Merge remote-tracking branches 'spi/topic/octeon', 'spi/topic/omap2-mcspi', 'spi/topic/orion', 'spi/topic/pic32' and 'spi/topic/pic32-qspi' into spi-next

This commit is contained in:
Mark Brown 2016-05-23 12:16:51 +01:00
8 changed files with 1699 additions and 79 deletions

View File

@ -0,0 +1,34 @@
Microchip PIC32 SPI Master controller
Required properties:
- compatible: Should be "microchip,pic32mzda-spi".
- reg: Address and length of register space for the device.
- interrupts: Should contain all three spi interrupts in sequence
of <fault-irq>, <receive-irq>, <transmit-irq>.
- interrupt-names: Should be "fault", "rx", "tx" in order.
- clocks: Phandle of the clock generating SPI clock on the bus.
- clock-names: Should be "mck0".
- cs-gpios: Specifies the gpio pins to be used for chipselects.
See: Documentation/devicetree/bindings/spi/spi-bus.txt
Optional properties:
- dmas: Two or more DMA channel specifiers following the convention outlined
in Documentation/devicetree/bindings/dma/dma.txt
- dma-names: Names for the dma channels. There must be at least one channel
named "spi-tx" for transmit and named "spi-rx" for receive.
Example:
spi1: spi@1f821000 {
compatible = "microchip,pic32mzda-spi";
reg = <0x1f821000 0x200>;
interrupts = <109 IRQ_TYPE_LEVEL_HIGH>,
<110 IRQ_TYPE_LEVEL_HIGH>,
<111 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "fault", "rx", "tx";
clocks = <&PBCLK2>;
clock-names = "mck0";
cs-gpios = <&gpio3 4 GPIO_ACTIVE_LOW>;
dmas = <&dma 134>, <&dma 135>;
dma-names = "spi-rx", "spi-tx";
};

View File

@ -0,0 +1,18 @@
Microchip PIC32 Quad SPI controller
-----------------------------------
Required properties:
- compatible: Should be "microchip,pic32mzda-sqi".
- reg: Address and length of SQI controller register space.
- interrupts: Should contain SQI interrupt.
- clocks: Should contain phandle of two clocks in sequence, one that drives
clock on SPI bus and other that drives SQI controller.
- clock-names: Should be "spi_ck" and "reg_ck" in order.
Example:
sqi1: spi@1f8e2000 {
compatible = "microchip,pic32mzda-sqi";
reg = <0x1f8e2000 0x200>;
clocks = <&rootclk REF2CLK>, <&rootclk PB5CLK>;
clock-names = "spi_ck", "reg_ck";
interrupts = <169 IRQ_TYPE_LEVEL_HIGH>;
};

View File

@ -431,10 +431,23 @@ config SPI_OMAP_100K
config SPI_ORION
tristate "Orion SPI master"
depends on PLAT_ORION || COMPILE_TEST
depends on PLAT_ORION || ARCH_MVEBU || COMPILE_TEST
help
This enables using the SPI master controller on the Orion chips.
config SPI_PIC32
tristate "Microchip PIC32 series SPI"
depends on MACH_PIC32 || COMPILE_TEST
help
SPI driver for Microchip PIC32 SPI master controller.
config SPI_PIC32_SQI
tristate "Microchip PIC32 Quad SPI driver"
depends on MACH_PIC32 || COMPILE_TEST
depends on HAS_DMA
help
SPI driver for PIC32 Quad SPI controller.
config SPI_PL022
tristate "ARM AMBA PL022 SSP controller"
depends on ARM_AMBA

View File

@ -62,6 +62,8 @@ obj-$(CONFIG_SPI_OMAP_100K) += spi-omap-100k.o
obj-$(CONFIG_SPI_OMAP24XX) += spi-omap2-mcspi.o
obj-$(CONFIG_SPI_TI_QSPI) += spi-ti-qspi.o
obj-$(CONFIG_SPI_ORION) += spi-orion.o
obj-$(CONFIG_SPI_PIC32) += spi-pic32.o
obj-$(CONFIG_SPI_PIC32_SQI) += spi-pic32-sqi.o
obj-$(CONFIG_SPI_PL022) += spi-pl022.o
obj-$(CONFIG_SPI_PPC4xx) += spi-ppc4xx.o
spi-pxa2xx-platform-objs := spi-pxa2xx.o spi-pxa2xx-dma.o

View File

@ -175,6 +175,7 @@ static int octeon_spi_transfer_one_message(struct spi_master *master,
static int octeon_spi_probe(struct platform_device *pdev)
{
struct resource *res_mem;
void __iomem *reg_base;
struct spi_master *master;
struct octeon_spi *p;
int err = -ENOENT;
@ -186,19 +187,13 @@ static int octeon_spi_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, master);
res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
reg_base = devm_ioremap_resource(&pdev->dev, res_mem);
if (IS_ERR(reg_base)) {
err = PTR_ERR(reg_base);
goto fail;
}
if (res_mem == NULL) {
dev_err(&pdev->dev, "found no memory resource\n");
err = -ENXIO;
goto fail;
}
if (!devm_request_mem_region(&pdev->dev, res_mem->start,
resource_size(res_mem), res_mem->name)) {
dev_err(&pdev->dev, "request_mem_region failed\n");
goto fail;
}
p->register_base = (u64)devm_ioremap(&pdev->dev, res_mem->start,
resource_size(res_mem));
p->register_base = (u64)reg_base;
master->num_chipselect = 4;
master->mode_bits = SPI_CPHA |

