
*/
if (called_exit)
goto free_mem_map;
called_exit = true;
efi_call_phys1(sys_table->boottime->free_pool, mem_map);
goto get_map;
}
/* Historic? */
boot_params->alt_mem_k = 32 * 1024;
status = setup_e820(boot_params, e820ext, e820ext_size);
if (status != EFI_SUCCESS)
return status;
return EFI_SUCCESS;
free_mem_map:
low_free(_size, (unsigned long)mem_map);
efi_call_phys1(sys_table->boottime->free_pool, mem_map);
return status;
}
static efi_status_t relocate_kernel(struct setup_header *hdr)
{
unsigned long start, nr_pages;
efi_status_t status;
/*
* The EFI firmware loader could have placed the kernel image
* anywhere in memory, but the kernel has various restrictions
* on the max physical address it can run at. Attempt to move
* the kernel to boot_params.pref_address, or as low as
* possible.
*/
start = hdr->pref_address;
nr_pages = round_up(hdr->init_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
status = efi_call_phys4(sys_table->boottime->allocate_pages,
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
nr_pages, &start);
if (status != EFI_SUCCESS) {
status = low_alloc(hdr->init_size, hdr->kernel_alignment,
&start);
if (status != EFI_SUCCESS)
efi_printk("Failed to alloc mem for kernel\n");
}
if (status == EFI_SUCCESS)
memcpy((void *)start, (void *)(unsigned long)hdr->code32_start,
hdr->init_size);
hdr->pref_address = hdr->code32_start;
hdr->code32_start = (__u32)start;
return status;
}
/*
* On success we return a pointer to a boot_params structure, and NULL
@ -1157,7 +748,7 @@ static efi_status_t relocate_kernel(struct setup_header *hdr)
struct boot_params *efi_main(void *handle, efi_system_table_t *_table,
struct boot_params *boot_params)
{
struct desc_ptr *gdt, *idt;
struct desc_ptr *gdt;
efi_loaded_image_t *image;
struct setup_header *hdr = &boot_params->hdr;
efi_status_t status;
@ -1177,37 +768,33 @@ struct boot_params *efi_main(void *handle, efi_system_table_t *_table,
EFI_LOADER_DATA, sizeof(*gdt),
(void **)&gdt);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for gdt structure\n");
efi_printk(sys_table, "Failed to alloc mem for gdt structure\n");
goto fail;
}
gdt->size = 0x800;
status = low_alloc(gdt->size, 8, (unsigned long *)&gdt->address);
status = efi_low_alloc(sys_table, gdt->size, 8,
(unsigned long *)&gdt->address);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for gdt\n");
efi_printk(sys_table, "Failed to alloc mem for gdt\n");
goto fail;
}
status = efi_call_phys3(sys_table->boottime->allocate_pool,
EFI_LOADER_DATA, sizeof(*idt),
(void **)&idt);
if (status != EFI_SUCCESS) {
efi_printk("Failed to alloc mem for idt structure\n");
goto fail;
}
idt->size = 0;
idt->address = 0;
/*
* If the kernel isn't already loaded at the preferred load
* address, relocate it.
*/
if (hdr->pref_address != hdr->code32_start) {
status = relocate_kernel(hdr);
unsigned long bzimage_addr = hdr->code32_start;
status = efi_relocate_kernel(sys_table, &bzimage_addr,
hdr->init_size, hdr->init_size,
hdr->pref_address,
hdr->kernel_alignment);
if (status != EFI_SUCCESS)
goto fail;
hdr->pref_address = hdr->code32_start;
hdr->code32_start = bzimage_addr;
}
status = exit_boot(boot_params, handle);
@ -1267,10 +854,8 @@ struct boot_params *efi_main(void *handle, efi_system_table_t *_table,
desc->base2 = 0x00;
#endif /* CONFIG_X86_64 */
asm volatile ("lidt %0" : : "m" (*idt));
asm volatile ("lgdt %0" : : "m" (*gdt));
asm volatile("cli");
asm volatile ("lgdt %0" : : "m" (*gdt));
return boot_params;
fail:

View File

@ -11,9 +11,6 @@
#define DESC_TYPE_CODE_DATA (1 << 0)
#define EFI_PAGE_SIZE (1UL << EFI_PAGE_SHIFT)
#define EFI_READ_CHUNK_SIZE (1024 * 1024)
#define EFI_CONSOLE_OUT_DEVICE_GUID \
EFI_GUID(0xd3b36f2c, 0xd551, 0x11d4, 0x9a, 0x46, 0x0, 0x90, 0x27, \
0x3f, 0xc1, 0x4d)
@ -62,10 +59,4 @@ struct efi_uga_draw_protocol {
void *blt;
};
struct efi_simple_text_output_protocol {
void *reset;
void *output_string;
void *test_string;
};
#endif /* BOOT_COMPRESSED_EBOOT_H */

View File

@ -109,6 +109,8 @@ static inline bool efi_is_native(void)
return IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT);
}
extern struct console early_efi_console;
#else
/*
* IF EFI is not configured, have the EFI calls return -ENOSYS.

