mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-16 18:26:42 +00:00
netfs: Remove fs/netfs/io.c
Remove fs/netfs/io.c as it is no longer used. Signed-off-by: David Howells <dhowells@redhat.com> cc: Jeff Layton <jlayton@kernel.org> cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/20240814203850.2240469-21-dhowells@redhat.com/ # v2 Signed-off-by: Christian Brauner <brauner@kernel.org>
This commit is contained in:
parent
ee4cdf7ba8
commit
86b374d061
802
fs/netfs/io.c
802
fs/netfs/io.c
@ -1,802 +0,0 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/* Network filesystem high-level read support.
|
||||
*
|
||||
* Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
|
||||
* Written by David Howells (dhowells@redhat.com)
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/export.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/pagemap.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/uio.h>
|
||||
#include <linux/sched/mm.h>
|
||||
#include <linux/task_io_accounting_ops.h>
|
||||
#include "internal.h"
|
||||
|
||||
/*
|
||||
* Clear the unread part of an I/O request.
|
||||
*/
|
||||
static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
|
||||
{
|
||||
iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter);
|
||||
}
|
||||
|
||||
static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
|
||||
bool was_async)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq = priv;
|
||||
|
||||
netfs_subreq_terminated(subreq, transferred_or_error, was_async);
|
||||
}
|
||||
|
||||
/*
|
||||
* Issue a read against the cache.
|
||||
* - Eats the caller's ref on subreq.
|
||||
*/
|
||||
static void netfs_read_from_cache(struct netfs_io_request *rreq,
|
||||
struct netfs_io_subrequest *subreq,
|
||||
enum netfs_read_from_hole read_hole)
|
||||
{
|
||||
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
||||
|
||||
netfs_stat(&netfs_n_rh_read);
|
||||
cres->ops->read(cres, subreq->start, &subreq->io_iter, read_hole,
|
||||
netfs_cache_read_terminated, subreq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Fill a subrequest region with zeroes.
|
||||
*/
|
||||
static void netfs_fill_with_zeroes(struct netfs_io_request *rreq,
|
||||
struct netfs_io_subrequest *subreq)
|
||||
{
|
||||
netfs_stat(&netfs_n_rh_zero);
|
||||
__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
|
||||
netfs_subreq_terminated(subreq, 0, false);
|
||||
}
|
||||
|
||||
/*
|
||||
* Ask the netfs to issue a read request to the server for us.
|
||||
*
|
||||
* The netfs is expected to read from subreq->pos + subreq->transferred to
|
||||
* subreq->pos + subreq->len - 1. It may not backtrack and write data into the
|
||||
* buffer prior to the transferred point as it might clobber dirty data
|
||||
* obtained from the cache.
|
||||
*
|
||||
* Alternatively, the netfs is allowed to indicate one of two things:
|
||||
*
|
||||
* - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
|
||||
* make progress.
|
||||
*
|
||||
* - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
|
||||
* cleared.
|
||||
*/
|
||||
static void netfs_read_from_server(struct netfs_io_request *rreq,
|
||||
struct netfs_io_subrequest *subreq)
|
||||
{
|
||||
netfs_stat(&netfs_n_rh_download);
|
||||
|
||||
if (rreq->origin != NETFS_DIO_READ &&
|
||||
iov_iter_count(&subreq->io_iter) != subreq->len - subreq->transferred)
|
||||
pr_warn("R=%08x[%u] ITER PRE-MISMATCH %zx != %zx-%zx %lx\n",
|
||||
rreq->debug_id, subreq->debug_index,
|
||||
iov_iter_count(&subreq->io_iter), subreq->len,
|
||||
subreq->transferred, subreq->flags);
|
||||
rreq->netfs_ops->issue_read(subreq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Release those waiting.
|
||||
*/
|
||||
static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async)
|
||||
{
|
||||
trace_netfs_rreq(rreq, netfs_rreq_trace_done);
|
||||
netfs_clear_subrequests(rreq, was_async);
|
||||
netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete);
|
||||
}
|
||||
|
||||
/*
|
||||
* [DEPRECATED] Deal with the completion of writing the data to the cache. We
|
||||
* have to clear the PG_fscache bits on the folios involved and release the
|
||||
* caller's ref.
