pwm: Support for duty_offset

Support a new abstraction for pwm configuration that allows to specify
 the time between start of period and the raising edge of the signal
 ("duty offset").
 
 This is used in a patch series by Trevor Gamblin for triggering an ADC
 conversion and afterwards read out the result. See
 https://lore.kernel.org/linux-iio/20240909-ad7625_r1-v5-0-60a397768b25@baylibre.com/
 for more details.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEP4GsaTp6HlmJrf7Tj4D7WH0S/k4FAmcDeZsACgkQj4D7WH0S
 /k7gqwf+LcXVzZ9APuhh7hYVMBKvM0f0VhihGBlTS/1hXdA/807Ooe0+VIlxAdBi
 im6nIQzS6JWwkowYro0MRB5JWQgRUwDMdwhIKP8lFU+jRZs+TOjeCGs6bolgw+26
 rLd7hpWTo3m9PD0Hp+y8xQq999ALaBIcAtrJM/Mop7YKa2FJvTwLtirH9rOImDVc
 Vkdx36N870gzOAUSNSghWlSFATJp2fWc7T51XhBLBzVShZQ6cCy9oRJ8mZdPjcf0
 hq8HwhVkKHMZidYo9KZpa10qz5S4diLUt6yr01LcmSNGgoqsWHWPFhcmAn2j64ok
 pmC8NxY0HSgwgkxQxjDmBZe3eW2Wiw==
 =C4Cy
 -----END PGP SIGNATURE-----

Merge tag 'pwm/duty_offset-for-6.13-rc1' of https://git.kernel.org/pub/scm/linux/kernel/git/ukleinek/linux

pwm: Support for duty_offset

Support a new abstraction for pwm configuration that allows to specify
the time between start of period and the raising edge of the signal
("duty offset").

This is used in a patch series by Trevor Gamblin for triggering an ADC
conversion and afterwards read out the result. See
https://lore.kernel.org/linux-iio/20240909-ad7625_r1-v5-0-60a397768b25@baylibre.com/
for more details.
This commit is contained in:
Uwe Kleine-König 2024-10-25 11:41:46 +02:00
commit acf2b31489
5 changed files with 1389 additions and 428 deletions