View File

@ -17,6 +17,8 @@
#include <asm/mrst.h>
#include <asm/pgtable.h>
#include <linux/usb/ehci_def.h>
#include <linux/efi.h>
#include <asm/efi.h>
/* Simple VGA output */
#define VGABASE (__ISA_IO_base + 0xb8000)
@ -234,6 +236,11 @@ static int __init setup_early_printk(char *buf)
early_console_register(&early_hsu_console, keep);
}
#endif
#ifdef CONFIG_EARLY_PRINTK_EFI
if (!strncmp(buf, "efi", 3))
early_console_register(&early_efi_console, keep);
#endif
buf++;
}
return 0;

View File

@ -1,2 +1,3 @@
obj-$(CONFIG_EFI) += efi.o efi_$(BITS).o efi_stub_$(BITS).o
obj-$(CONFIG_ACPI_BGRT) += efi-bgrt.o
obj-$(CONFIG_EARLY_PRINTK_EFI) += early_printk.o

View File

@ -0,0 +1,191 @@
/*
* Copyright (C) 2013 Intel Corporation; author Matt Fleming
*
* This file is part of the Linux kernel, and is made available under
* the terms of the GNU General Public License version 2.
*/
#include <linux/console.h>
#include <linux/efi.h>
#include <linux/font.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <asm/setup.h>
static const struct font_desc *font;
static u32 efi_x, efi_y;
static __init void early_efi_clear_scanline(unsigned int y)
{
unsigned long base, *dst;
u16 len;
base = boot_params.screen_info.lfb_base;
len = boot_params.screen_info.lfb_linelength;
dst = early_ioremap(base + y*len, len);
if (!dst)
return;
memset(dst, 0, len);
early_iounmap(dst, len);
}
static __init void early_efi_scroll_up(void)
{
unsigned long base, *dst, *src;
u16 len;
u32 i, height;
base = boot_params.screen_info.lfb_base;
len = boot_params.screen_info.lfb_linelength;
height = boot_params.screen_info.lfb_height;
for (i = 0; i < height - font->height; i++) {
dst = early_ioremap(base + i*len, len);
if (!dst)
return;
src = early_ioremap(base + (i + font->height) * len, len);
if (!src) {
early_iounmap(dst, len);
return;
}
memmove(dst, src, len);
early_iounmap(src, len);
early_iounmap(dst, len);
}
}
static void early_efi_write_char(u32 *dst, unsigned char c, unsigned int h)
{
const u32 color_black = 0x00000000;
const u32 color_white = 0x00ffffff;
const u8 *src;
u8 s8;
int m;
src = font->data + c * font->height;
s8 = *(src + h);
for (m = 0; m < 8; m++) {
if ((s8 >> (7 - m)) & 1)
*dst = color_white;
else
*dst = color_black;
dst++;
}
}
static __init void
early_efi_write(struct console *con, const char *str, unsigned int num)
{
struct screen_info *si;
unsigned long base;
unsigned int len;
const char *s;
void *dst;
base = boot_params.screen_info.lfb_base;
si = &boot_params.screen_info;
len = si->lfb_linelength;
while (num) {
unsigned int linemax;
unsigned int h, count = 0;
for (s = str; *s && *s != '\n'; s++) {
if (count == num)
break;
count++;
}
linemax = (si->lfb_width - efi_x) / font->width;
if (count > linemax)
count = linemax;
for (h = 0; h < font->height; h++) {
unsigned int n, x;
dst = early_ioremap(base + (efi_y + h) * len, len);
if (!dst)
return;
s = str;
n = count;
x = efi_x;
while (n-- > 0) {
early_efi_write_char(dst + x*4, *s, h);
x += font->width;
s++;
}
early_iounmap(dst, len);
}
num -= count;
efi_x += count * font->width;
str += count;
if (num > 0 && *s == '\n') {
efi_x = 0;
efi_y += font->height;
str++;
num--;
}
if (efi_x >= si->lfb_width) {
efi_x = 0;
efi_y += font->height;
}
if (efi_y + font->height >= si->lfb_height) {
u32 i;
efi_y -= font->height;
early_efi_scroll_up();
for (i = 0; i < font->height; i++)
early_efi_clear_scanline(efi_y + i);
}
}
}
static __init int early_efi_setup(struct console *con, char *options)
{
struct screen_info *si;
u16 xres, yres;
u32 i;
si = &boot_params.screen_info;
xres = si->lfb_width;
yres = si->lfb_height;
/*
* early_efi_write_char() implicitly assumes a framebuffer with
* 32-bits per pixel.
*/
if (si->lfb_depth != 32)
return -ENODEV;
font = get_default_font(xres, yres, -1, -1);
if (!font)
return -ENODEV;
efi_y = rounddown(yres, font->height) - font->height;
for (i = 0; i < (yres - efi_y) / font->height; i++)
early_efi_scroll_up();
return 0;
}
struct console early_efi_console = {
.name = "earlyefi",
.write = early_efi_write,
.setup = early_efi_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
};