View File

@ -23,7 +23,6 @@
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/omap-dma.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/err.h>
@ -103,9 +102,6 @@ struct omap2_mcspi_dma {
struct dma_chan *dma_tx;
struct dma_chan *dma_rx;
int dma_tx_sync_dev;
int dma_rx_sync_dev;
struct completion dma_tx_completion;
struct completion dma_rx_completion;
@ -964,8 +960,7 @@ static int omap2_mcspi_request_dma(struct spi_device *spi)
struct spi_master *master = spi->master;
struct omap2_mcspi *mcspi;
struct omap2_mcspi_dma *mcspi_dma;
dma_cap_mask_t mask;
unsigned sig;
int ret = 0;
mcspi = spi_master_get_devdata(master);
mcspi_dma = mcspi->dma_channels + spi->chip_select;
@ -973,34 +968,25 @@ static int omap2_mcspi_request_dma(struct spi_device *spi)
init_completion(&mcspi_dma->dma_rx_completion);
init_completion(&mcspi_dma->dma_tx_completion);
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
sig = mcspi_dma->dma_rx_sync_dev;
mcspi_dma->dma_rx =
dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
&sig, &master->dev,
mcspi_dma->dma_rx_ch_name);
if (!mcspi_dma->dma_rx)
goto no_dma;
sig = mcspi_dma->dma_tx_sync_dev;
mcspi_dma->dma_tx =
dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
&sig, &master->dev,
mcspi_dma->dma_tx_ch_name);
if (!mcspi_dma->dma_tx) {
dma_release_channel(mcspi_dma->dma_rx);
mcspi_dma->dma_rx = dma_request_chan(&master->dev,
mcspi_dma->dma_rx_ch_name);
if (IS_ERR(mcspi_dma->dma_rx)) {
ret = PTR_ERR(mcspi_dma->dma_rx);
mcspi_dma->dma_rx = NULL;
goto no_dma;
}
return 0;
mcspi_dma->dma_tx = dma_request_chan(&master->dev,
mcspi_dma->dma_tx_ch_name);
if (IS_ERR(mcspi_dma->dma_tx)) {
ret = PTR_ERR(mcspi_dma->dma_tx);
mcspi_dma->dma_tx = NULL;
dma_release_channel(mcspi_dma->dma_rx);
mcspi_dma->dma_rx = NULL;
}
no_dma:
dev_warn(&spi->dev, "not using DMA for McSPI\n");
return -EAGAIN;
return ret;
}
static int omap2_mcspi_setup(struct spi_device *spi)
@ -1039,8 +1025,9 @@ static int omap2_mcspi_setup(struct spi_device *spi)
if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
ret = omap2_mcspi_request_dma(spi);
if (ret < 0 && ret != -EAGAIN)
return ret;
if (ret)
dev_warn(&spi->dev, "not using DMA for McSPI (%d)\n",
ret);
}
ret = pm_runtime_get_sync(mcspi->dev);
@ -1434,42 +1421,8 @@ static int omap2_mcspi_probe(struct platform_device *pdev)
}
for (i = 0; i < master->num_chipselect; i++) {
char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name;
char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name;
struct resource *dma_res;
sprintf(dma_rx_ch_name, "rx%d", i);
if (!pdev->dev.of_node) {
dma_res =
platform_get_resource_byname(pdev,
IORESOURCE_DMA,
dma_rx_ch_name);
if (!dma_res) {
dev_dbg(&pdev->dev,
"cannot get DMA RX channel\n");
status = -ENODEV;
break;
}
mcspi->dma_channels[i].dma_rx_sync_dev =
dma_res->start;
}
sprintf(dma_tx_ch_name, "tx%d", i);
if (!pdev->dev.of_node) {
dma_res =
platform_get_resource_byname(pdev,
IORESOURCE_DMA,
dma_tx_ch_name);
if (!dma_res) {
dev_dbg(&pdev->dev,
"cannot get DMA TX channel\n");
status = -ENODEV;
break;
}
mcspi->dma_channels[i].dma_tx_sync_dev =
dma_res->start;
}
sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
}
if (status < 0)