|
||||
*
|
||||
* May be called in softirq mode and we inherit a ref from the caller.
|
||||
*/
|
||||
static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq,
|
||||
bool was_async)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq;
|
||||
struct folio *folio;
|
||||
pgoff_t unlocked = 0;
|
||||
bool have_unlocked = false;
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
||||
XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
|
||||
|
||||
xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
|
||||
if (xas_retry(&xas, folio))
|
||||
continue;
|
||||
|
||||
/* We might have multiple writes from the same huge
|
||||
* folio, but we mustn't unlock a folio more than once.
|
||||
*/
|
||||
if (have_unlocked && folio->index <= unlocked)
|
||||
continue;
|
||||
unlocked = folio_next_index(folio) - 1;
|
||||
trace_netfs_folio(folio, netfs_folio_trace_end_copy);
|
||||
folio_end_private_2(folio);
|
||||
have_unlocked = true;
|
||||
}
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
netfs_rreq_completed(rreq, was_async);
|
||||
}
|
||||
|
||||
static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
|
||||
bool was_async) /* [DEPRECATED] */
|
||||
{
|
||||
struct netfs_io_subrequest *subreq = priv;
|
||||
struct netfs_io_request *rreq = subreq->rreq;
|
||||
|
||||
if (IS_ERR_VALUE(transferred_or_error)) {
|
||||
netfs_stat(&netfs_n_rh_write_failed);
|
||||
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
||||
netfs_fail_copy_to_cache);
|
||||
} else {
|
||||
netfs_stat(&netfs_n_rh_write_done);
|
||||
}
|
||||
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
|
||||
|
||||
/* If we decrement nr_copy_ops to 0, the ref belongs to us. */
|
||||
if (atomic_dec_and_test(&rreq->nr_copy_ops))
|
||||
netfs_rreq_unmark_after_write(rreq, was_async);
|
||||
|
||||
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
||||
}
|
||||
|
||||
/*
|
||||
* [DEPRECATED] Perform any outstanding writes to the cache. We inherit a ref
|
||||
* from the caller.
|
||||
*/
|
||||
static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq)
|
||||
{
|
||||
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
||||
struct netfs_io_subrequest *subreq, *next, *p;
|
||||
struct iov_iter iter;
|
||||
int ret;
|
||||
|
||||
trace_netfs_rreq(rreq, netfs_rreq_trace_copy);
|
||||
|
||||
/* We don't want terminating writes trying to wake us up whilst we're
|
||||
* still going through the list.
|
||||
*/
|
||||
atomic_inc(&rreq->nr_copy_ops);
|
||||
|
||||
list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
|
||||
if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
|
||||
list_del_init(&subreq->rreq_link);
|
||||
netfs_put_subrequest(subreq, false,
|
||||
netfs_sreq_trace_put_no_copy);
|
||||
}
|
||||
}
|
||||
|
||||
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
||||
/* Amalgamate adjacent writes */
|
||||
while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
|
||||
next = list_next_entry(subreq, rreq_link);
|
||||
if (next->start != subreq->start + subreq->len)
|
||||
break;
|
||||
subreq->len += next->len;
|
||||
list_del_init(&next->rreq_link);
|
||||
netfs_put_subrequest(next, false,
|
||||
netfs_sreq_trace_put_merged);
|
||||
}
|
||||
|
||||
ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
|
||||
subreq->len, rreq->i_size, true);
|
||||
if (ret < 0) {
|
||||
trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
|
||||
continue;
|
||||
}
|
||||
|
||||
iov_iter_xarray(&iter, ITER_SOURCE, &rreq->mapping->i_pages,
|
||||
subreq->start, subreq->len);
|
||||
|
||||
atomic_inc(&rreq->nr_copy_ops);
|
||||
netfs_stat(&netfs_n_rh_write);
|
||||
netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache);
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_write);
|
||||
cres->ops->write(cres, subreq->start, &iter,
|
||||
netfs_rreq_copy_terminated, subreq);
|
||||
}
|
||||
|
||||
/* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */
|
||||
if (atomic_dec_and_test(&rreq->nr_copy_ops))
|
||||
netfs_rreq_unmark_after_write(rreq, false);
|
||||
}
|
||||
|
||||
static void netfs_rreq_write_to_cache_work(struct work_struct *work) /* [DEPRECATED] */
|
||||
{
|
||||
struct netfs_io_request *rreq =
|
||||
container_of(work, struct netfs_io_request, work);
|
||||
|
||||
netfs_rreq_do_write_to_cache(rreq);
|
||||
}
|
||||
|
||||
static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq) /* [DEPRECATED] */
|
||||
{
|
||||
rreq->work.func = netfs_rreq_write_to_cache_work;
|
||||
if (!queue_work(system_unbound_wq, &rreq->work))
|
||||
BUG();
|
||||
}
|
||||
|
||||
/*
|
||||
* Handle a short read.