View File

@ -60,19 +60,6 @@
static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
struct efi __read_mostly efi = {
.mps = EFI_INVALID_TABLE_ADDR,
.acpi = EFI_INVALID_TABLE_ADDR,
.acpi20 = EFI_INVALID_TABLE_ADDR,
.smbios = EFI_INVALID_TABLE_ADDR,
.sal_systab = EFI_INVALID_TABLE_ADDR,
.boot_info = EFI_INVALID_TABLE_ADDR,
.hcdp = EFI_INVALID_TABLE_ADDR,
.uga = EFI_INVALID_TABLE_ADDR,
.uv_systab = EFI_INVALID_TABLE_ADDR,
};
EXPORT_SYMBOL(efi);
struct efi_memory_map memmap;
static struct efi efi_phys __initdata;
@ -80,6 +67,13 @@ static efi_system_table_t efi_systab __initdata;
unsigned long x86_efi_facility;
static __initdata efi_config_table_type_t arch_tables[] = {
#ifdef CONFIG_X86_UV
{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
#endif
{NULL_GUID, NULL, NULL},
};
/*
* Returns 1 if 'facility' is enabled, 0 otherwise.
*/
@ -399,6 +393,8 @@ int __init efi_memblock_x86_reserve_range(void)
memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
efi.memmap = &memmap;
return 0;
}
@ -578,80 +574,6 @@ static int __init efi_systab_init(void *phys)
return 0;
}
static int __init efi_config_init(u64 tables, int nr_tables)
{
void *config_tables, *tablep;
int i, sz;
if (efi_enabled(EFI_64BIT))
sz = sizeof(efi_config_table_64_t);
else
sz = sizeof(efi_config_table_32_t);
/*
* Let's see what config tables the firmware passed to us.
*/
config_tables = early_ioremap(tables, nr_tables * sz);
if (config_tables == NULL) {
pr_err("Could not map Configuration table!\n");
return -ENOMEM;
}
tablep = config_tables;
pr_info("");
for (i = 0; i < efi.systab->nr_tables; i++) {
efi_guid_t guid;
unsigned long table;
if (efi_enabled(EFI_64BIT)) {
u64 table64;
guid = ((efi_config_table_64_t *)tablep)->guid;
table64 = ((efi_config_table_64_t *)tablep)->table;
table = table64;
#ifdef CONFIG_X86_32
if (table64 >> 32) {
pr_cont("\n");
pr_err("Table located above 4GB, disabling EFI.\n");
early_iounmap(config_tables,
efi.systab->nr_tables * sz);
return -EINVAL;
}
#endif
} else {
guid = ((efi_config_table_32_t *)tablep)->guid;
table = ((efi_config_table_32_t *)tablep)->table;
}
if (!efi_guidcmp(guid, MPS_TABLE_GUID)) {
efi.mps = table;
pr_cont(" MPS=0x%lx ", table);
} else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) {
efi.acpi20 = table;
pr_cont(" ACPI 2.0=0x%lx ", table);
} else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) {
efi.acpi = table;
pr_cont(" ACPI=0x%lx ", table);
} else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) {
efi.smbios = table;
pr_cont(" SMBIOS=0x%lx ", table);
#ifdef CONFIG_X86_UV
} else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) {
efi.uv_systab = table;
pr_cont(" UVsystab=0x%lx ", table);
#endif
} else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) {
efi.hcdp = table;
pr_cont(" HCDP=0x%lx ", table);
} else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) {
efi.uga = table;
pr_cont(" UGA=0x%lx ", table);
}
tablep += sz;
}
pr_cont("\n");
early_iounmap(config_tables, efi.systab->nr_tables * sz);
return 0;
}
static int __init efi_runtime_init(void)
{
efi_runtime_services_t *runtime;
@ -745,7 +667,7 @@ void __init efi_init(void)
efi.systab->hdr.revision >> 16,
efi.systab->hdr.revision & 0xffff, vendor);
if (efi_config_init(efi.systab->tables, efi.systab->nr_tables))
if (efi_config_init(arch_tables))
return;
set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
@ -816,34 +738,6 @@ static void __init runtime_code_page_mkexec(void)
}
}
/*
* We can't ioremap data in EFI boot services RAM, because we've already mapped
* it as RAM. So, look it up in the existing EFI memory map instead. Only
* callable after efi_enter_virtual_mode and before efi_free_boot_services.
*/
void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
{
void *p;
if (WARN_ON(!memmap.map))
return NULL;
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
efi_memory_desc_t *md = p;
u64 size = md->num_pages << EFI_PAGE_SHIFT;
u64 end = md->phys_addr + size;
if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
md->type != EFI_BOOT_SERVICES_CODE &&
md->type != EFI_BOOT_SERVICES_DATA)
continue;
if (!md->virt_addr)
continue;
if (phys_addr >= md->phys_addr && phys_addr < end) {
phys_addr += md->virt_addr - md->phys_addr;
return (__force void __iomem *)(unsigned long)phys_addr;
}
}
return NULL;
}
void efi_memory_uc(u64 addr, unsigned long size)
{
unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;