727
drivers/spi/spi-pic32-sqi.c Normal file
View File

@ -0,0 +1,727 @@
/*
* PIC32 Quad SPI controller driver.
*
* Purna Chandra Mandal <purna.mandal@microchip.com>
* Copyright (c) 2016, Microchip Technology Inc.
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
/* SQI registers */
#define PESQI_XIP_CONF1_REG 0x00
#define PESQI_XIP_CONF2_REG 0x04
#define PESQI_CONF_REG 0x08
#define PESQI_CTRL_REG 0x0C
#define PESQI_CLK_CTRL_REG 0x10
#define PESQI_CMD_THRES_REG 0x14
#define PESQI_INT_THRES_REG 0x18
#define PESQI_INT_ENABLE_REG 0x1C
#define PESQI_INT_STAT_REG 0x20
#define PESQI_TX_DATA_REG 0x24
#define PESQI_RX_DATA_REG 0x28
#define PESQI_STAT1_REG 0x2C
#define PESQI_STAT2_REG 0x30
#define PESQI_BD_CTRL_REG 0x34
#define PESQI_BD_CUR_ADDR_REG 0x38
#define PESQI_BD_BASE_ADDR_REG 0x40
#define PESQI_BD_STAT_REG 0x44
#define PESQI_BD_POLL_CTRL_REG 0x48
#define PESQI_BD_TX_DMA_STAT_REG 0x4C
#define PESQI_BD_RX_DMA_STAT_REG 0x50
#define PESQI_THRES_REG 0x54
#define PESQI_INT_SIGEN_REG 0x58
/* PESQI_CONF_REG fields */
#define PESQI_MODE 0x7
#define PESQI_MODE_BOOT 0
#define PESQI_MODE_PIO 1
#define PESQI_MODE_DMA 2
#define PESQI_MODE_XIP 3
#define PESQI_MODE_SHIFT 0
#define PESQI_CPHA BIT(3)
#define PESQI_CPOL BIT(4)
#define PESQI_LSBF BIT(5)
#define PESQI_RXLATCH BIT(7)
#define PESQI_SERMODE BIT(8)
#define PESQI_WP_EN BIT(9)
#define PESQI_HOLD_EN BIT(10)
#define PESQI_BURST_EN BIT(12)
#define PESQI_CS_CTRL_HW BIT(15)
#define PESQI_SOFT_RESET BIT(16)
#define PESQI_LANES_SHIFT 20
#define PESQI_SINGLE_LANE 0
#define PESQI_DUAL_LANE 1
#define PESQI_QUAD_LANE 2
#define PESQI_CSEN_SHIFT 24
#define PESQI_EN BIT(23)
/* PESQI_CLK_CTRL_REG fields */
#define PESQI_CLK_EN BIT(0)
#define PESQI_CLK_STABLE BIT(1)
#define PESQI_CLKDIV_SHIFT 8
#define PESQI_CLKDIV 0xff
/* PESQI_INT_THR/CMD_THR_REG */
#define PESQI_TXTHR_MASK 0x1f
#define PESQI_TXTHR_SHIFT 8
#define PESQI_RXTHR_MASK 0x1f
#define PESQI_RXTHR_SHIFT 0
/* PESQI_INT_EN/INT_STAT/INT_SIG_EN_REG */
#define PESQI_TXEMPTY BIT(0)
#define PESQI_TXFULL BIT(1)
#define PESQI_TXTHR BIT(2)
#define PESQI_RXEMPTY BIT(3)
#define PESQI_RXFULL BIT(4)
#define PESQI_RXTHR BIT(5)
#define PESQI_BDDONE BIT(9) /* BD processing complete */
#define PESQI_PKTCOMP BIT(10) /* packet processing complete */
#define PESQI_DMAERR BIT(11) /* error */
/* PESQI_BD_CTRL_REG */
#define PESQI_DMA_EN BIT(0) /* enable DMA engine */
#define PESQI_POLL_EN BIT(1) /* enable polling */
#define PESQI_BDP_START BIT(2) /* start BD processor */
/* PESQI controller buffer descriptor */
struct buf_desc {
u32 bd_ctrl; /* control */
u32 bd_status; /* reserved */
u32 bd_addr; /* DMA buffer addr */
u32 bd_nextp; /* next item in chain */
};
/* bd_ctrl */
#define BD_BUFLEN 0x1ff
#define BD_CBD_INT_EN BIT(16) /* Current BD is processed */
#define BD_PKT_INT_EN BIT(17) /* All BDs of PKT processed */
#define BD_LIFM BIT(18) /* last data of pkt */
#define BD_LAST BIT(19) /* end of list */
#define BD_DATA_RECV BIT(20) /* receive data */
#define BD_DDR BIT(21) /* DDR mode */
#define BD_DUAL BIT(22) /* Dual SPI */
#define BD_QUAD BIT(23) /* Quad SPI */
#define BD_LSBF BIT(25) /* LSB First */
#define BD_STAT_CHECK BIT(27) /* Status poll */
#define BD_DEVSEL_SHIFT 28 /* CS */
#define BD_CS_DEASSERT BIT(30) /* de-assert CS after current BD */
#define BD_EN BIT(31) /* BD owned by H/W */
/**
* struct ring_desc - Representation of SQI ring descriptor
* @list: list element to add to free or used list.
* @bd: PESQI controller buffer descriptor
* @bd_dma: DMA address of PESQI controller buffer descriptor