View File

@ -31,6 +31,397 @@ static DEFINE_MUTEX(pwm_lock);
static DEFINE_IDR(pwm_chips);
static void pwmchip_lock(struct pwm_chip *chip)
{
if (chip->atomic)
spin_lock(&chip->atomic_lock);
else
mutex_lock(&chip->nonatomic_lock);
}
static void pwmchip_unlock(struct pwm_chip *chip)
{
if (chip->atomic)
spin_unlock(&chip->atomic_lock);
else
mutex_unlock(&chip->nonatomic_lock);
}
DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
static bool pwm_wf_valid(const struct pwm_waveform *wf)
{
/*
* For now restrict waveforms to period_length_ns <= S64_MAX to provide
* some space for future extensions. One possibility is to simplify
* representing waveforms with inverted polarity using negative values
* somehow.
*/
if (wf->period_length_ns > S64_MAX)
return false;
if (wf->duty_length_ns > wf->period_length_ns)
return false;
/*
* .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
* from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
*/
if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
return false;
return true;
}
static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
{
if (wf->period_length_ns) {
if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
*state = (struct pwm_state){
.enabled = true,
.polarity = PWM_POLARITY_NORMAL,
.period = wf->period_length_ns,
.duty_cycle = wf->duty_length_ns,
};
else
*state = (struct pwm_state){
.enabled = true,
.polarity = PWM_POLARITY_INVERSED,
.period = wf->period_length_ns,
.duty_cycle = wf->period_length_ns - wf->duty_length_ns,
};
} else {
*state = (struct pwm_state){
.enabled = false,
};
}
}
static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
{
if (state->enabled) {
if (state->polarity == PWM_POLARITY_NORMAL)
*wf = (struct pwm_waveform){
.period_length_ns = state->period,
.duty_length_ns = state->duty_cycle,
.duty_offset_ns = 0,
};
else
*wf = (struct pwm_waveform){
.period_length_ns = state->period,
.duty_length_ns = state->period - state->duty_cycle,
.duty_offset_ns = state->duty_cycle,
};
} else {
*wf = (struct pwm_waveform){
.period_length_ns = 0,
};
}
}
static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
{
if (a->period_length_ns > b->period_length_ns)
return 1;
if (a->period_length_ns < b->period_length_ns)
return -1;
if (a->duty_length_ns > b->duty_length_ns)
return 1;
if (a->duty_length_ns < b->duty_length_ns)
return -1;
if (a->duty_offset_ns > b->duty_offset_ns)
return 1;
if (a->duty_offset_ns < b->duty_offset_ns)
return -1;
return 0;
}
static bool pwm_check_rounding(const struct pwm_waveform *wf,
const struct pwm_waveform *wf_rounded)
{
if (!wf->period_length_ns)
return true;
if (wf->period_length_ns < wf_rounded->period_length_ns)
return false;
if (wf->duty_length_ns < wf_rounded->duty_length_ns)
return false;
if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
return false;
return true;
}
static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_waveform *wf, void *wfhw)
{
const struct pwm_ops *ops = chip->ops;
int ret;
ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
return ret;
}
static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
const void *wfhw, struct pwm_waveform *wf)
{
const struct pwm_ops *ops = chip->ops;
int ret;
ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
return ret;
}
static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
{
const struct pwm_ops *ops = chip->ops;
int ret;
ret = ops->read_waveform(chip, pwm, wfhw);
trace_pwm_read_waveform(pwm, wfhw, ret);
return ret;
}
static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
{
const struct pwm_ops *ops = chip->ops;
int ret;
ret = ops->write_waveform(chip, pwm, wfhw);
trace_pwm_write_waveform(pwm, wfhw, ret);
return ret;
}
#define WFHWSIZE 20
/**
* pwm_round_waveform_might_sleep - Query hardware capabilities
* Cannot be used in atomic context.
* @pwm: PWM device
* @wf: waveform to round and output parameter
*
* Typically a given waveform cannot be implemented exactly by hardware, e.g.
* because hardware only supports coarse period resolution or no duty_offset.
* This function returns the actually implemented waveform if you pass wf to
* pwm_set_waveform_might_sleep now.
*
* Note however that the world doesn't stop turning when you call it, so when
* doing
*
* pwm_round_waveform_might_sleep(mypwm, &wf);
* pwm_set_waveform_might_sleep(mypwm, &wf, true);
*
* the latter might fail, e.g. because an input clock changed its rate between
* these two calls and the waveform determined by
* pwm_round_waveform_might_sleep() cannot be implemented any more.
*
* Returns 0 on success, 1 if there is no valid hardware configuration matching
* the input waveform under the PWM rounding rules or a negative errno.
*/
int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
{
struct pwm_chip *chip = pwm->chip;
const struct pwm_ops *ops = chip->ops;
struct pwm_waveform wf_req = *wf;
char wfhw[WFHWSIZE];
int ret_tohw, ret_fromhw;
BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
if (!pwm_wf_valid(wf))
return -EINVAL;
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
if (ret_tohw < 0)
return ret_tohw;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
if (ret_fromhw < 0)
return ret_fromhw;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
ret_tohw == 0 && !pwm_check_rounding(&wf_req, wf))
dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
return ret_tohw;
}
EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
/**
* pwm_get_waveform_might_sleep - Query hardware about current configuration
* Cannot be used in atomic context.
* @pwm: PWM device
* @wf: output parameter
*
* Stores the current configuration of the PWM in @wf. Note this is the
* equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
*/
int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
{
struct pwm_chip *chip = pwm->chip;
const struct pwm_ops *ops = chip->ops;
char wfhw[WFHWSIZE];
int err;
BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
err = __pwm_read_waveform(chip, pwm, &wfhw);
if (err)
return err;
return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
}
EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
/* Called with the pwmchip lock held */
static int __pwm_set_waveform(struct pwm_device *pwm,
const struct pwm_waveform *wf,
bool exact)
{
struct pwm_chip *chip = pwm->chip;
const struct pwm_ops *ops = chip->ops;
char wfhw[WFHWSIZE];
struct pwm_waveform wf_rounded;
int err;
BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
if (!pwm_wf_valid(wf))
return -EINVAL;
err = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
if (err)
return err;
if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
if (err)
return err;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && !pwm_check_rounding(wf, &wf_rounded))
dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
if (exact && pwmwfcmp(wf, &wf_rounded)) {
dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
return 1;
}
}
err = __pwm_write_waveform(chip, pwm, &wfhw);
if (err)
return err;
/* update .state */
pwm_wf2state(wf, &pwm->state);
if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
struct pwm_waveform wf_set;
err = __pwm_read_waveform(chip, pwm, &wfhw);
if (err)
/* maybe ignore? */
return err;
err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
if (err)
/* maybe ignore? */
return err;
if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
dev_err(&chip->dev,
"Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
}
return 0;
}
/**
* pwm_set_waveform_might_sleep - Apply a new waveform
* Cannot be used in atomic context.
* @pwm: PWM device
* @wf: The waveform to apply
* @exact: If true no rounding is allowed
*
* Typically a requested waveform cannot be implemented exactly, e.g. because
* you requested .period_length_ns = 100 ns, but the hardware can only set
* periods that are a multiple of 8.5 ns. With that hardware passing exact =
* true results in pwm_set_waveform_might_sleep() failing and returning 1. If
* exact = false you get a period of 93.5 ns (i.e. the biggest period not bigger
* than the requested value).
* Note that even with exact = true, some rounding by less than 1 is
* possible/needed. In the above example requesting .period_length_ns = 94 and
* exact = true, you get the hardware configured with period = 93.5 ns.
*/
int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
const struct pwm_waveform *wf, bool exact)
{
struct pwm_chip *chip = pwm->chip;
int err;
might_sleep();
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
/*
* Catch any drivers that have been marked as atomic but
* that will sleep anyway.
*/
non_block_start();
err = __pwm_set_waveform(pwm, wf, exact);
non_block_end();
} else {
err = __pwm_set_waveform(pwm, wf, exact);
}
return err;
}
EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
static void pwm_apply_debug(struct pwm_device *pwm,
const struct pwm_state *state)
{
@ -164,6 +555,7 @@ static bool pwm_state_valid(const struct pwm_state *state)
static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
{
struct pwm_chip *chip;
const struct pwm_ops *ops;
int err;
if (!pwm || !state)
@ -187,6 +579,7 @@ static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
}
chip = pwm->chip;
ops = chip->ops;
if (state->period == pwm->state.period &&
state->duty_cycle == pwm->state.duty_cycle &&
@ -195,18 +588,69 @@ static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
state->usage_power == pwm->state.usage_power)
return 0;
err = chip->ops->apply(chip, pwm, state);
trace_pwm_apply(pwm, state, err);
if (err)
return err;
if (ops->write_waveform) {
struct pwm_waveform wf;
char wfhw[WFHWSIZE];
pwm->state = *state;
BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
/*
* only do this after pwm->state was applied as some
* implementations of .get_state depend on this
*/
pwm_apply_debug(pwm, state);
pwm_state2wf(state, &wf);
/*
* The rounding is wrong here for states with inverted polarity.
* While .apply() rounds down duty_cycle (which represents the
* time from the start of the period to the inner edge),
* .round_waveform_tohw() rounds down the time the PWM is high.
* Can be fixed if the need arises, until reported otherwise
* let's assume that consumers don't care.
*/
err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
if (err) {
if (err > 0)
/*
* This signals an invalid request, typically
* the requested period (or duty_offset) is
* smaller than possible with the hardware.
*/
return -EINVAL;
return err;
}
if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
struct pwm_waveform wf_rounded;
err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
if (err)
return err;
if (!pwm_check_rounding(&wf, &wf_rounded))
dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
}
err = __pwm_write_waveform(chip, pwm, &wfhw);
if (err)
return err;
pwm->state = *state;
} else {
err = ops->apply(chip, pwm, state);