View File

@ -0,0 +1,636 @@
/*
* Helper functions used by the EFI stub on multiple
* architectures. This should be #included by the EFI stub
* implementation files.
*
* Copyright 2011 Intel Corporation; author Matt Fleming
*
* This file is part of the Linux kernel, and is made available
* under the terms of the GNU General Public License version 2.
*
*/
#define EFI_READ_CHUNK_SIZE (1024 * 1024)
struct file_info {
efi_file_handle_t *handle;
u64 size;
};
static void efi_char16_printk(efi_system_table_t *sys_table_arg,
efi_char16_t *str)
{
struct efi_simple_text_output_protocol *out;
out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
efi_call_phys2(out->output_string, out, str);
}
static void efi_printk(efi_system_table_t *sys_table_arg, char *str)
{
char *s8;
for (s8 = str; *s8; s8++) {
efi_char16_t ch[2] = { 0 };
ch[0] = *s8;
if (*s8 == '\n') {
efi_char16_t nl[2] = { '\r', 0 };
efi_char16_printk(sys_table_arg, nl);
}
efi_char16_printk(sys_table_arg, ch);
}
}
static efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
efi_memory_desc_t **map,
unsigned long *map_size,
unsigned long *desc_size,
u32 *desc_ver,
unsigned long *key_ptr)
{
efi_memory_desc_t *m = NULL;
efi_status_t status;
unsigned long key;
u32 desc_version;
*map_size = sizeof(*m) * 32;
again:
/*
* Add an additional efi_memory_desc_t because we're doing an
* allocation which may be in a new descriptor region.
*/
*map_size += sizeof(*m);
status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
EFI_LOADER_DATA, *map_size, (void **)&m);
if (status != EFI_SUCCESS)
goto fail;
status = efi_call_phys5(sys_table_arg->boottime->get_memory_map,
map_size, m, &key, desc_size, &desc_version);
if (status == EFI_BUFFER_TOO_SMALL) {
efi_call_phys1(sys_table_arg->boottime->free_pool, m);
goto again;
}
if (status != EFI_SUCCESS)
efi_call_phys1(sys_table_arg->boottime->free_pool, m);
if (key_ptr && status == EFI_SUCCESS)
*key_ptr = key;
if (desc_ver && status == EFI_SUCCESS)
*desc_ver = desc_version;
fail:
*map = m;
return status;
}
/*
* Allocate at the highest possible address that is not above 'max'.
*/
static efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
unsigned long size, unsigned long align,
unsigned long *addr, unsigned long max)
{
unsigned long map_size, desc_size;
efi_memory_desc_t *map;
efi_status_t status;
unsigned long nr_pages;
u64 max_addr = 0;
int i;
status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
NULL, NULL);
if (status != EFI_SUCCESS)
goto fail;
/*
* Enforce minimum alignment that EFI requires when requesting
* a specific address. We are doing page-based allocations,
* so we must be aligned to a page.
*/
if (align < EFI_PAGE_SIZE)
align = EFI_PAGE_SIZE;
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
again:
for (i = 0; i < map_size / desc_size; i++) {
efi_memory_desc_t *desc;
unsigned long m = (unsigned long)map;
u64 start, end;
desc = (efi_memory_desc_t *)(m + (i * desc_size));
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
if (desc->num_pages < nr_pages)
continue;
start = desc->phys_addr;
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
if ((start + size) > end || (start + size) > max)
continue;
if (end - size > max)
end = max;
if (round_down(end - size, align) < start)
continue;
start = round_down(end - size, align);
/*
* Don't allocate at 0x0. It will confuse code that
* checks pointers against NULL.
*/
if (start == 0x0)
continue;
if (start > max_addr)
max_addr = start;
}
if (!max_addr)
status = EFI_NOT_FOUND;
else {
status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
nr_pages, &max_addr);
if (status != EFI_SUCCESS) {
max = max_addr;
max_addr = 0;
goto again;
}
*addr = max_addr;
}
efi_call_phys1(sys_table_arg->boottime->free_pool, map);
fail:
return status;
}
/*
* Allocate at the lowest possible address.
*/
static efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
unsigned long size, unsigned long align,
unsigned long *addr)
{
unsigned long map_size, desc_size;
efi_memory_desc_t *map;
efi_status_t status;
unsigned long nr_pages;
int i;
status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
NULL, NULL);
if (status != EFI_SUCCESS)
goto fail;
/*
* Enforce minimum alignment that EFI requires when requesting
* a specific address. We are doing page-based allocations,
* so we must be aligned to a page.
*/
if (align < EFI_PAGE_SIZE)
align = EFI_PAGE_SIZE;
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
for (i = 0; i < map_size / desc_size; i++) {
efi_memory_desc_t *desc;
unsigned long m = (unsigned long)map;
u64 start, end;
desc = (efi_memory_desc_t *)(m + (i * desc_size));
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