* @xfer_len: transfer length
*/
struct ring_desc {
struct list_head list;
struct buf_desc *bd;
dma_addr_t bd_dma;
u32 xfer_len;
};
/* Global constants */
#define PESQI_BD_BUF_LEN_MAX 256
#define PESQI_BD_COUNT 256 /* max 64KB data per spi message */
struct pic32_sqi {
void __iomem *regs;
struct clk *sys_clk;
struct clk *base_clk; /* drives spi clock */
struct spi_master *master;
int irq;
struct completion xfer_done;
struct ring_desc *ring;
void *bd;
dma_addr_t bd_dma;
struct list_head bd_list_free; /* free */
struct list_head bd_list_used; /* allocated */
struct spi_device *cur_spi;
u32 cur_speed;
u8 cur_mode;
};
static inline void pic32_setbits(void __iomem *reg, u32 set)
{
writel(readl(reg) | set, reg);
}
static inline void pic32_clrbits(void __iomem *reg, u32 clr)
{
writel(readl(reg) & ~clr, reg);
}
static int pic32_sqi_set_clk_rate(struct pic32_sqi *sqi, u32 sck)
{
u32 val, div;
/* div = base_clk / (2 * spi_clk) */
div = clk_get_rate(sqi->base_clk) / (2 * sck);
div &= PESQI_CLKDIV;
val = readl(sqi->regs + PESQI_CLK_CTRL_REG);
/* apply new divider */
val &= ~(PESQI_CLK_STABLE | (PESQI_CLKDIV << PESQI_CLKDIV_SHIFT));
val |= div << PESQI_CLKDIV_SHIFT;
writel(val, sqi->regs + PESQI_CLK_CTRL_REG);
/* wait for stability */
return readl_poll_timeout(sqi->regs + PESQI_CLK_CTRL_REG, val,
val & PESQI_CLK_STABLE, 1, 5000);
}
static inline void pic32_sqi_enable_int(struct pic32_sqi *sqi)
{
u32 mask = PESQI_DMAERR | PESQI_BDDONE | PESQI_PKTCOMP;
writel(mask, sqi->regs + PESQI_INT_ENABLE_REG);
/* INT_SIGEN works as interrupt-gate to INTR line */
writel(mask, sqi->regs + PESQI_INT_SIGEN_REG);
}
static inline void pic32_sqi_disable_int(struct pic32_sqi *sqi)
{
writel(0, sqi->regs + PESQI_INT_ENABLE_REG);
writel(0, sqi->regs + PESQI_INT_SIGEN_REG);
}
static irqreturn_t pic32_sqi_isr(int irq, void *dev_id)
{
struct pic32_sqi *sqi = dev_id;
u32 enable, status;
enable = readl(sqi->regs + PESQI_INT_ENABLE_REG);
status = readl(sqi->regs + PESQI_INT_STAT_REG);
/* check spurious interrupt */
if (!status)
return IRQ_NONE;
if (status & PESQI_DMAERR) {
enable = 0;
goto irq_done;
}
if (status & PESQI_TXTHR)
enable &= ~(PESQI_TXTHR | PESQI_TXFULL | PESQI_TXEMPTY);
if (status & PESQI_RXTHR)
enable &= ~(PESQI_RXTHR | PESQI_RXFULL | PESQI_RXEMPTY);
if (status & PESQI_BDDONE)
enable &= ~PESQI_BDDONE;
/* packet processing completed */
if (status & PESQI_PKTCOMP) {
/* mask all interrupts */
enable = 0;
/* complete trasaction */
complete(&sqi->xfer_done);
}
irq_done:
/* interrupts are sticky, so mask when handled */
writel(enable, sqi->regs + PESQI_INT_ENABLE_REG);
return IRQ_HANDLED;
}
static struct ring_desc *ring_desc_get(struct pic32_sqi *sqi)
{
struct ring_desc *rdesc;
if (list_empty(&sqi->bd_list_free))
return NULL;
rdesc = list_first_entry(&sqi->bd_list_free, struct ring_desc, list);
list_del(&rdesc->list);
list_add_tail(&rdesc->list, &sqi->bd_list_used);
return rdesc;
}
static void ring_desc_put(struct pic32_sqi *sqi, struct ring_desc *rdesc)
{
list_del(&rdesc->list);
list_add(&rdesc->list, &sqi->bd_list_free);
}
static int pic32_sqi_one_transfer(struct pic32_sqi *sqi,
struct spi_message *mesg,
struct spi_transfer *xfer)
{
struct spi_device *spi = mesg->spi;
struct scatterlist *sg, *sgl;
struct ring_desc *rdesc;
struct buf_desc *bd;
int nents, i;
u32 bd_ctrl;
u32 nbits;
/* Device selection */
bd_ctrl = spi->chip_select << BD_DEVSEL_SHIFT;
/* half-duplex: select transfer buffer, direction and lane */
if (xfer->rx_buf) {
bd_ctrl |= BD_DATA_RECV;