|
||||
*/
|
||||
static void netfs_rreq_short_read(struct netfs_io_request *rreq,
|
||||
struct netfs_io_subrequest *subreq)
|
||||
{
|
||||
__clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
|
||||
__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
|
||||
|
||||
netfs_stat(&netfs_n_rh_short_read);
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
|
||||
|
||||
netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read);
|
||||
atomic_inc(&rreq->nr_outstanding);
|
||||
if (subreq->source == NETFS_READ_FROM_CACHE)
|
||||
netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR);
|
||||
else
|
||||
netfs_read_from_server(rreq, subreq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Reset the subrequest iterator prior to resubmission.
|
||||
*/
|
||||
static void netfs_reset_subreq_iter(struct netfs_io_request *rreq,
|
||||
struct netfs_io_subrequest *subreq)
|
||||
{
|
||||
size_t remaining = subreq->len - subreq->transferred;
|
||||
size_t count = iov_iter_count(&subreq->io_iter);
|
||||
|
||||
if (count == remaining)
|
||||
return;
|
||||
|
||||
_debug("R=%08x[%u] ITER RESUB-MISMATCH %zx != %zx-%zx-%llx %x\n",
|
||||
rreq->debug_id, subreq->debug_index,
|
||||
iov_iter_count(&subreq->io_iter), subreq->transferred,
|
||||
subreq->len, rreq->i_size,
|
||||
subreq->io_iter.iter_type);
|
||||
|
||||
if (count < remaining)
|
||||
iov_iter_revert(&subreq->io_iter, remaining - count);
|
||||
else
|
||||
iov_iter_advance(&subreq->io_iter, count - remaining);
|
||||
}
|
||||
|
||||
/*
|
||||
* Resubmit any short or failed operations. Returns true if we got the rreq
|
||||
* ref back.
|
||||
*/
|
||||
static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq;
|
||||
|
||||
WARN_ON(in_interrupt());
|
||||
|
||||
trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
|
||||
|
||||
/* We don't want terminating submissions trying to wake us up whilst
|
||||
* we're still going through the list.
|
||||
*/
|
||||
atomic_inc(&rreq->nr_outstanding);
|
||||
|
||||
__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
||||
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
||||
if (subreq->error) {
|
||||
if (subreq->source != NETFS_READ_FROM_CACHE)
|
||||
break;
|
||||
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
|
||||
subreq->error = 0;
|
||||
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
||||
netfs_stat(&netfs_n_rh_download_instead);
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
|
||||
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
||||
atomic_inc(&rreq->nr_outstanding);
|
||||
netfs_reset_subreq_iter(rreq, subreq);
|
||||
netfs_read_from_server(rreq, subreq);
|
||||
} else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) {
|
||||
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
||||
netfs_reset_subreq_iter(rreq, subreq);
|
||||
netfs_rreq_short_read(rreq, subreq);
|
||||
}
|
||||
}
|
||||
|
||||
/* If we decrement nr_outstanding to 0, the usage ref belongs to us. */
|
||||
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
||||
return true;
|
||||
|
||||
wake_up_var(&rreq->nr_outstanding);
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check to see if the data read is still valid.
|
||||
*/
|
||||
static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq;
|
||||
|
||||
if (!rreq->netfs_ops->is_still_valid ||
|
||||
rreq->netfs_ops->is_still_valid(rreq))
|
||||
return;
|
||||
|
||||
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
||||
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
||||
subreq->error = -ESTALE;
|
||||
__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Determine how much we can admit to having read from a DIO read.
|
||||
*/
|
||||
static void netfs_rreq_assess_dio(struct netfs_io_request *rreq)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq;
|
||||
unsigned int i;
|
||||
size_t transferred = 0;
|
||||
|
||||
for (i = 0; i < rreq->direct_bv_count; i++) {
|
||||
flush_dcache_page(rreq->direct_bv[i].bv_page);
|
||||
// TODO: cifs marks pages in the destination buffer
|
||||
// dirty under some circumstances after a read. Do we
|
||||
// need to do that too?