trace_pwm_apply(pwm, state, err);
if (err)
return err;
pwm->state = *state;
/*
* only do this after pwm->state was applied as some
* implementations of .get_state() depend on this
*/
pwm_apply_debug(pwm, state);
}
return 0;
}
@ -220,6 +664,7 @@ static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
{
int err;
struct pwm_chip *chip = pwm->chip;
/*
* Some lowlevel driver's implementations of .apply() make use of
@ -230,7 +675,12 @@ int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
*/
might_sleep();
if (IS_ENABLED(CONFIG_PWM_DEBUG) && pwm->chip->atomic) {
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
/*
* Catch any drivers that have been marked as atomic but
* that will sleep anyway.
@ -254,13 +704,55 @@ EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
*/
int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
{
WARN_ONCE(!pwm->chip->atomic,
struct pwm_chip *chip = pwm->chip;
WARN_ONCE(!chip->atomic,
"sleeping PWM driver used in atomic context\n");
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
return __pwm_apply(pwm, state);
}
EXPORT_SYMBOL_GPL(pwm_apply_atomic);
static int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
{
struct pwm_chip *chip = pwm->chip;
const struct pwm_ops *ops = chip->ops;
int ret = -EOPNOTSUPP;
if (ops->read_waveform) {
char wfhw[WFHWSIZE];
struct pwm_waveform wf;
BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
scoped_guard(pwmchip, chip) {
ret = __pwm_read_waveform(chip, pwm, &wfhw);
if (ret)
return ret;
ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
if (ret)
return ret;
}
pwm_wf2state(&wf, state);
} else if (ops->get_state) {
scoped_guard(pwmchip, chip)
ret = ops->get_state(chip, pwm, state);
trace_pwm_get(pwm, state, ret);
}
return ret;
}
/**
* pwm_adjust_config() - adjust the current PWM config to the PWM arguments
* @pwm: PWM device
@ -334,8 +826,18 @@ static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
if (!ops->capture)
return -ENOSYS;
/*
* Holding the pwm_lock is probably not needed. If you use pwm_capture()
* and you're interested to speed it up, please convince yourself it's
* really not needed, test and then suggest a patch on the mailing list.
*/
guard(mutex)(&pwm_lock);
guard(pwmchip)(chip);
if (!chip->operational)
return -ENODEV;
return ops->capture(chip, pwm, result, timeout);
}
@ -368,6 +870,14 @@ static int pwm_device_request(struct pwm_device *pwm, const char *label)
if (test_bit(PWMF_REQUESTED, &pwm->flags))
return -EBUSY;
/*
* This function is called while holding pwm_lock. As .operational only
* changes while holding this lock, checking it here without holding the
* chip lock is fine.
*/
if (!chip->operational)
return -ENODEV;
if (!try_module_get(chip->owner))
return -ENODEV;
@ -386,7 +896,7 @@ static int pwm_device_request(struct pwm_device *pwm, const char *label)
}
}
if (ops->get_state) {
if (ops->read_waveform || ops->get_state) {
/*
* Zero-initialize state because most drivers are unaware of
* .usage_power. The other members of state are supposed to be
@ -396,9 +906,7 @@ static int pwm_device_request(struct pwm_device *pwm, const char *label)
*/
struct pwm_state state = { 0, };
err = ops->get_state(chip, pwm, &state);
trace_pwm_get(pwm, &state, err);
err = pwm_get_state_hw(pwm, &state);
if (!err)
pwm->state = state;
@ -1020,6 +1528,7 @@ struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t
chip->npwm = npwm;
chip->uses_pwmchip_alloc = true;
chip->operational = false;
pwmchip_dev = &chip->dev;
device_initialize(pwmchip_dev);
@ -1084,115 +1593,28 @@ static bool pwm_ops_check(const struct pwm_chip *chip)
{
const struct pwm_ops *ops = chip->ops;
if (!ops->apply)
return false;
if (ops->write_waveform) {
if (!ops->round_waveform_tohw ||
!ops->round_waveform_fromhw ||
!ops->write_waveform)
return false;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
dev_warn(pwmchip_parent(chip),
"Please implement the .get_state() callback\n");
if (WFHWSIZE < ops->sizeof_wfhw) {
dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw);
return false;
}
} else {
if (!ops->apply)
return false;
if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
dev_warn(pwmchip_parent(chip),
"Please implement the .get_state() callback\n");
}
return true;
}
/**
* __pwmchip_add() - register a new PWM chip
* @chip: the PWM chip to add
* @owner: reference to the module providing the chip.
*
* Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
* pwmchip_add wrapper to do this right.
*
* Returns: 0 on success or a negative error code on failure.
*/
int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
{
int ret;
if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
return -EINVAL;
/*
* a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
* otherwise the embedded struct device might disappear too early
* resulting in memory corruption.
* Catch drivers that were not converted appropriately.
*/
if (!chip->uses_pwmchip_alloc)
return -EINVAL;
if (!pwm_ops_check(chip))
return -EINVAL;
chip->owner = owner;
guard(mutex)(&pwm_lock);
ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
if (ret < 0)
return ret;
chip->id = ret;
dev_set_name(&chip->dev, "pwmchip%u", chip->id);
if (IS_ENABLED(CONFIG_OF))
of_pwmchip_add(chip);
ret = device_add(&chip->dev);
if (ret)
goto err_device_add;
return 0;
err_device_add:
if (IS_ENABLED(CONFIG_OF))
of_pwmchip_remove(chip);
idr_remove(&pwm_chips, chip->id);
return ret;
}
EXPORT_SYMBOL_GPL(__pwmchip_add);
/**
* pwmchip_remove() - remove a PWM chip
* @chip: the PWM chip to remove
*
* Removes a PWM chip.
*/
void pwmchip_remove(struct pwm_chip *chip)
{
pwmchip_sysfs_unexport(chip);
if (IS_ENABLED(CONFIG_OF))
of_pwmchip_remove(chip);
scoped_guard(mutex, &pwm_lock)
idr_remove(&pwm_chips, chip->id);
device_del(&chip->dev);
}
EXPORT_SYMBOL_GPL(pwmchip_remove);
static void devm_pwmchip_remove(void *data)
{
struct pwm_chip *chip = data;
pwmchip_remove(chip);
}
int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
{
int ret;
ret = __pwmchip_add(chip, owner);
if (ret)
return ret;
return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
}
EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
static struct device_link *pwm_device_link_add(struct device *dev,
struct pwm_device *pwm)
{
@ -1370,36 +1792,6 @@ static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
static DEFINE_MUTEX(pwm_lookup_lock);
static LIST_HEAD(pwm_lookup_list);
/**
* pwm_add_table() - register PWM device consumers
* @table: array of consumers to register
* @num: number of consumers in table
*/
void pwm_add_table(struct pwm_lookup *table, size_t num)
{
guard(mutex)(&pwm_lookup_lock);
while (num--) {
list_add_tail(&table->list, &pwm_lookup_list);
table++;
}
}
/**
* pwm_remove_table() - unregister PWM device consumers
* @table: array of consumers to unregister
* @num: number of consumers in table
*/
void pwm_remove_table(struct pwm_lookup *table, size_t num)
{
guard(mutex)(&pwm_lookup_lock);
while (num--) {
list_del(&table->list);
table++;
}
}
/**
* pwm_get() - look up and request a PWM device
* @dev: device for PWM consumer
@ -1538,12 +1930,17 @@ void pwm_put(struct pwm_device *pwm)
guard(mutex)(&pwm_lock);
if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
/*
* Trigger a warning if a consumer called pwm_put() twice.
* If the chip isn't operational, PWMF_REQUESTED was already cleared in
* pwmchip_remove(). So don't warn in this case.
*/
if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
pr_warn("PWM device already freed\n");
return;
}
if (chip->ops->free)
if (chip->operational && chip->ops->free)
pwm->chip->ops->free(pwm->chip, pwm);
pwm->label = NULL;
@ -1621,6 +2018,162 @@ struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
}
EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
/**
* __pwmchip_add() - register a new PWM chip
* @chip: the PWM chip to add
* @owner: reference to the module providing the chip.
*
* Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
* pwmchip_add wrapper to do this right.
*
* Returns: 0 on success or a negative error code on failure.
*/
int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
{
int ret;
if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
return -EINVAL;
/*
* a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
* otherwise the embedded struct device might disappear too early
* resulting in memory corruption.
* Catch drivers that were not converted appropriately.
*/
if (!chip->uses_pwmchip_alloc)
return -EINVAL;
if (!pwm_ops_check(chip))
return -EINVAL;
chip->owner = owner;
if (chip->atomic)
spin_lock_init(&chip->atomic_lock);
else
mutex_init(&chip->nonatomic_lock);
guard(mutex)(&pwm_lock);
ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
if (ret < 0)
return ret;
chip->id = ret;
dev_set_name(&chip->dev, "pwmchip%u", chip->id);
if (IS_ENABLED(CONFIG_OF))
of_pwmchip_add(chip);
scoped_guard(pwmchip, chip)
chip->operational = true;
ret = device_add(&chip->dev);
if (ret)
goto err_device_add;
return 0;
err_device_add:
scoped_guard(pwmchip, chip)
chip->operational = false;
if (IS_ENABLED(CONFIG_OF))
of_pwmchip_remove(chip);
idr_remove(&pwm_chips, chip->id);
return ret;
}
EXPORT_SYMBOL_GPL(__pwmchip_add);
/**
* pwmchip_remove() - remove a PWM chip
* @chip: the PWM chip to remove
*
* Removes a PWM chip.
*/
void pwmchip_remove(struct pwm_chip *chip)
{
pwmchip_sysfs_unexport(chip);
scoped_guard(mutex, &pwm_lock) {
unsigned int i;
scoped_guard(pwmchip, chip)
chip->operational = false;
for (i = 0; i < chip->npwm; ++i) {
struct pwm_device *pwm = &chip->pwms[i];
if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
if (pwm->chip->ops->free)
pwm->chip->ops->free(pwm->chip, pwm);
}
}
if (IS_ENABLED(CONFIG_OF))
of_pwmchip_remove(chip);
idr_remove(&pwm_chips, chip->id);
}
device_del(&chip->dev);
}
EXPORT_SYMBOL_GPL(pwmchip_remove);
static void devm_pwmchip_remove(void *data)
{
struct pwm_chip *chip = data;
pwmchip_remove(chip);
}
int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
{
int ret;
ret = __pwmchip_add(chip, owner);
if (ret)
return ret;
return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
}
EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
/**
* pwm_add_table() - register PWM device consumers
* @table: array of consumers to register
* @num: number of consumers in table
*/
void pwm_add_table(struct pwm_lookup *table, size_t num)
{
guard(mutex)(&pwm_lookup_lock);
while (num--) {
list_add_tail(&table->list, &pwm_lookup_list);
table++;
}
}
/**
* pwm_remove_table() - unregister PWM device consumers
* @table: array of consumers to unregister
* @num: number of consumers in table
*/
void pwm_remove_table(struct pwm_lookup *table, size_t num)
{
guard(mutex)(&pwm_lookup_lock);
while (num--) {
list_del(&table->list);
table++;
}
}
static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
{
unsigned int i;