if (desc->num_pages < nr_pages)
continue;
start = desc->phys_addr;
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
/*
* Don't allocate at 0x0. It will confuse code that
* checks pointers against NULL. Skip the first 8
* bytes so we start at a nice even number.
*/
if (start == 0x0)
start += 8;
start = round_up(start, align);
if ((start + size) > end)
continue;
status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
nr_pages, &start);
if (status == EFI_SUCCESS) {
*addr = start;
break;
}
}
if (i == map_size / desc_size)
status = EFI_NOT_FOUND;
efi_call_phys1(sys_table_arg->boottime->free_pool, map);
fail:
return status;
}
static void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
unsigned long addr)
{
unsigned long nr_pages;
if (!size)
return;
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
efi_call_phys2(sys_table_arg->boottime->free_pages, addr, nr_pages);
}
/*
* Check the cmdline for a LILO-style file= arguments.
*
* We only support loading a file from the same filesystem as
* the kernel image.
*/
static efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
efi_loaded_image_t *image,
char *cmd_line, char *option_string,
unsigned long max_addr,
unsigned long *load_addr,
unsigned long *load_size)
{
struct file_info *files;
unsigned long file_addr;
efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
u64 file_size_total;
efi_file_io_interface_t *io;
efi_file_handle_t *fh;
efi_status_t status;
int nr_files;
char *str;
int i, j, k;
file_addr = 0;
file_size_total = 0;
str = cmd_line;
j = 0; /* See close_handles */
if (!load_addr || !load_size)
return EFI_INVALID_PARAMETER;
*load_addr = 0;
*load_size = 0;
if (!str || !*str)
return EFI_SUCCESS;
for (nr_files = 0; *str; nr_files++) {
str = strstr(str, option_string);
if (!str)
break;
str += strlen(option_string);
/* Skip any leading slashes */
while (*str == '/' || *str == '\\')
str++;
while (*str && *str != ' ' && *str != '\n')
str++;
}
if (!nr_files)
return EFI_SUCCESS;
status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
EFI_LOADER_DATA,
nr_files * sizeof(*files),
(void **)&files);
if (status != EFI_SUCCESS) {
efi_printk(sys_table_arg, "Failed to alloc mem for file handle list\n");
goto fail;
}
str = cmd_line;
for (i = 0; i < nr_files; i++) {
struct file_info *file;
efi_file_handle_t *h;
efi_file_info_t *info;
efi_char16_t filename_16[256];
unsigned long info_sz;
efi_guid_t info_guid = EFI_FILE_INFO_ID;
efi_char16_t *p;
u64 file_sz;
str = strstr(str, option_string);
if (!str)
break;
str += strlen(option_string);
file = &files[i];
p = filename_16;
/* Skip any leading slashes */
while (*str == '/' || *str == '\\')
str++;
while (*str && *str != ' ' && *str != '\n') {
if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
break;
if (*str == '/') {
*p++ = '\\';
str++;
} else {
*p++ = *str++;
}
}
*p = '\0';
/* Only open the volume once. */
if (!i) {
efi_boot_services_t *boottime;
boottime = sys_table_arg->boottime;
status = efi_call_phys3(boottime->handle_protocol,
image->device_handle, &fs_proto,
(void **)&io);
if (status != EFI_SUCCESS) {
efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
goto free_files;
}
status = efi_call_phys2(io->open_volume, io, &fh);
if (status != EFI_SUCCESS) {
efi_printk(sys_table_arg, "Failed to open volume\n");
goto free_files;
}
}
status = efi_call_phys5(fh->open, fh, &h, filename_16,
EFI_FILE_MODE_READ, (u64)0);
if (status != EFI_SUCCESS) {
efi_printk(sys_table_arg, "Failed to open file: ");
efi_char16_printk(sys_table_arg, filename_16);
efi_printk(sys_table_arg, "\n");
goto close_handles;
}
file->handle = h;
info_sz = 0;
status = efi_call_phys4(h->get_info, h, &info_guid,
&info_sz, NULL);
if (status != EFI_BUFFER_TOO_SMALL) {
efi_printk(sys_table_arg, "Failed to get file info size\n");
goto close_handles;
}
grow:
status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
EFI_LOADER_DATA, info_sz,
(void **)&info);
if (status != EFI_SUCCESS) {
efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
goto close_handles;
}
status = efi_call_phys4(h->get_info, h, &info_guid,
&info_sz, info);
if (status == EFI_BUFFER_TOO_SMALL) {
efi_call_phys1(sys_table_arg->boottime->free_pool,
info);
goto grow;
}
file_sz = info->file_size;
efi_call_phys1(sys_table_arg->boottime->free_pool, info);
if (status != EFI_SUCCESS) {
efi_printk(sys_table_arg, "Failed to get file info\n");
goto close_handles;
}
file->size = file_sz;
file_size_total += file_sz;
}
if (file_size_total) {
unsigned long addr;
/*
* Multiple files need to be at consecutive addresses in memory,
* so allocate enough memory for all the files. This is used
* for loading multiple files.
*/