nbits = xfer->rx_nbits;
sgl = xfer->rx_sg.sgl;
nents = xfer->rx_sg.nents;
} else {
nbits = xfer->tx_nbits;
sgl = xfer->tx_sg.sgl;
nents = xfer->tx_sg.nents;
}
if (nbits & SPI_NBITS_QUAD)
bd_ctrl |= BD_QUAD;
else if (nbits & SPI_NBITS_DUAL)
bd_ctrl |= BD_DUAL;
/* LSB first */
if (spi->mode & SPI_LSB_FIRST)
bd_ctrl |= BD_LSBF;
/* ownership to hardware */
bd_ctrl |= BD_EN;
for_each_sg(sgl, sg, nents, i) {
/* get ring descriptor */
rdesc = ring_desc_get(sqi);
if (!rdesc)
break;
bd = rdesc->bd;
/* BD CTRL: length */
rdesc->xfer_len = sg_dma_len(sg);
bd->bd_ctrl = bd_ctrl;
bd->bd_ctrl |= rdesc->xfer_len;
/* BD STAT */
bd->bd_status = 0;
/* BD BUFFER ADDRESS */
bd->bd_addr = sg->dma_address;
}
return 0;
}
static int pic32_sqi_prepare_hardware(struct spi_master *master)
{
struct pic32_sqi *sqi = spi_master_get_devdata(master);
/* enable spi interface */
pic32_setbits(sqi->regs + PESQI_CONF_REG, PESQI_EN);
/* enable spi clk */
pic32_setbits(sqi->regs + PESQI_CLK_CTRL_REG, PESQI_CLK_EN);
return 0;
}
static bool pic32_sqi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *x)
{
/* Do DMA irrespective of transfer size */
return true;
}
static int pic32_sqi_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct spi_device *spi = msg->spi;
struct ring_desc *rdesc, *next;
struct spi_transfer *xfer;
struct pic32_sqi *sqi;
int ret = 0, mode;
u32 val;
sqi = spi_master_get_devdata(master);
reinit_completion(&sqi->xfer_done);
msg->actual_length = 0;
/* We can't handle spi_transfer specific "speed_hz", "bits_per_word"
* and "delay_usecs". But spi_device specific speed and mode change
* can be handled at best during spi chip-select switch.
*/
if (sqi->cur_spi != spi) {
/* set spi speed */
if (sqi->cur_speed != spi->max_speed_hz) {
sqi->cur_speed = spi->max_speed_hz;
ret = pic32_sqi_set_clk_rate(sqi, spi->max_speed_hz);
if (ret)
dev_warn(&spi->dev, "set_clk, %d\n", ret);
}
/* set spi mode */
mode = spi->mode & (SPI_MODE_3 | SPI_LSB_FIRST);
if (sqi->cur_mode != mode) {
val = readl(sqi->regs + PESQI_CONF_REG);
val &= ~(PESQI_CPOL | PESQI_CPHA | PESQI_LSBF);
if (mode & SPI_CPOL)
val |= PESQI_CPOL;
if (mode & SPI_LSB_FIRST)
val |= PESQI_LSBF;
val |= PESQI_CPHA;
writel(val, sqi->regs + PESQI_CONF_REG);
sqi->cur_mode = mode;
}
sqi->cur_spi = spi;
}
/* prepare hardware desc-list(BD) for transfer(s) */
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
ret = pic32_sqi_one_transfer(sqi, msg, xfer);
if (ret) {
dev_err(&spi->dev, "xfer %p err\n", xfer);
goto xfer_out;
}
}
/* BDs are prepared and chained. Now mark LAST_BD, CS_DEASSERT at last
* element of the list.
*/
rdesc = list_last_entry(&sqi->bd_list_used, struct ring_desc, list);
rdesc->bd->bd_ctrl |= BD_LAST | BD_CS_DEASSERT |
BD_LIFM | BD_PKT_INT_EN;
/* set base address BD list for DMA engine */
rdesc = list_first_entry(&sqi->bd_list_used, struct ring_desc, list);
writel(rdesc->bd_dma, sqi->regs + PESQI_BD_BASE_ADDR_REG);
/* enable interrupt */
pic32_sqi_enable_int(sqi);
/* enable DMA engine */
val = PESQI_DMA_EN | PESQI_POLL_EN | PESQI_BDP_START;
writel(val, sqi->regs + PESQI_BD_CTRL_REG);
/* wait for xfer completion */
ret = wait_for_completion_timeout(&sqi->xfer_done, 5 * HZ);
if (ret <= 0) {
dev_err(&sqi->master->dev, "wait timedout/interrupted\n");
ret = -EIO;
msg->status = ret;
} else {
/* success */
msg->status = 0;
ret = 0;
}
/* disable DMA */
writel(0, sqi->regs + PESQI_BD_CTRL_REG);
pic32_sqi_disable_int(sqi);
xfer_out:
list_for_each_entry_safe_reverse(rdesc, next,
&sqi->bd_list_used, list) {