View File

@ -23,6 +23,7 @@
#include <linux/err.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/io.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
@ -53,86 +54,147 @@ static const struct regmap_config axi_pwmgen_regmap_config = {
.max_register = 0xFC,
};
/* This represents a hardware configuration for one channel */
struct axi_pwmgen_waveform {
u32 period_cnt;
u32 duty_cycle_cnt;
u32 duty_offset_cnt;
};
static struct axi_pwmgen_ddata *axi_pwmgen_ddata_from_chip(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
static int axi_pwmgen_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
static int axi_pwmgen_round_waveform_tohw(struct pwm_chip *chip,
struct pwm_device *pwm,
const struct pwm_waveform *wf,
void *_wfhw)
{
struct axi_pwmgen_waveform *wfhw = _wfhw;
struct axi_pwmgen_ddata *ddata = axi_pwmgen_ddata_from_chip(chip);
if (wf->period_length_ns == 0) {
*wfhw = (struct axi_pwmgen_waveform){
.period_cnt = 0,
.duty_cycle_cnt = 0,
.duty_offset_cnt = 0,
};
} else {
/* With ddata->clk_rate_hz < NSEC_PER_SEC this won't overflow. */
wfhw->period_cnt = min_t(u64,
mul_u64_u32_div(wf->period_length_ns, ddata->clk_rate_hz, NSEC_PER_SEC),
U32_MAX);
if (wfhw->period_cnt == 0) {
/*
* The specified period is too short for the hardware.
* Let's round .duty_cycle down to 0 to get a (somewhat)
* valid result.
*/
wfhw->period_cnt = 1;
wfhw->duty_cycle_cnt = 0;
wfhw->duty_offset_cnt = 0;
} else {
wfhw->duty_cycle_cnt = min_t(u64,
mul_u64_u32_div(wf->duty_length_ns, ddata->clk_rate_hz, NSEC_PER_SEC),
U32_MAX);
wfhw->duty_offset_cnt = min_t(u64,
mul_u64_u32_div(wf->duty_offset_ns, ddata->clk_rate_hz, NSEC_PER_SEC),
U32_MAX);
}
}
dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> PERIOD: %08x, DUTY: %08x, OFFSET: %08x\n",
pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
ddata->clk_rate_hz, wfhw->period_cnt, wfhw->duty_cycle_cnt, wfhw->duty_offset_cnt);
return 0;
}
static int axi_pwmgen_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
const void *_wfhw, struct pwm_waveform *wf)
{
const struct axi_pwmgen_waveform *wfhw = _wfhw;
struct axi_pwmgen_ddata *ddata = axi_pwmgen_ddata_from_chip(chip);
wf->period_length_ns = DIV64_U64_ROUND_UP((u64)wfhw->period_cnt * NSEC_PER_SEC,
ddata->clk_rate_hz);
wf->duty_length_ns = DIV64_U64_ROUND_UP((u64)wfhw->duty_cycle_cnt * NSEC_PER_SEC,
ddata->clk_rate_hz);
wf->duty_offset_ns = DIV64_U64_ROUND_UP((u64)wfhw->duty_offset_cnt * NSEC_PER_SEC,
ddata->clk_rate_hz);
return 0;
}
static int axi_pwmgen_write_waveform(struct pwm_chip *chip,
struct pwm_device *pwm,
const void *_wfhw)
{
const struct axi_pwmgen_waveform *wfhw = _wfhw;
struct axi_pwmgen_ddata *ddata = axi_pwmgen_ddata_from_chip(chip);
unsigned int ch = pwm->hwpwm;
struct regmap *regmap = ddata->regmap;
u64 period_cnt, duty_cnt;
unsigned int ch = pwm->hwpwm;
int ret;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
ret = regmap_write(regmap, AXI_PWMGEN_CHX_PERIOD(ch), wfhw->period_cnt);
if (ret)
return ret;
if (state->enabled) {
period_cnt = mul_u64_u64_div_u64(state->period, ddata->clk_rate_hz, NSEC_PER_SEC);
if (period_cnt > UINT_MAX)
period_cnt = UINT_MAX;
ret = regmap_write(regmap, AXI_PWMGEN_CHX_DUTY(ch), wfhw->duty_cycle_cnt);
if (ret)
return ret;
if (period_cnt == 0)
return -EINVAL;
ret = regmap_write(regmap, AXI_PWMGEN_CHX_PERIOD(ch), period_cnt);
if (ret)
return ret;
duty_cnt = mul_u64_u64_div_u64(state->duty_cycle, ddata->clk_rate_hz, NSEC_PER_SEC);
if (duty_cnt > UINT_MAX)
duty_cnt = UINT_MAX;
ret = regmap_write(regmap, AXI_PWMGEN_CHX_DUTY(ch), duty_cnt);
if (ret)
return ret;
} else {
ret = regmap_write(regmap, AXI_PWMGEN_CHX_PERIOD(ch), 0);
if (ret)
return ret;
ret = regmap_write(regmap, AXI_PWMGEN_CHX_DUTY(ch), 0);
if (ret)
return ret;
}
ret = regmap_write(regmap, AXI_PWMGEN_CHX_OFFSET(ch), wfhw->duty_offset_cnt);
if (ret)
return ret;
return regmap_write(regmap, AXI_PWMGEN_REG_CONFIG, AXI_PWMGEN_LOAD_CONFIG);
}
static int axi_pwmgen_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
static int axi_pwmgen_read_waveform(struct pwm_chip *chip,
struct pwm_device *pwm,
void *_wfhw)
{
struct axi_pwmgen_waveform *wfhw = _wfhw;
struct axi_pwmgen_ddata *ddata = axi_pwmgen_ddata_from_chip(chip);
struct regmap *regmap = ddata->regmap;
unsigned int ch = pwm->hwpwm;
u32 cnt;
int ret;
ret = regmap_read(regmap, AXI_PWMGEN_CHX_PERIOD(ch), &cnt);
ret = regmap_read(regmap, AXI_PWMGEN_CHX_PERIOD(ch), &wfhw->period_cnt);
if (ret)
return ret;
state->enabled = cnt != 0;
state->period = DIV_ROUND_UP_ULL((u64)cnt * NSEC_PER_SEC, ddata->clk_rate_hz);
ret = regmap_read(regmap, AXI_PWMGEN_CHX_DUTY(ch), &cnt);
ret = regmap_read(regmap, AXI_PWMGEN_CHX_DUTY(ch), &wfhw->duty_cycle_cnt);
if (ret)
return ret;
state->duty_cycle = DIV_ROUND_UP_ULL((u64)cnt * NSEC_PER_SEC, ddata->clk_rate_hz);
ret = regmap_read(regmap, AXI_PWMGEN_CHX_OFFSET(ch), &wfhw->duty_offset_cnt);
if (ret)
return ret;
state->polarity = PWM_POLARITY_NORMAL;
if (wfhw->duty_cycle_cnt > wfhw->period_cnt)
wfhw->duty_cycle_cnt = wfhw->period_cnt;
/* XXX: is this the actual behaviour of the hardware? */
if (wfhw->duty_offset_cnt >= wfhw->period_cnt) {
wfhw->duty_cycle_cnt = 0;
wfhw->duty_offset_cnt = 0;
}
return 0;
}
static const struct pwm_ops axi_pwmgen_pwm_ops = {
.apply = axi_pwmgen_apply,
.get_state = axi_pwmgen_get_state,
.sizeof_wfhw = sizeof(struct axi_pwmgen_waveform),
.round_waveform_tohw = axi_pwmgen_round_waveform_tohw,
.round_waveform_fromhw = axi_pwmgen_round_waveform_fromhw,
.read_waveform = axi_pwmgen_read_waveform,
.write_waveform = axi_pwmgen_write_waveform,
};
static int axi_pwmgen_setup(struct regmap *regmap, struct device *dev)