status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
&file_addr, max_addr);
if (status != EFI_SUCCESS) {
efi_printk(sys_table_arg, "Failed to alloc highmem for files\n");
goto close_handles;
}
/* We've run out of free low memory. */
if (file_addr > max_addr) {
efi_printk(sys_table_arg, "We've run out of free low memory\n");
status = EFI_INVALID_PARAMETER;
goto free_file_total;
}
addr = file_addr;
for (j = 0; j < nr_files; j++) {
unsigned long size;
size = files[j].size;
while (size) {
unsigned long chunksize;
if (size > EFI_READ_CHUNK_SIZE)
chunksize = EFI_READ_CHUNK_SIZE;
else
chunksize = size;
status = efi_call_phys3(fh->read,
files[j].handle,
&chunksize,
(void *)addr);
if (status != EFI_SUCCESS) {
efi_printk(sys_table_arg, "Failed to read file\n");
goto free_file_total;
}
addr += chunksize;
size -= chunksize;
}
efi_call_phys1(fh->close, files[j].handle);
}
}
efi_call_phys1(sys_table_arg->boottime->free_pool, files);
*load_addr = file_addr;
*load_size = file_size_total;
return status;
free_file_total:
efi_free(sys_table_arg, file_size_total, file_addr);
close_handles:
for (k = j; k < i; k++)
efi_call_phys1(fh->close, files[k].handle);
free_files:
efi_call_phys1(sys_table_arg->boottime->free_pool, files);
fail:
*load_addr = 0;
*load_size = 0;
return status;
}
/*
* Relocate a kernel image, either compressed or uncompressed.
* In the ARM64 case, all kernel images are currently
* uncompressed, and as such when we relocate it we need to
* allocate additional space for the BSS segment. Any low
* memory that this function should avoid needs to be
* unavailable in the EFI memory map, as if the preferred
* address is not available the lowest available address will
* be used.
*/
static efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
unsigned long *image_addr,
unsigned long image_size,
unsigned long alloc_size,
unsigned long preferred_addr,
unsigned long alignment)
{
unsigned long cur_image_addr;
unsigned long new_addr = 0;
efi_status_t status;
unsigned long nr_pages;
efi_physical_addr_t efi_addr = preferred_addr;
if (!image_addr || !image_size || !alloc_size)
return EFI_INVALID_PARAMETER;
if (alloc_size < image_size)
return EFI_INVALID_PARAMETER;
cur_image_addr = *image_addr;
/*
* The EFI firmware loader could have placed the kernel image
* anywhere in memory, but the kernel has restrictions on the
* max physical address it can run at. Some architectures
* also have a prefered address, so first try to relocate
* to the preferred address. If that fails, allocate as low
* as possible while respecting the required alignment.
*/
nr_pages = round_up(alloc_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
nr_pages, &efi_addr);
new_addr = efi_addr;
/*
* If preferred address allocation failed allocate as low as
* possible.
*/
if (status != EFI_SUCCESS) {
status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
&new_addr);
}
if (status != EFI_SUCCESS) {
efi_printk(sys_table_arg, "ERROR: Failed to allocate usable memory for kernel.\n");
return status;
}
/*
* We know source/dest won't overlap since both memory ranges
* have been allocated by UEFI, so we can safely use memcpy.
*/
memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
/* Return the new address of the relocated image. */
*image_addr = new_addr;
return status;
}
/*
* Convert the unicode UEFI command line to ASCII to pass to kernel.
* Size of memory allocated return in *cmd_line_len.
* Returns NULL on error.
*/
static char *efi_convert_cmdline_to_ascii(efi_system_table_t *sys_table_arg,
efi_loaded_image_t *image,
int *cmd_line_len)
{
u16 *s2;
u8 *s1 = NULL;
unsigned long cmdline_addr = 0;
int load_options_size = image->load_options_size / 2; /* ASCII */
void *options = image->load_options;
int options_size = 0;
efi_status_t status;
int i;
u16 zero = 0;
if (options) {
s2 = options;
while (*s2 && *s2 != '\n' && options_size < load_options_size) {
s2++;
options_size++;
}
}
if (options_size == 0) {
/* No command line options, so return empty string*/
options_size = 1;
options = &zero;
}
options_size++; /* NUL termination */
#ifdef CONFIG_ARM
/*
* For ARM, allocate at a high address to avoid reserved
* regions at low addresses that we don't know the specfics of
* at the time we are processing the command line.
*/
status = efi_high_alloc(sys_table_arg, options_size, 0,
&cmdline_addr, 0xfffff000);
#else
status = efi_low_alloc(sys_table_arg, options_size, 0,
&cmdline_addr);
#endif
if (status != EFI_SUCCESS)
return NULL;
s1 = (u8 *)cmdline_addr;
s2 = (u16 *)options;
for (i = 0; i < options_size - 1; i++)
*s1++ = *s2++;
*s1 = '\0';
*cmd_line_len = options_size;
return (char *)cmdline_addr;
}