/* Update total byte transferred */
msg->actual_length += rdesc->xfer_len;
/* release ring descr */
ring_desc_put(sqi, rdesc);
}
spi_finalize_current_message(spi->master);
return ret;
}
static int pic32_sqi_unprepare_hardware(struct spi_master *master)
{
struct pic32_sqi *sqi = spi_master_get_devdata(master);
/* disable clk */
pic32_clrbits(sqi->regs + PESQI_CLK_CTRL_REG, PESQI_CLK_EN);
/* disable spi */
pic32_clrbits(sqi->regs + PESQI_CONF_REG, PESQI_EN);
return 0;
}
static int ring_desc_ring_alloc(struct pic32_sqi *sqi)
{
struct ring_desc *rdesc;
struct buf_desc *bd;
int i;
/* allocate coherent DMAable memory for hardware buffer descriptors. */
sqi->bd = dma_zalloc_coherent(&sqi->master->dev,
sizeof(*bd) * PESQI_BD_COUNT,
&sqi->bd_dma, GFP_DMA32);
if (!sqi->bd) {
dev_err(&sqi->master->dev, "failed allocating dma buffer\n");
return -ENOMEM;
}
/* allocate software ring descriptors */
sqi->ring = kcalloc(PESQI_BD_COUNT, sizeof(*rdesc), GFP_KERNEL);
if (!sqi->ring) {
dma_free_coherent(&sqi->master->dev,
sizeof(*bd) * PESQI_BD_COUNT,
sqi->bd, sqi->bd_dma);
return -ENOMEM;
}
bd = (struct buf_desc *)sqi->bd;
INIT_LIST_HEAD(&sqi->bd_list_free);
INIT_LIST_HEAD(&sqi->bd_list_used);
/* initialize ring-desc */
for (i = 0, rdesc = sqi->ring; i < PESQI_BD_COUNT; i++, rdesc++) {
INIT_LIST_HEAD(&rdesc->list);
rdesc->bd = &bd[i];
rdesc->bd_dma = sqi->bd_dma + (void *)&bd[i] - (void *)bd;
list_add_tail(&rdesc->list, &sqi->bd_list_free);
}
/* Prepare BD: chain to next BD(s) */
for (i = 0, rdesc = sqi->ring; i < PESQI_BD_COUNT - 1; i++)
bd[i].bd_nextp = rdesc[i + 1].bd_dma;
bd[PESQI_BD_COUNT - 1].bd_nextp = 0;
return 0;
}
static void ring_desc_ring_free(struct pic32_sqi *sqi)
{
dma_free_coherent(&sqi->master->dev,
sizeof(struct buf_desc) * PESQI_BD_COUNT,
sqi->bd, sqi->bd_dma);
kfree(sqi->ring);
}
static void pic32_sqi_hw_init(struct pic32_sqi *sqi)
{
unsigned long flags;
u32 val;
/* Soft-reset of PESQI controller triggers interrupt.
* We are not yet ready to handle them so disable CPU
* interrupt for the time being.
*/
local_irq_save(flags);
/* assert soft-reset */
writel(PESQI_SOFT_RESET, sqi->regs + PESQI_CONF_REG);
/* wait until clear */
readl_poll_timeout_atomic(sqi->regs + PESQI_CONF_REG, val,
!(val & PESQI_SOFT_RESET), 1, 5000);
/* disable all interrupts */
pic32_sqi_disable_int(sqi);
/* Now it is safe to enable back CPU interrupt */
local_irq_restore(flags);
/* tx and rx fifo interrupt threshold */
val = readl(sqi->regs + PESQI_CMD_THRES_REG);
val &= ~(PESQI_TXTHR_MASK << PESQI_TXTHR_SHIFT);
val &= ~(PESQI_RXTHR_MASK << PESQI_RXTHR_SHIFT);
val |= (1U << PESQI_TXTHR_SHIFT) | (1U << PESQI_RXTHR_SHIFT);
writel(val, sqi->regs + PESQI_CMD_THRES_REG);
val = readl(sqi->regs + PESQI_INT_THRES_REG);
val &= ~(PESQI_TXTHR_MASK << PESQI_TXTHR_SHIFT);
val &= ~(PESQI_RXTHR_MASK << PESQI_RXTHR_SHIFT);
val |= (1U << PESQI_TXTHR_SHIFT) | (1U << PESQI_RXTHR_SHIFT);
writel(val, sqi->regs + PESQI_INT_THRES_REG);
/* default configuration */
val = readl(sqi->regs + PESQI_CONF_REG);
/* set mode: DMA */
val &= ~PESQI_MODE;
val |= PESQI_MODE_DMA << PESQI_MODE_SHIFT;
writel(val, sqi->regs + PESQI_CONF_REG);
/* DATAEN - SQIID0-ID3 */
val |= PESQI_QUAD_LANE << PESQI_LANES_SHIFT;
/* burst/INCR4 enable */
val |= PESQI_BURST_EN;
/* CSEN - all CS */
val |= 3U << PESQI_CSEN_SHIFT;
writel(val, sqi->regs + PESQI_CONF_REG);
/* write poll count */
writel(0, sqi->regs + PESQI_BD_POLL_CTRL_REG);
sqi->cur_speed = 0;
sqi->cur_mode = -1;
}
static int pic32_sqi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct pic32_sqi *sqi;