View File

@ -51,6 +51,391 @@ static u32 active_channels(struct stm32_pwm *dev)
return ccer & TIM_CCER_CCXE;
}
struct stm32_pwm_waveform {
u32 ccer;
u32 psc;
u32 arr;
u32 ccr;
};
static int stm32_pwm_round_waveform_tohw(struct pwm_chip *chip,
struct pwm_device *pwm,
const struct pwm_waveform *wf,
void *_wfhw)
{
struct stm32_pwm_waveform *wfhw = _wfhw;
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned int ch = pwm->hwpwm;
unsigned long rate;
u64 ccr, duty;
int ret;
if (wf->period_length_ns == 0) {
*wfhw = (struct stm32_pwm_waveform){
.ccer = 0,
};
return 0;
}
ret = clk_enable(priv->clk);
if (ret)
return ret;
wfhw->ccer = TIM_CCER_CCxE(ch + 1);
if (priv->have_complementary_output)
wfhw->ccer = TIM_CCER_CCxNE(ch + 1);
rate = clk_get_rate(priv->clk);
if (active_channels(priv) & ~(1 << ch * 4)) {
u64 arr;
/*
* Other channels are already enabled, so the configured PSC and
* ARR must be used for this channel, too.
*/
ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc);
if (ret)
goto out;
ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr);
if (ret)
goto out;
/*
* calculate the best value for ARR for the given PSC, refuse if
* the resulting period gets bigger than the requested one.
*/
arr = mul_u64_u64_div_u64(wf->period_length_ns, rate,
(u64)NSEC_PER_SEC * (wfhw->psc + 1));
if (arr <= wfhw->arr) {
/*
* requested period is small than the currently
* configured and unchangable period, report back the smallest
* possible period, i.e. the current state; Initialize
* ccr to anything valid.
*/
wfhw->ccr = 0;
ret = 1;
goto out;
}
} else {
/*
* .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so
* the calculations here won't overflow.
* First we need to find the minimal value for prescaler such that
*
* period_ns * clkrate
* ------------------------------ < max_arr + 1
* NSEC_PER_SEC * (prescaler + 1)
*
* This equation is equivalent to
*
* period_ns * clkrate
* ---------------------------- < prescaler + 1
* NSEC_PER_SEC * (max_arr + 1)
*
* Using integer division and knowing that the right hand side is
* integer, this is further equivalent to
*
* (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler
*/
u64 psc = mul_u64_u64_div_u64(wf->period_length_ns, rate,
(u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1));
u64 arr;
wfhw->psc = min_t(u64, psc, MAX_TIM_PSC);
arr = mul_u64_u64_div_u64(wf->period_length_ns, rate,
(u64)NSEC_PER_SEC * (wfhw->psc + 1));
if (!arr) {
/*
* requested period is too small, report back the smallest
* possible period, i.e. ARR = 0. The only valid CCR
* value is then zero, too.
*/
wfhw->arr = 0;
wfhw->ccr = 0;
ret = 1;
goto out;
}
/*
* ARR is limited intentionally to values less than
* priv->max_arr to allow 100% duty cycle.
*/
wfhw->arr = min_t(u64, arr, priv->max_arr) - 1;
}
duty = mul_u64_u64_div_u64(wf->duty_length_ns, rate,
(u64)NSEC_PER_SEC * (wfhw->psc + 1));
duty = min_t(u64, duty, wfhw->arr + 1);
if (wf->duty_length_ns && wf->duty_offset_ns &&
wf->duty_length_ns + wf->duty_offset_ns >= wf->period_length_ns) {
wfhw->ccer |= TIM_CCER_CCxP(ch + 1);
if (priv->have_complementary_output)
wfhw->ccer |= TIM_CCER_CCxNP(ch + 1);
ccr = wfhw->arr + 1 - duty;
} else {
ccr = duty;
}
wfhw->ccr = min_t(u64, ccr, wfhw->arr + 1);
dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x\n",
pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
rate, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr);
out:
clk_disable(priv->clk);
return ret;
}
/*
* This should be moved to lib/math/div64.c. Currently there are some changes
* pending to mul_u64_u64_div_u64. Uwe will care for that when the dust settles.
*/
static u64 stm32_pwm_mul_u64_u64_div_u64_roundup(u64 a, u64 b, u64 c)
{
u64 res = mul_u64_u64_div_u64(a, b, c);
/* Those multiplications might overflow but it doesn't matter */
u64 rem = a * b - c * res;
if (rem)
res += 1;
return res;
}
static int stm32_pwm_round_waveform_fromhw(struct pwm_chip *chip,
struct pwm_device *pwm,
const void *_wfhw,
struct pwm_waveform *wf)
{
const struct stm32_pwm_waveform *wfhw = _wfhw;
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned int ch = pwm->hwpwm;
if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
unsigned long rate = clk_get_rate(priv->clk);
u64 ccr_ns;
/* The result doesn't overflow for rate >= 15259 */
wf->period_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1),
NSEC_PER_SEC, rate);
ccr_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * wfhw->ccr,
NSEC_PER_SEC, rate);
if (wfhw->ccer & TIM_CCER_CCxP(ch + 1)) {
wf->duty_length_ns =
stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1 - wfhw->ccr),
NSEC_PER_SEC, rate);
wf->duty_offset_ns = ccr_ns;
} else {
wf->duty_length_ns = ccr_ns;
wf->duty_offset_ns = 0;
}
dev_dbg(&chip->dev, "pwm#%u: CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x @%lu -> %lld/%lld [+%lld]\n",
pwm->hwpwm, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr, rate,
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
} else {
*wf = (struct pwm_waveform){
.period_length_ns = 0,
};
}
return 0;
}
static int stm32_pwm_read_waveform(struct pwm_chip *chip,
struct pwm_device *pwm,
void *_wfhw)
{
struct stm32_pwm_waveform *wfhw = _wfhw;
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned int ch = pwm->hwpwm;
int ret;
ret = clk_enable(priv->clk);
if (ret)
return ret;
ret = regmap_read(priv->regmap, TIM_CCER, &wfhw->ccer);
if (ret)
goto out;
if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc);
if (ret)
goto out;
ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr);
if (ret)
goto out;
if (wfhw->arr == U32_MAX)
wfhw->arr -= 1;
ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &wfhw->ccr);
if (ret)
goto out;
if (wfhw->ccr > wfhw->arr + 1)
wfhw->ccr = wfhw->arr + 1;
}
out:
clk_disable(priv->clk);
return ret;
}
static int stm32_pwm_write_waveform(struct pwm_chip *chip,
struct pwm_device *pwm,
const void *_wfhw)
{
const struct stm32_pwm_waveform *wfhw = _wfhw;
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned int ch = pwm->hwpwm;
int ret;
ret = clk_enable(priv->clk);
if (ret)
return ret;
if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
u32 ccer, mask;
unsigned int shift;
u32 ccmr;
ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
if (ret)
goto out;
/* If there are other channels enabled, don't update PSC and ARR */
if (ccer & ~TIM_CCER_CCxE(ch + 1) & TIM_CCER_CCXE) {
u32 psc, arr;
ret = regmap_read(priv->regmap, TIM_PSC, &psc);
if (ret)
goto out;
if (psc != wfhw->psc) {
ret = -EBUSY;
goto out;
}
ret = regmap_read(priv->regmap, TIM_ARR, &arr);
if (ret)
goto out;
if (arr != wfhw->arr) {
ret = -EBUSY;
goto out;
}
} else {
ret = regmap_write(priv->regmap, TIM_PSC, wfhw->psc);
if (ret)
goto out;
ret = regmap_write(priv->regmap, TIM_ARR, wfhw->arr);
if (ret)
goto out;
ret = regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
if (ret)
goto out;
}
/* set polarity */
mask = TIM_CCER_CCxP(ch + 1) | TIM_CCER_CCxNP(ch + 1);
ret = regmap_update_bits(priv->regmap, TIM_CCER, mask, wfhw->ccer);
if (ret)
goto out;