View File

@ -13,11 +13,27 @@
* This file is released under the GPLv2.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/efi.h>
#include <linux/io.h>
struct efi __read_mostly efi = {
.mps = EFI_INVALID_TABLE_ADDR,
.acpi = EFI_INVALID_TABLE_ADDR,
.acpi20 = EFI_INVALID_TABLE_ADDR,
.smbios = EFI_INVALID_TABLE_ADDR,
.sal_systab = EFI_INVALID_TABLE_ADDR,
.boot_info = EFI_INVALID_TABLE_ADDR,
.hcdp = EFI_INVALID_TABLE_ADDR,
.uga = EFI_INVALID_TABLE_ADDR,
.uv_systab = EFI_INVALID_TABLE_ADDR,
};
EXPORT_SYMBOL(efi);
static struct kobject *efi_kobj;
static struct kobject *efivars_kobj;
@ -132,3 +148,127 @@ static int __init efisubsys_init(void)
}
subsys_initcall(efisubsys_init);
/*
* We can't ioremap data in EFI boot services RAM, because we've already mapped
* it as RAM. So, look it up in the existing EFI memory map instead. Only
* callable after efi_enter_virtual_mode and before efi_free_boot_services.
*/
void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
{
struct efi_memory_map *map;
void *p;
map = efi.memmap;
if (!map)
return NULL;
if (WARN_ON(!map->map))
return NULL;
for (p = map->map; p < map->map_end; p += map->desc_size) {
efi_memory_desc_t *md = p;
u64 size = md->num_pages << EFI_PAGE_SHIFT;
u64 end = md->phys_addr + size;
if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
md->type != EFI_BOOT_SERVICES_CODE &&
md->type != EFI_BOOT_SERVICES_DATA)
continue;
if (!md->virt_addr)
continue;
if (phys_addr >= md->phys_addr && phys_addr < end) {
phys_addr += md->virt_addr - md->phys_addr;
return (__force void __iomem *)(unsigned long)phys_addr;
}
}
return NULL;
}
static __initdata efi_config_table_type_t common_tables[] = {
{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
{HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
{MPS_TABLE_GUID, "MPS", &efi.mps},
{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
{NULL_GUID, NULL, 0},
};
static __init int match_config_table(efi_guid_t *guid,
unsigned long table,
efi_config_table_type_t *table_types)
{
u8 str[EFI_VARIABLE_GUID_LEN + 1];
int i;
if (table_types) {
efi_guid_unparse(guid, str);
for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
efi_guid_unparse(&table_types[i].guid, str);
if (!efi_guidcmp(*guid, table_types[i].guid)) {
*(table_types[i].ptr) = table;
pr_cont(" %s=0x%lx ",
table_types[i].name, table);
return 1;
}
}
}
return 0;
}
int __init efi_config_init(efi_config_table_type_t *arch_tables)
{
void *config_tables, *tablep;
int i, sz;
if (efi_enabled(EFI_64BIT))
sz = sizeof(efi_config_table_64_t);
else
sz = sizeof(efi_config_table_32_t);
/*
* Let's see what config tables the firmware passed to us.
*/
config_tables = early_memremap(efi.systab->tables,
efi.systab->nr_tables * sz);
if (config_tables == NULL) {
pr_err("Could not map Configuration table!\n");
return -ENOMEM;
}
tablep = config_tables;
pr_info("");
for (i = 0; i < efi.systab->nr_tables; i++) {
efi_guid_t guid;
unsigned long table;
if (efi_enabled(EFI_64BIT)) {
u64 table64;
guid = ((efi_config_table_64_t *)tablep)->guid;
table64 = ((efi_config_table_64_t *)tablep)->table;
table = table64;
#ifndef CONFIG_64BIT
if (table64 >> 32) {
pr_cont("\n");
pr_err("Table located above 4GB, disabling EFI.\n");
early_iounmap(config_tables,
efi.systab->nr_tables * sz);
return -EINVAL;
}
#endif
} else {
guid = ((efi_config_table_32_t *)tablep)->guid;
table = ((efi_config_table_32_t *)tablep)->table;
}
if (!match_config_table(&guid, table, common_tables))
match_config_table(&guid, table, arch_tables);
tablep += sz;
}
pr_cont("\n");
early_iounmap(config_tables, efi.systab->nr_tables * sz);
return 0;
}

View File

@ -564,7 +564,7 @@ static int efivar_sysfs_destroy(struct efivar_entry *entry, void *data)
return 0;
}
void efivars_sysfs_exit(void)
static void efivars_sysfs_exit(void)
{
/* Remove all entries and destroy */
__efivar_entry_iter(efivar_sysfs_destroy, &efivar_sysfs_list, NULL, NULL);