|
||||
set_page_dirty(rreq->direct_bv[i].bv_page);
|
||||
}
|
||||
|
||||
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
||||
if (subreq->error || subreq->transferred == 0)
|
||||
break;
|
||||
transferred += subreq->transferred;
|
||||
if (subreq->transferred < subreq->len ||
|
||||
test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags))
|
||||
break;
|
||||
}
|
||||
|
||||
for (i = 0; i < rreq->direct_bv_count; i++)
|
||||
flush_dcache_page(rreq->direct_bv[i].bv_page);
|
||||
|
||||
rreq->transferred = transferred;
|
||||
task_io_account_read(transferred);
|
||||
|
||||
if (rreq->iocb) {
|
||||
rreq->iocb->ki_pos += transferred;
|
||||
if (rreq->iocb->ki_complete)
|
||||
rreq->iocb->ki_complete(
|
||||
rreq->iocb, rreq->error ? rreq->error : transferred);
|
||||
}
|
||||
if (rreq->netfs_ops->done)
|
||||
rreq->netfs_ops->done(rreq);
|
||||
inode_dio_end(rreq->inode);
|
||||
}
|
||||
|
||||
/*
|
||||
* Assess the state of a read request and decide what to do next.
|
||||
*
|
||||
* Note that we could be in an ordinary kernel thread, on a workqueue or in
|
||||
* softirq context at this point. We inherit a ref from the caller.
|
||||
*/
|
||||
static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async)
|
||||
{
|
||||
trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
|
||||
|
||||
again:
|
||||
netfs_rreq_is_still_valid(rreq);
|
||||
|
||||
if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
|
||||
test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
|
||||
if (netfs_rreq_perform_resubmissions(rreq))
|
||||
goto again;
|
||||
return;
|
||||
}
|
||||
|
||||
if (rreq->origin != NETFS_DIO_READ)
|
||||
netfs_rreq_unlock_folios(rreq);
|
||||
else
|
||||
netfs_rreq_assess_dio(rreq);
|
||||
|
||||
trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip);
|
||||
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
|
||||
wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
|
||||
|
||||
if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags) &&
|
||||
test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags))
|
||||
return netfs_rreq_write_to_cache(rreq);
|
||||
|
||||
netfs_rreq_completed(rreq, was_async);
|
||||
}
|
||||
|
||||
void netfs_rreq_work(struct work_struct *work)
|
||||
{
|
||||
struct netfs_io_request *rreq =
|
||||
container_of(work, struct netfs_io_request, work);
|
||||
netfs_rreq_assess(rreq, false);
|
||||
}
|
||||
|
||||
/*
|
||||
* Handle the completion of all outstanding I/O operations on a read request.
|
||||
* We inherit a ref from the caller.
|
||||
*/
|
||||
static void netfs_rreq_terminated(struct netfs_io_request *rreq,
|
||||
bool was_async)
|
||||
{
|
||||
if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
|
||||
was_async) {
|
||||
if (!queue_work(system_unbound_wq, &rreq->work))
|
||||
BUG();
|
||||
} else {
|
||||
netfs_rreq_assess(rreq, was_async);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* netfs_subreq_terminated - Note the termination of an I/O operation.
|
||||
* @subreq: The I/O request that has terminated.
|
||||
* @transferred_or_error: The amount of data transferred or an error code.
|
||||
* @was_async: The termination was asynchronous
|
||||
*
|
||||
* This tells the read helper that a contributory I/O operation has terminated,
|
||||
* one way or another, and that it should integrate the results.
|
||||
*
|
||||
* The caller indicates in @transferred_or_error the outcome of the operation,
|
||||
* supplying a positive value to indicate the number of bytes transferred, 0 to
|
||||
* indicate a failure to transfer anything that should be retried or a negative
|
||||
* error code. The helper will look after reissuing I/O operations as
|
||||
* appropriate and writing downloaded data to the cache.