struct resource *reg;
int ret;
master = spi_alloc_master(&pdev->dev, sizeof(*sqi));
if (!master)
return -ENOMEM;
sqi = spi_master_get_devdata(master);
sqi->master = master;
reg = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sqi->regs = devm_ioremap_resource(&pdev->dev, reg);
if (IS_ERR(sqi->regs)) {
ret = PTR_ERR(sqi->regs);
goto err_free_master;
}
/* irq */
sqi->irq = platform_get_irq(pdev, 0);
if (sqi->irq < 0) {
dev_err(&pdev->dev, "no irq found\n");
ret = sqi->irq;
goto err_free_master;
}
/* clocks */
sqi->sys_clk = devm_clk_get(&pdev->dev, "reg_ck");
if (IS_ERR(sqi->sys_clk)) {
ret = PTR_ERR(sqi->sys_clk);
dev_err(&pdev->dev, "no sys_clk ?\n");
goto err_free_master;
}
sqi->base_clk = devm_clk_get(&pdev->dev, "spi_ck");
if (IS_ERR(sqi->base_clk)) {
ret = PTR_ERR(sqi->base_clk);
dev_err(&pdev->dev, "no base clk ?\n");
goto err_free_master;
}
ret = clk_prepare_enable(sqi->sys_clk);
if (ret) {
dev_err(&pdev->dev, "sys clk enable failed\n");
goto err_free_master;
}
ret = clk_prepare_enable(sqi->base_clk);
if (ret) {
dev_err(&pdev->dev, "base clk enable failed\n");
clk_disable_unprepare(sqi->sys_clk);
goto err_free_master;
}
init_completion(&sqi->xfer_done);
/* initialize hardware */
pic32_sqi_hw_init(sqi);
/* allocate buffers & descriptors */
ret = ring_desc_ring_alloc(sqi);
if (ret) {
dev_err(&pdev->dev, "ring alloc failed\n");
goto err_disable_clk;
}
/* install irq handlers */
ret = request_irq(sqi->irq, pic32_sqi_isr, 0,
dev_name(&pdev->dev), sqi);
if (ret < 0) {
dev_err(&pdev->dev, "request_irq(%d), failed\n", sqi->irq);
goto err_free_ring;
}
/* register master */
master->num_chipselect = 2;
master->max_speed_hz = clk_get_rate(sqi->base_clk);
master->dma_alignment = 32;
master->max_dma_len = PESQI_BD_BUF_LEN_MAX;
master->dev.of_node = of_node_get(pdev->dev.of_node);
master->mode_bits = SPI_MODE_3 | SPI_MODE_0 | SPI_TX_DUAL |
SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD;
master->flags = SPI_MASTER_HALF_DUPLEX;
master->can_dma = pic32_sqi_can_dma;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
master->transfer_one_message = pic32_sqi_one_message;
master->prepare_transfer_hardware = pic32_sqi_prepare_hardware;
master->unprepare_transfer_hardware = pic32_sqi_unprepare_hardware;
ret = devm_spi_register_master(&pdev->dev, master);
if (ret) {
dev_err(&master->dev, "failed registering spi master\n");
free_irq(sqi->irq, sqi);
goto err_free_ring;
}
platform_set_drvdata(pdev, sqi);
return 0;
err_free_ring:
ring_desc_ring_free(sqi);
err_disable_clk:
clk_disable_unprepare(sqi->base_clk);
clk_disable_unprepare(sqi->sys_clk);
err_free_master:
spi_master_put(master);
return ret;
}
static int pic32_sqi_remove(struct platform_device *pdev)
{
struct pic32_sqi *sqi = platform_get_drvdata(pdev);
/* release resources */
free_irq(sqi->irq, sqi);
ring_desc_ring_free(sqi);
/* disable clk */
clk_disable_unprepare(sqi->base_clk);
clk_disable_unprepare(sqi->sys_clk);
return 0;
}
static const struct of_device_id pic32_sqi_of_ids[] = {
{.compatible = "microchip,pic32mzda-sqi",},
{},
};
MODULE_DEVICE_TABLE(of, pic32_sqi_of_ids);
static struct platform_driver pic32_sqi_driver = {
.driver = {
.name = "sqi-pic32",
.of_match_table = of_match_ptr(pic32_sqi_of_ids),
},
.probe = pic32_sqi_probe,
.remove = pic32_sqi_remove,
};
module_platform_driver(pic32_sqi_driver);
MODULE_AUTHOR("Purna Chandra Mandal <purna.mandal@microchip.com>");
MODULE_DESCRIPTION("Microchip SPI driver for PIC32 SQI controller.");
MODULE_LICENSE("GPL v2");

