Documentation: KUnit: Rewrite main page

Add a section on advantages of unit testing, how to write unit tests,
KUnit features and Prerequisites.

Signed-off-by: Harinder Singh <sharinder@google.com>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Link: https://lore.kernel.org/r/20211217044911.798817-2-sharinder@google.com
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
Harinder Singh 2021-12-17 04:49:05 +00:00 committed by Jonathan Corbet
parent 422d98c187
commit 6c6213f4a2

View File

@ -1,11 +1,12 @@
.. SPDX-License-Identifier: GPL-2.0
=========================================
KUnit - Unit Testing for the Linux Kernel
=========================================
=================================
KUnit - Linux Kernel Unit Testing
=================================
.. toctree::
:maxdepth: 2
:caption: Contents:
start
usage
@ -16,82 +17,91 @@ KUnit - Unit Testing for the Linux Kernel
tips
running_tips
What is KUnit?
==============
This section details the kernel unit testing framework.
KUnit is a lightweight unit testing and mocking framework for the Linux kernel.
Introduction
============
KUnit is heavily inspired by JUnit, Python's unittest.mock, and
Googletest/Googlemock for C++. KUnit provides facilities for defining unit test
cases, grouping related test cases into test suites, providing common
infrastructure for running tests, and much more.
KUnit (Kernel unit testing framework) provides a common framework for
unit tests within the Linux kernel. Using KUnit, you can define groups
of test cases called test suites. The tests either run on kernel boot
if built-in, or load as a module. KUnit automatically flags and reports
failed test cases in the kernel log. The test results appear in `TAP
(Test Anything Protocol) format <https://testanything.org/>`_. It is inspired by
JUnit, Pythons unittest.mock, and GoogleTest/GoogleMock (C++ unit testing
framework).
KUnit consists of a kernel component, which provides a set of macros for easily
writing unit tests. Tests written against KUnit will run on kernel boot if
built-in, or when loaded if built as a module. These tests write out results to
the kernel log in `TAP <https://testanything.org/>`_ format.
KUnit tests are part of the kernel, written in the C (programming)
language, and test parts of the Kernel implementation (example: a C
language function). Excluding build time, from invocation to
completion, KUnit can run around 100 tests in less than 10 seconds.
KUnit can test any kernel component, for example: file system, system
calls, memory management, device drivers and so on.
To make running these tests (and reading the results) easier, KUnit offers
:doc:`kunit_tool <kunit-tool>`, which builds a `User Mode Linux
<http://user-mode-linux.sourceforge.net>`_ kernel, runs it, and parses the test
results. This provides a quick way of running KUnit tests during development,
without requiring a virtual machine or separate hardware.
KUnit follows the white-box testing approach. The test has access to
internal system functionality. KUnit runs in kernel space and is not
restricted to things exposed to user-space.
Get started now: Documentation/dev-tools/kunit/start.rst
In addition, KUnit has kunit_tool, a script (``tools/testing/kunit/kunit.py``)
that configures the Linux kernel, runs KUnit tests under QEMU or UML (`User Mode
Linux <http://user-mode-linux.sourceforge.net/>`_), parses the test results and
displays them in a user friendly manner.
Why KUnit?
==========
Features
--------
A unit test is supposed to test a single unit of code in isolation, hence the
name. A unit test should be the finest granularity of testing and as such should
allow all possible code paths to be tested in the code under test; this is only
possible if the code under test is very small and does not have any external
dependencies outside of the test's control like hardware.
- Provides a framework for writing unit tests.
- Runs tests on any kernel architecture.
- Runs a test in milliseconds.
KUnit provides a common framework for unit tests within the kernel.
Prerequisites
-------------
KUnit tests can be run on most architectures, and most tests are architecture
independent. All built-in KUnit tests run on kernel startup. Alternatively,
KUnit and KUnit tests can be built as modules and tests will run when the test
module is loaded.
- Any Linux kernel compatible hardware.
- For Kernel under test, Linux kernel version 5.5 or greater.
.. note::
Unit Testing
============
KUnit can also run tests without needing a virtual machine or actual
hardware under User Mode Linux. User Mode Linux is a Linux architecture,
like ARM or x86, which compiles the kernel as a Linux executable. KUnit
can be used with UML either by building with ``ARCH=um`` (like any other
architecture), or by using :doc:`kunit_tool <kunit-tool>`.
A unit test tests a single unit of code in isolation. A unit test is the finest
granularity of testing and allows all possible code paths to be tested in the
code under test. This is possible if the code under test is small and does not
have any external dependencies outside of the test's control like hardware.
KUnit is fast. Excluding build time, from invocation to completion KUnit can run
several dozen tests in only 10 to 20 seconds; this might not sound like a big
deal to some people, but having such fast and easy to run tests fundamentally
changes the way you go about testing and even writing code in the first place.
Linus himself said in his `git talk at Google
<https://gist.github.com/lorn/1272686/revisions#diff-53c65572127855f1b003db4064a94573R874>`_:
"... a lot of people seem to think that performance is about doing the
same thing, just doing it faster, and that is not true. That is not what
performance is all about. If you can do something really fast, really
well, people will start using it differently."
Write Unit Tests
----------------
In this context Linus was talking about branching and merging,
but this point also applies to testing. If your tests are slow, unreliable, are
difficult to write, and require a special setup or special hardware to run,
then you wait a lot longer to write tests, and you wait a lot longer to run
tests; this means that tests are likely to break, unlikely to test a lot of
things, and are unlikely to be rerun once they pass. If your tests are really
fast, you run them all the time, every time you make a change, and every time
someone sends you some code. Why trust that someone ran all their tests
correctly on every change when you can just run them yourself in less time than
it takes to read their test log?
To write good unit tests, there is a simple but powerful pattern:
Arrange-Act-Assert. This is a great way to structure test cases and
defines an order of operations.
- Arrange inputs and targets: At the start of the test, arrange the data
that allows a function to work. Example: initialize a statement or
object.
- Act on the target behavior: Call your function/code under test.
- Assert expected outcome: Verify that the result (or resulting state) is as
expected.
Unit Testing Advantages
-----------------------
- Increases testing speed and development in the long run.
- Detects bugs at initial stage and therefore decreases bug fix cost
compared to acceptance testing.
- Improves code quality.
- Encourages writing testable code.
How do I use it?
================
* Documentation/dev-tools/kunit/start.rst - for new users of KUnit
* Documentation/dev-tools/kunit/tips.rst - for short examples of best practices
* Documentation/dev-tools/kunit/usage.rst - for a more detailed explanation of KUnit features
* Documentation/dev-tools/kunit/api/index.rst - for the list of KUnit APIs used for testing
* Documentation/dev-tools/kunit/kunit-tool.rst - for more information on the kunit_tool helper script
* Documentation/dev-tools/kunit/faq.rst - for answers to some common questions about KUnit
* Documentation/dev-tools/kunit/start.rst - for KUnit new users.
* Documentation/dev-tools/kunit/usage.rst - KUnit features.
* Documentation/dev-tools/kunit/tips.rst - best practices with
examples.
* Documentation/dev-tools/kunit/api/index.rst - KUnit APIs
used for testing.
* Documentation/dev-tools/kunit/kunit-tool.rst - kunit_tool helper
script.
* Documentation/dev-tools/kunit/faq.rst - KUnit common questions and
answers.