|
||||
*
|
||||
* If @was_async is true, the caller might be running in softirq or interrupt
|
||||
* context and we can't sleep.
|
||||
*/
|
||||
void netfs_subreq_terminated(struct netfs_io_subrequest *subreq,
|
||||
ssize_t transferred_or_error,
|
||||
bool was_async)
|
||||
{
|
||||
struct netfs_io_request *rreq = subreq->rreq;
|
||||
int u;
|
||||
|
||||
_enter("R=%x[%x]{%llx,%lx},%zd",
|
||||
rreq->debug_id, subreq->debug_index,
|
||||
subreq->start, subreq->flags, transferred_or_error);
|
||||
|
||||
switch (subreq->source) {
|
||||
case NETFS_READ_FROM_CACHE:
|
||||
netfs_stat(&netfs_n_rh_read_done);
|
||||
break;
|
||||
case NETFS_DOWNLOAD_FROM_SERVER:
|
||||
netfs_stat(&netfs_n_rh_download_done);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (IS_ERR_VALUE(transferred_or_error)) {
|
||||
subreq->error = transferred_or_error;
|
||||
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
||||
netfs_fail_read);
|
||||
goto failed;
|
||||
}
|
||||
|
||||
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
|
||||
"Subreq overread: R%x[%x] %zd > %zu - %zu",
|
||||
rreq->debug_id, subreq->debug_index,
|
||||
transferred_or_error, subreq->len, subreq->transferred))
|
||||
transferred_or_error = subreq->len - subreq->transferred;
|
||||
|
||||
subreq->error = 0;
|
||||
subreq->transferred += transferred_or_error;
|
||||
if (subreq->transferred < subreq->len &&
|
||||
!test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags))
|
||||
goto incomplete;
|
||||
|
||||
complete:
|
||||
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
||||
if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
|
||||
set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
|
||||
|
||||
out:
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
||||
|
||||
/* If we decrement nr_outstanding to 0, the ref belongs to us. */
|
||||
u = atomic_dec_return(&rreq->nr_outstanding);
|
||||
if (u == 0)
|
||||
netfs_rreq_terminated(rreq, was_async);
|
||||
else if (u == 1)
|
||||
wake_up_var(&rreq->nr_outstanding);
|
||||
|
||||
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
||||
return;
|
||||
|
||||
incomplete:
|
||||
if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
|
||||
netfs_clear_unread(subreq);
|
||||
subreq->transferred = subreq->len;
|
||||
goto complete;
|
||||
}
|
||||
|
||||
if (transferred_or_error == 0) {
|
||||
if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
|
||||
if (rreq->origin != NETFS_DIO_READ)
|
||||
subreq->error = -ENODATA;
|
||||
goto failed;
|
||||
}
|
||||
} else {
|
||||
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
||||
}
|
||||
|
||||
__set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
|
||||
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
||||
goto out;
|
||||
|
||||
failed:
|
||||
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
||||
netfs_stat(&netfs_n_rh_read_failed);
|
||||
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
||||
} else {
|
||||
netfs_stat(&netfs_n_rh_download_failed);
|
||||
set_bit(NETFS_RREQ_FAILED, &rreq->flags);
|
||||
rreq->error = subreq->error;
|
||||
}
|
||||
goto out;
|
||||
}
|
||||
EXPORT_SYMBOL(netfs_subreq_terminated);
|
||||
|
||||
static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq,
|
||||
loff_t i_size)
|
||||
{
|
||||
struct netfs_io_request *rreq = subreq->rreq;
|
||||
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
||||
|
||||
if (cres->ops)
|
||||
return cres->ops->prepare_read(subreq, i_size);
|
||||
if (subreq->start >= rreq->i_size)
|
||||
return NETFS_FILL_WITH_ZEROES;
|
||||
return NETFS_DOWNLOAD_FROM_SERVER;
|
||||
}
|
||||
|
||||
/*
|
||||
* Work out what sort of subrequest the next one will be.