ret = regmap_write(priv->regmap, TIM_CCRx(ch + 1), wfhw->ccr);
if (ret)
goto out;
/* Configure output mode */
shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
mask = CCMR_CHANNEL_MASK << shift;
if (ch < 2)
ret = regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
else
ret = regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
if (ret)
goto out;
ret = regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
if (ret)
goto out;
if (!(ccer & TIM_CCER_CCxE(ch + 1))) {
mask = TIM_CCER_CCxE(ch + 1) | TIM_CCER_CCxNE(ch + 1);
ret = clk_enable(priv->clk);
if (ret)
goto out;
ccer = (ccer & ~mask) | (wfhw->ccer & mask);
regmap_write(priv->regmap, TIM_CCER, ccer);
/* Make sure that registers are updated */
regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
/* Enable controller */
regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
}
} else {
/* disable channel */
u32 mask, ccer;
mask = TIM_CCER_CCxE(ch + 1);
if (priv->have_complementary_output)
mask |= TIM_CCER_CCxNE(ch + 1);
ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
if (ret)
goto out;
if (ccer & mask) {
ccer = ccer & ~mask;
ret = regmap_write(priv->regmap, TIM_CCER, ccer);
if (ret)
goto out;
if (!(ccer & TIM_CCER_CCXE)) {
/* When all channels are disabled, we can disable the controller */
ret = regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
if (ret)
goto out;
}
clk_disable(priv->clk);
}
}
out:
clk_disable(priv->clk);
return ret;
}
#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
@ -308,228 +693,13 @@ static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
return ret;
}
static int stm32_pwm_config(struct stm32_pwm *priv, unsigned int ch,
u64 duty_ns, u64 period_ns)
{
unsigned long long prd, dty;
unsigned long long prescaler;
u32 ccmr, mask, shift;
/*
* .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so
* the calculations here won't overflow.
* First we need to find the minimal value for prescaler such that
*
* period_ns * clkrate
* ------------------------------ < max_arr + 1
* NSEC_PER_SEC * (prescaler + 1)
*
* This equation is equivalent to
*
* period_ns * clkrate
* ---------------------------- < prescaler + 1
* NSEC_PER_SEC * (max_arr + 1)
*
* Using integer division and knowing that the right hand side is
* integer, this is further equivalent to
*
* (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler
*/
prescaler = mul_u64_u64_div_u64(period_ns, clk_get_rate(priv->clk),
(u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1));
if (prescaler > MAX_TIM_PSC)
return -EINVAL;
prd = mul_u64_u64_div_u64(period_ns, clk_get_rate(priv->clk),
(u64)NSEC_PER_SEC * (prescaler + 1));
if (!prd)
return -EINVAL;
/*
* All channels share the same prescaler and counter so when two
* channels are active at the same time we can't change them
*/
if (active_channels(priv) & ~(1 << ch * 4)) {
u32 psc, arr;
regmap_read(priv->regmap, TIM_PSC, &psc);
regmap_read(priv->regmap, TIM_ARR, &arr);
if ((psc != prescaler) || (arr != prd - 1))
return -EBUSY;
}
regmap_write(priv->regmap, TIM_PSC, prescaler);
regmap_write(priv->regmap, TIM_ARR, prd - 1);
regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
/* Calculate the duty cycles */
dty = mul_u64_u64_div_u64(duty_ns, clk_get_rate(priv->clk),
(u64)NSEC_PER_SEC * (prescaler + 1));
regmap_write(priv->regmap, TIM_CCRx(ch + 1), dty);
/* Configure output mode */
shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
mask = CCMR_CHANNEL_MASK << shift;
if (ch < 2)
regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
else
regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
return 0;
}
static int stm32_pwm_set_polarity(struct stm32_pwm *priv, unsigned int ch,
enum pwm_polarity polarity)
{
u32 mask;
mask = TIM_CCER_CCxP(ch + 1);
if (priv->have_complementary_output)
mask |= TIM_CCER_CCxNP(ch + 1);
regmap_update_bits(priv->regmap, TIM_CCER, mask,
polarity == PWM_POLARITY_NORMAL ? 0 : mask);
return 0;
}
static int stm32_pwm_enable(struct stm32_pwm *priv, unsigned int ch)
{
u32 mask;
int ret;
ret = clk_enable(priv->clk);
if (ret)
return ret;
/* Enable channel */
mask = TIM_CCER_CCxE(ch + 1);
if (priv->have_complementary_output)
mask |= TIM_CCER_CCxNE(ch + 1);
regmap_set_bits(priv->regmap, TIM_CCER, mask);
/* Make sure that registers are updated */
regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
/* Enable controller */
regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
return 0;
}
static void stm32_pwm_disable(struct stm32_pwm *priv, unsigned int ch)
{
u32 mask;
/* Disable channel */
mask = TIM_CCER_CCxE(ch + 1);
if (priv->have_complementary_output)
mask |= TIM_CCER_CCxNE(ch + 1);
regmap_clear_bits(priv->regmap, TIM_CCER, mask);
/* When all channels are disabled, we can disable the controller */
if (!active_channels(priv))
regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
clk_disable(priv->clk);
}
static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
bool enabled;
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
int ret;
enabled = pwm->state.enabled;
if (!state->enabled) {
if (enabled)
stm32_pwm_disable(priv, pwm->hwpwm);
return 0;
}
if (state->polarity != pwm->state.polarity)
stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
ret = stm32_pwm_config(priv, pwm->hwpwm,
state->duty_cycle, state->period);
if (ret)
return ret;
if (!enabled && state->enabled)
ret = stm32_pwm_enable(priv, pwm->hwpwm);
return ret;
}
static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
int ret;
/* protect common prescaler for all active channels */
mutex_lock(&priv->lock);
ret = stm32_pwm_apply(chip, pwm, state);
mutex_unlock(&priv->lock);
return ret;
}
static int stm32_pwm_get_state(struct pwm_chip *chip,
struct pwm_device *pwm, struct pwm_state *state)
{
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
int ch = pwm->hwpwm;
unsigned long rate;
u32 ccer, psc, arr, ccr;
u64 dty, prd;
int ret;
mutex_lock(&priv->lock);
ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
if (ret)
goto out;
state->enabled = ccer & TIM_CCER_CCxE(ch + 1);
state->polarity = (ccer & TIM_CCER_CCxP(ch + 1)) ?
PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
ret = regmap_read(priv->regmap, TIM_PSC, &psc);
if (ret)
goto out;
ret = regmap_read(priv->regmap, TIM_ARR, &arr);
if (ret)
goto out;
ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &ccr);
if (ret)
goto out;
rate = clk_get_rate(priv->clk);
prd = (u64)NSEC_PER_SEC * (psc + 1) * (arr + 1);
state->period = DIV_ROUND_UP_ULL(prd, rate);
dty = (u64)NSEC_PER_SEC * (psc + 1) * ccr;
state->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
out:
mutex_unlock(&priv->lock);
return ret;
}
static const struct pwm_ops stm32pwm_ops = {
.apply = stm32_pwm_apply_locked,
.get_state = stm32_pwm_get_state,
.sizeof_wfhw = sizeof(struct stm32_pwm_waveform),
.round_waveform_tohw = stm32_pwm_round_waveform_tohw,
.round_waveform_fromhw = stm32_pwm_round_waveform_fromhw,
.read_waveform = stm32_pwm_read_waveform,
.write_waveform = stm32_pwm_write_waveform,
.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
};