View File

@ -39,6 +39,8 @@
typedef unsigned long efi_status_t;
typedef u8 efi_bool_t;
typedef u16 efi_char16_t; /* UNICODE character */
typedef u64 efi_physical_addr_t;
typedef void *efi_handle_t;
typedef struct {
@ -96,6 +98,7 @@ typedef struct {
#define EFI_MEMORY_DESCRIPTOR_VERSION 1
#define EFI_PAGE_SHIFT 12
#define EFI_PAGE_SIZE (1UL << EFI_PAGE_SHIFT)
typedef struct {
u32 type;
@ -157,11 +160,13 @@ typedef struct {
efi_table_hdr_t hdr;
void *raise_tpl;
void *restore_tpl;
void *allocate_pages;
void *free_pages;
void *get_memory_map;
void *allocate_pool;
void *free_pool;
efi_status_t (*allocate_pages)(int, int, unsigned long,
efi_physical_addr_t *);
efi_status_t (*free_pages)(efi_physical_addr_t, unsigned long);
efi_status_t (*get_memory_map)(unsigned long *, void *, unsigned long *,
unsigned long *, u32 *);
efi_status_t (*allocate_pool)(int, unsigned long, void **);
efi_status_t (*free_pool)(void *);
void *create_event;
void *set_timer;
void *wait_for_event;
@ -171,7 +176,7 @@ typedef struct {
void *install_protocol_interface;
void *reinstall_protocol_interface;
void *uninstall_protocol_interface;
void *handle_protocol;
efi_status_t (*handle_protocol)(efi_handle_t, efi_guid_t *, void **);
void *__reserved;
void *register_protocol_notify;
void *locate_handle;
@ -181,7 +186,7 @@ typedef struct {
void *start_image;
void *exit;
void *unload_image;
void *exit_boot_services;
efi_status_t (*exit_boot_services)(efi_handle_t, unsigned long);
void *get_next_monotonic_count;
void *stall;
void *set_watchdog_timer;
@ -404,6 +409,12 @@ typedef struct {
unsigned long table;
} efi_config_table_t;
typedef struct {
efi_guid_t guid;
const char *name;
unsigned long *ptr;
} efi_config_table_type_t;
#define EFI_SYSTEM_TABLE_SIGNATURE ((u64)0x5453595320494249ULL)
#define EFI_2_30_SYSTEM_TABLE_REVISION ((2 << 16) | (30))
@ -488,10 +499,6 @@ typedef struct {
unsigned long unload;
} efi_loaded_image_t;
typedef struct {
u64 revision;
void *open_volume;
} efi_file_io_interface_t;
typedef struct {
u64 size;
@ -504,20 +511,30 @@ typedef struct {
efi_char16_t filename[1];
} efi_file_info_t;
typedef struct {
typedef struct _efi_file_handle {
u64 revision;
void *open;
void *close;
efi_status_t (*open)(struct _efi_file_handle *,
struct _efi_file_handle **,
efi_char16_t *, u64, u64);
efi_status_t (*close)(struct _efi_file_handle *);
void *delete;
void *read;
efi_status_t (*read)(struct _efi_file_handle *, unsigned long *,
void *);
void *write;
void *get_position;
void *set_position;
void *get_info;
efi_status_t (*get_info)(struct _efi_file_handle *, efi_guid_t *,
unsigned long *, void *);
void *set_info;
void *flush;
} efi_file_handle_t;
typedef struct _efi_file_io_interface {
u64 revision;
int (*open_volume)(struct _efi_file_io_interface *,
efi_file_handle_t **);
} efi_file_io_interface_t;
#define EFI_FILE_MODE_READ 0x0000000000000001
#define EFI_FILE_MODE_WRITE 0x0000000000000002
#define EFI_FILE_MODE_CREATE 0x8000000000000000
@ -552,6 +569,7 @@ extern struct efi {
efi_get_next_high_mono_count_t *get_next_high_mono_count;
efi_reset_system_t *reset_system;
efi_set_virtual_address_map_t *set_virtual_address_map;
struct efi_memory_map *memmap;
} efi;
static inline int
@ -587,6 +605,7 @@ static inline efi_status_t efi_query_variable_store(u32 attributes, unsigned lon
}
#endif
extern void __iomem *efi_lookup_mapped_addr(u64 phys_addr);
extern int efi_config_init(efi_config_table_type_t *arch_tables);
extern u64 efi_get_iobase (void);
extern u32 efi_mem_type (unsigned long phys_addr);
extern u64 efi_mem_attributes (unsigned long phys_addr);
@ -784,6 +803,13 @@ struct efivar_entry {
struct kobject kobj;
};
struct efi_simple_text_output_protocol {
void *reset;
efi_status_t (*output_string)(void *, void *);
void *test_string;
};
extern struct list_head efivar_sysfs_list;
static inline void