|
||||
*/
|
||||
static enum netfs_io_source
|
||||
netfs_rreq_prepare_read(struct netfs_io_request *rreq,
|
||||
struct netfs_io_subrequest *subreq,
|
||||
struct iov_iter *io_iter)
|
||||
{
|
||||
enum netfs_io_source source = NETFS_DOWNLOAD_FROM_SERVER;
|
||||
struct netfs_inode *ictx = netfs_inode(rreq->inode);
|
||||
size_t lsize;
|
||||
|
||||
_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
|
||||
|
||||
if (rreq->origin != NETFS_DIO_READ) {
|
||||
source = netfs_cache_prepare_read(subreq, rreq->i_size);
|
||||
if (source == NETFS_INVALID_READ)
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (source == NETFS_DOWNLOAD_FROM_SERVER) {
|
||||
/* Call out to the netfs to let it shrink the request to fit
|
||||
* its own I/O sizes and boundaries. If it shinks it here, it
|
||||
* will be called again to make simultaneous calls; if it wants
|
||||
* to make serial calls, it can indicate a short read and then
|
||||
* we will call it again.
|
||||
*/
|
||||
if (rreq->origin != NETFS_DIO_READ) {
|
||||
if (subreq->start >= ictx->zero_point) {
|
||||
source = NETFS_FILL_WITH_ZEROES;
|
||||
goto set;
|
||||
}
|
||||
if (subreq->len > ictx->zero_point - subreq->start)
|
||||
subreq->len = ictx->zero_point - subreq->start;
|
||||
|
||||
/* We limit buffered reads to the EOF, but let the
|
||||
* server deal with larger-than-EOF DIO/unbuffered
|
||||
* reads.
|
||||
*/
|
||||
if (subreq->len > rreq->i_size - subreq->start)
|
||||
subreq->len = rreq->i_size - subreq->start;
|
||||
}
|
||||
if (rreq->rsize && subreq->len > rreq->rsize)
|
||||
subreq->len = rreq->rsize;
|
||||
|
||||
if (rreq->netfs_ops->clamp_length &&
|
||||
!rreq->netfs_ops->clamp_length(subreq)) {
|
||||
source = NETFS_INVALID_READ;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (rreq->io_streams[0].sreq_max_segs) {
|
||||
lsize = netfs_limit_iter(io_iter, 0, subreq->len,
|
||||
rreq->io_streams[0].sreq_max_segs);
|
||||
if (subreq->len > lsize) {
|
||||
subreq->len = lsize;
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_limited);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
set:
|
||||
if (subreq->len > rreq->len)
|
||||
pr_warn("R=%08x[%u] SREQ>RREQ %zx > %llx\n",
|
||||
rreq->debug_id, subreq->debug_index,
|
||||
subreq->len, rreq->len);
|
||||
|
||||
if (WARN_ON(subreq->len == 0)) {
|
||||
source = NETFS_INVALID_READ;
|
||||
goto out;
|
||||
}
|
||||
|
||||
subreq->source = source;
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
||||
|
||||
subreq->io_iter = *io_iter;
|
||||
iov_iter_truncate(&subreq->io_iter, subreq->len);
|
||||
iov_iter_advance(io_iter, subreq->len);
|
||||
out:
|
||||
subreq->source = source;
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
||||
return source;
|
||||
}
|
||||
|
||||
/*
|
||||
* Slice off a piece of a read request and submit an I/O request for it.
|
||||
*/
|
||||
static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq,
|
||||
struct iov_iter *io_iter)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq;
|
||||
enum netfs_io_source source;
|
||||
|
||||
subreq = netfs_alloc_subrequest(rreq);
|
||||
if (!subreq)
|
||||
return false;
|
||||
|
||||
subreq->start = rreq->start + rreq->submitted;
|
||||
subreq->len = io_iter->count;
|
||||
|
||||
_debug("slice %llx,%zx,%llx", subreq->start, subreq->len, rreq->submitted);
|
||||
list_add_tail(&subreq->rreq_link, &rreq->subrequests);
|
||||
|
||||
/* Call out to the cache to find out what it can do with the remaining
|
||||
* subset. It tells us in subreq->flags what it decided should be done
|
||||
* and adjusts subreq->len down if the subset crosses a cache boundary.
|
||||
*
|
||||
* Then when we hand the subset, it can choose to take a subset of that
|
||||
* (the starts must coincide), in which case, we go around the loop
|
||||
* again and ask it to download the next piece.