View File

@ -49,6 +49,31 @@ enum {
PWMF_EXPORTED = 1,
};
/**
* struct pwm_waveform - description of a PWM waveform
* @period_length_ns: PWM period
* @duty_length_ns: PWM duty cycle
* @duty_offset_ns: offset of the rising edge from the period's start
*
* This is a representation of a PWM waveform alternative to struct pwm_state
* below. It's more expressive than struct pwm_state as it contains a
* duty_offset_ns and so can represent offsets other than zero (with .polarity =
* PWM_POLARITY_NORMAL) and period - duty_cycle (.polarity =
* PWM_POLARITY_INVERSED).
*
* Note there is no explicit bool for enabled. A "disabled" PWM is represented
* by .period_length_ns = 0. Note further that the behaviour of a "disabled" PWM
* is undefined. Depending on the hardware's capabilities it might drive the
* active or inactive level, go high-z or even continue to toggle.
*
* The unit for all three members is nanoseconds.
*/
struct pwm_waveform {
u64 period_length_ns;
u64 duty_length_ns;
u64 duty_offset_ns;
};
/*
* struct pwm_state - state of a PWM channel
* @period: PWM period (in nanoseconds)
@ -251,6 +276,11 @@ struct pwm_capture {
* @request: optional hook for requesting a PWM
* @free: optional hook for freeing a PWM
* @capture: capture and report PWM signal
* @sizeof_wfhw: size (in bytes) of driver specific waveform presentation
* @round_waveform_tohw: convert a struct pwm_waveform to driver specific presentation
* @round_waveform_fromhw: convert a driver specific waveform presentation to struct pwm_waveform
* @read_waveform: read driver specific waveform presentation from hardware
* @write_waveform: write driver specific waveform presentation to hardware
* @apply: atomically apply a new PWM config
* @get_state: get the current PWM state.
*/
@ -259,6 +289,17 @@ struct pwm_ops {
void (*free)(struct pwm_chip *chip, struct pwm_device *pwm);
int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_capture *result, unsigned long timeout);
size_t sizeof_wfhw;
int (*round_waveform_tohw)(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_waveform *wf, void *wfhw);
int (*round_waveform_fromhw)(struct pwm_chip *chip, struct pwm_device *pwm,
const void *wfhw, struct pwm_waveform *wf);
int (*read_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
void *wfhw);
int (*write_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
const void *wfhw);
int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state);
int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm,
@ -275,6 +316,9 @@ struct pwm_ops {
* @of_xlate: request a PWM device given a device tree PWM specifier
* @atomic: can the driver's ->apply() be called in atomic context
* @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip
* @operational: signals if the chip can be used (or is already deregistered)
* @nonatomic_lock: mutex for nonatomic chips
* @atomic_lock: mutex for atomic chips
* @pwms: array of PWM devices allocated by the framework
*/
struct pwm_chip {
@ -290,6 +334,16 @@ struct pwm_chip {
/* only used internally by the PWM framework */
bool uses_pwmchip_alloc;
bool operational;
union {
/*
* depending on the chip being atomic or not either the mutex or
* the spinlock is used. It protects .operational and
* synchronizes the callbacks in .ops
*/
struct mutex nonatomic_lock;
spinlock_t atomic_lock;
};
struct pwm_device pwms[] __counted_by(npwm);
};
@ -309,7 +363,11 @@ static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data)
}
#if IS_ENABLED(CONFIG_PWM)
/* PWM user APIs */
/* PWM consumer APIs */
int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
int pwm_set_waveform_might_sleep(struct pwm_device *pwm, const struct pwm_waveform *wf, bool exact);
int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state);
int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state);
int pwm_adjust_config(struct pwm_device *pwm);