|
||||
*/
|
||||
source = netfs_rreq_prepare_read(rreq, subreq, io_iter);
|
||||
if (source == NETFS_INVALID_READ)
|
||||
goto subreq_failed;
|
||||
|
||||
atomic_inc(&rreq->nr_outstanding);
|
||||
|
||||
rreq->submitted += subreq->len;
|
||||
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
|
||||
switch (source) {
|
||||
case NETFS_FILL_WITH_ZEROES:
|
||||
netfs_fill_with_zeroes(rreq, subreq);
|
||||
break;
|
||||
case NETFS_DOWNLOAD_FROM_SERVER:
|
||||
netfs_read_from_server(rreq, subreq);
|
||||
break;
|
||||
case NETFS_READ_FROM_CACHE:
|
||||
netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE);
|
||||
break;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
|
||||
return true;
|
||||
|
||||
subreq_failed:
|
||||
rreq->error = subreq->error;
|
||||
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed);
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* Begin the process of reading in a chunk of data, where that data may be
|
||||
* stitched together from multiple sources, including multiple servers and the
|
||||
* local cache.
|
||||
*/
|
||||
int netfs_begin_read(struct netfs_io_request *rreq, bool sync)
|
||||
{
|
||||
struct iov_iter io_iter;
|
||||
int ret;
|
||||
|
||||
_enter("R=%x %llx-%llx",
|
||||
rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
|
||||
|
||||
if (rreq->len == 0) {
|
||||
pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
if (rreq->origin == NETFS_DIO_READ)
|
||||
inode_dio_begin(rreq->inode);
|
||||
|
||||
// TODO: Use bounce buffer if requested
|
||||
rreq->io_iter = rreq->iter;
|
||||
|
||||
/* Chop the read into slices according to what the cache and the netfs
|
||||
* want and submit each one.
|
||||
*/
|
||||
netfs_get_request(rreq, netfs_rreq_trace_get_for_outstanding);
|
||||
atomic_set(&rreq->nr_outstanding, 1);
|
||||
io_iter = rreq->io_iter;
|
||||
do {
|
||||
_debug("submit %llx + %llx >= %llx",
|
||||
rreq->start, rreq->submitted, rreq->i_size);
|
||||
if (!netfs_rreq_submit_slice(rreq, &io_iter))
|
||||
break;
|
||||
if (test_bit(NETFS_SREQ_NO_PROGRESS, &rreq->flags))
|
||||
break;
|
||||
if (test_bit(NETFS_RREQ_BLOCKED, &rreq->flags) &&
|
||||
test_bit(NETFS_RREQ_NONBLOCK, &rreq->flags))
|
||||
break;
|
||||
|
||||
} while (rreq->submitted < rreq->len);
|
||||
|
||||
if (!rreq->submitted) {
|
||||
netfs_put_request(rreq, false, netfs_rreq_trace_put_no_submit);
|
||||
if (rreq->origin == NETFS_DIO_READ)
|
||||
inode_dio_end(rreq->inode);
|
||||
ret = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (sync) {
|
||||
/* Keep nr_outstanding incremented so that the ref always
|
||||
* belongs to us, and the service code isn't punted off to a
|
||||
* random thread pool to process. Note that this might start
|
||||
* further work, such as writing to the cache.
|
||||
*/
|
||||
wait_var_event(&rreq->nr_outstanding,
|
||||
atomic_read(&rreq->nr_outstanding) == 1);
|
||||
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
||||
netfs_rreq_assess(rreq, false);
|
||||
|
||||
trace_netfs_rreq(rreq, netfs_rreq_trace_wait_ip);
|
||||
wait_on_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS,
|
||||
TASK_UNINTERRUPTIBLE);
|
||||
|
||||
ret = rreq->error;
|
||||
if (ret == 0) {
|
||||
if (rreq->origin == NETFS_DIO_READ) {
|
||||
ret = rreq->transferred;
|
||||
} else if (rreq->submitted < rreq->len) {
|
||||
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
|
||||
ret = -EIO;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* If we decrement nr_outstanding to 0, the ref belongs to us. */
|
||||
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
||||
netfs_rreq_assess(rreq, false);
|
||||
ret = -EIOCBQUEUED;
|
||||
}
|
||||
|
||||
out:
|
||||
return ret;
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user