View File

@ -8,15 +8,135 @@
#include <linux/pwm.h>
#include <linux/tracepoint.h>
#define TP_PROTO_pwm(args...) \
TP_PROTO(struct pwm_device *pwm, args)
#define TP_ARGS_pwm(args...) \
TP_ARGS(pwm, args)
#define TP_STRUCT__entry_pwm(args...) \
TP_STRUCT__entry( \
__field(unsigned int, chipid) \
__field(unsigned int, hwpwm) \
args)
#define TP_fast_assign_pwm(args...) \
TP_fast_assign( \
__entry->chipid = pwm->chip->id; \
__entry->hwpwm = pwm->hwpwm; \
args)
#define TP_printk_pwm(fmt, args...) \
TP_printk("pwmchip%u.%u: " fmt, __entry->chipid, __entry->hwpwm, args)
#define __field_pwmwf(wf) \
__field(u64, wf ## _period_length_ns) \
__field(u64, wf ## _duty_length_ns) \
__field(u64, wf ## _duty_offset_ns) \
#define fast_assign_pwmwf(wf) \
__entry->wf ## _period_length_ns = wf->period_length_ns; \
__entry->wf ## _duty_length_ns = wf->duty_length_ns; \
__entry->wf ## _duty_offset_ns = wf->duty_offset_ns
#define printk_pwmwf_format(wf) \
"%lld/%lld [+%lld]"
#define printk_pwmwf_formatargs(wf) \
__entry->wf ## _duty_length_ns, __entry->wf ## _period_length_ns, __entry->wf ## _duty_offset_ns
TRACE_EVENT(pwm_round_waveform_tohw,
TP_PROTO_pwm(const struct pwm_waveform *wf, void *wfhw, int err),
TP_ARGS_pwm(wf, wfhw, err),
TP_STRUCT__entry_pwm(
__field_pwmwf(wf)
__field(void *, wfhw)
__field(int, err)
),
TP_fast_assign_pwm(
fast_assign_pwmwf(wf);
__entry->wfhw = wfhw;
__entry->err = err;
),
TP_printk_pwm(printk_pwmwf_format(wf) " > %p err=%d",
printk_pwmwf_formatargs(wf), __entry->wfhw, __entry->err)
);
TRACE_EVENT(pwm_round_waveform_fromhw,
TP_PROTO_pwm(const void *wfhw, struct pwm_waveform *wf, int err),
TP_ARGS_pwm(wfhw, wf, err),
TP_STRUCT__entry_pwm(
__field(const void *, wfhw)
__field_pwmwf(wf)
__field(int, err)
),
TP_fast_assign_pwm(
__entry->wfhw = wfhw;
fast_assign_pwmwf(wf);
__entry->err = err;
),
TP_printk_pwm("%p > " printk_pwmwf_format(wf) " err=%d",
__entry->wfhw, printk_pwmwf_formatargs(wf), __entry->err)
);
TRACE_EVENT(pwm_read_waveform,
TP_PROTO_pwm(void *wfhw, int err),
TP_ARGS_pwm(wfhw, err),
TP_STRUCT__entry_pwm(
__field(void *, wfhw)
__field(int, err)
),
TP_fast_assign_pwm(
__entry->wfhw = wfhw;
__entry->err = err;
),
TP_printk_pwm("%p err=%d",
__entry->wfhw, __entry->err)
);
TRACE_EVENT(pwm_write_waveform,
TP_PROTO_pwm(const void *wfhw, int err),
TP_ARGS_pwm(wfhw, err),
TP_STRUCT__entry_pwm(
__field(const void *, wfhw)
__field(int, err)
),
TP_fast_assign_pwm(
__entry->wfhw = wfhw;
__entry->err = err;
),
TP_printk_pwm("%p err=%d",
__entry->wfhw, __entry->err)
);
DECLARE_EVENT_CLASS(pwm,
TP_PROTO(struct pwm_device *pwm, const struct pwm_state *state, int err),
TP_ARGS(pwm, state, err),
TP_STRUCT__entry(
__field(unsigned int, chipid)
__field(unsigned int, hwpwm)
TP_STRUCT__entry_pwm(
__field(u64, period)
__field(u64, duty_cycle)
__field(enum pwm_polarity, polarity)
@ -24,9 +144,7 @@ DECLARE_EVENT_CLASS(pwm,
__field(int, err)
),
TP_fast_assign(
__entry->chipid = pwm->chip->id;
__entry->hwpwm = pwm->hwpwm;
TP_fast_assign_pwm(
__entry->period = state->period;
__entry->duty_cycle = state->duty_cycle;
__entry->polarity = state->polarity;
@ -34,8 +152,8 @@ DECLARE_EVENT_CLASS(pwm,
__entry->err = err;
),
TP_printk("pwmchip%u.%u: period=%llu duty_cycle=%llu polarity=%d enabled=%d err=%d",
__entry->chipid, __entry->hwpwm, __entry->period, __entry->duty_cycle,
TP_printk_pwm("period=%llu duty_cycle=%llu polarity=%d enabled=%d err=%d",
__entry->period, __entry->duty_cycle,
__entry->polarity, __entry->enabled, __entry->err)
);