878
drivers/spi/spi-pic32.c Normal file
View File

@ -0,0 +1,878 @@
/*
* Microchip PIC32 SPI controller driver.
*
* Purna Chandra Mandal <purna.mandal@microchip.com>
* Copyright (c) 2016, Microchip Technology Inc.
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
/* SPI controller registers */
struct pic32_spi_regs {
u32 ctrl;
u32 ctrl_clr;
u32 ctrl_set;
u32 ctrl_inv;
u32 status;
u32 status_clr;
u32 status_set;
u32 status_inv;
u32 buf;
u32 dontuse[3];
u32 baud;
u32 dontuse2[3];
u32 ctrl2;
u32 ctrl2_clr;
u32 ctrl2_set;
u32 ctrl2_inv;
};
/* Bit fields of SPI Control Register */
#define CTRL_RX_INT_SHIFT 0 /* Rx interrupt generation */
#define RX_FIFO_EMTPY 0
#define RX_FIFO_NOT_EMPTY 1 /* not empty */
#define RX_FIFO_HALF_FULL 2 /* full by half or more */
#define RX_FIFO_FULL 3 /* completely full */
#define CTRL_TX_INT_SHIFT 2 /* TX interrupt generation */
#define TX_FIFO_ALL_EMPTY 0 /* completely empty */
#define TX_FIFO_EMTPY 1 /* empty */
#define TX_FIFO_HALF_EMPTY 2 /* empty by half or more */
#define TX_FIFO_NOT_FULL 3 /* atleast one empty */
#define CTRL_MSTEN BIT(5) /* enable master mode */
#define CTRL_CKP BIT(6) /* active low */
#define CTRL_CKE BIT(8) /* Tx on falling edge */
#define CTRL_SMP BIT(9) /* Rx at middle or end of tx */
#define CTRL_BPW_MASK 0x03 /* bits per word/sample */
#define CTRL_BPW_SHIFT 10
#define PIC32_BPW_8 0
#define PIC32_BPW_16 1
#define PIC32_BPW_32 2
#define CTRL_SIDL BIT(13) /* sleep when idle */
#define CTRL_ON BIT(15) /* enable macro */
#define CTRL_ENHBUF BIT(16) /* enable enhanced buffering */
#define CTRL_MCLKSEL BIT(23) /* select clock source */
#define CTRL_MSSEN BIT(28) /* macro driven /SS */
#define CTRL_FRMEN BIT(31) /* enable framing mode */
/* Bit fields of SPI Status Register */
#define STAT_RF_EMPTY BIT(5) /* RX Fifo empty */
#define STAT_RX_OV BIT(6) /* err, s/w needs to clear */
#define STAT_TX_UR BIT(8) /* UR in Framed SPI modes */
#define STAT_FRM_ERR BIT(12) /* Multiple Frame Sync pulse */
#define STAT_TF_LVL_MASK 0x1F
#define STAT_TF_LVL_SHIFT 16
#define STAT_RF_LVL_MASK 0x1F
#define STAT_RF_LVL_SHIFT 24
/* Bit fields of SPI Baud Register */
#define BAUD_MASK 0x1ff
/* Bit fields of SPI Control2 Register */
#define CTRL2_TX_UR_EN BIT(10) /* Enable int on Tx under-run */
#define CTRL2_RX_OV_EN BIT(11) /* Enable int on Rx over-run */
#define CTRL2_FRM_ERR_EN BIT(12) /* Enable frame err int */
/* Minimum DMA transfer size */
#define PIC32_DMA_LEN_MIN 64
struct pic32_spi {
dma_addr_t dma_base;
struct pic32_spi_regs __iomem *regs;
int fault_irq;
int rx_irq;
int tx_irq;
u32 fifo_n_byte; /* FIFO depth in bytes */
struct clk *clk;
struct spi_master *master;
/* Current controller setting */
u32 speed_hz; /* spi-clk rate */
u32 mode;
u32 bits_per_word;
u32 fifo_n_elm; /* FIFO depth in words */
#define PIC32F_DMA_PREP 0 /* DMA chnls configured */
unsigned long flags;
/* Current transfer state */
struct completion xfer_done;
/* PIO transfer specific */
const void *tx;
const void *tx_end;
const void *rx;
const void *rx_end;
int len;
void (*rx_fifo)(struct pic32_spi *);
void (*tx_fifo)(struct pic32_spi *);
};
static inline void pic32_spi_enable(struct pic32_spi *pic32s)
{
writel(CTRL_ON | CTRL_SIDL, &pic32s->regs->ctrl_set);
}
static inline void pic32_spi_disable(struct pic32_spi *pic32s)
{
writel(CTRL_ON | CTRL_SIDL, &pic32s->regs->ctrl_clr);
/* avoid SPI registers read/write at immediate next CPU clock */
ndelay(20);
}
static void pic32_spi_set_clk_rate(struct pic32_spi *pic32s, u32 spi_ck)
{
u32 div;
/* div = (clk_in / 2 * spi_ck) - 1 */
div = DIV_ROUND_CLOSEST(clk_get_rate(pic32s->clk), 2 * spi_ck) - 1;
writel(div & BAUD_MASK, &pic32s->regs->baud);
}
static inline u32 pic32_rx_fifo_level(struct pic32_spi *pic32s)
{
u32 sr = readl(&pic32s->regs->status);
return (sr >> STAT_RF_LVL_SHIFT) & STAT_RF_LVL_MASK;
}
static inline u32 pic32_tx_fifo_level(struct pic32_spi *pic32s)
{
u32 sr = readl(&pic32s->regs->status);
return (sr >> STAT_TF_LVL_SHIFT) & STAT_TF_LVL_MASK;
}
/* Return the max entries we can fill into tx fifo */
static u32 pic32_tx_max(struct pic32_spi *pic32s, int n_bytes)
{
u32 tx_left, tx_room, rxtx_gap;
tx_left = (pic32s->tx_end - pic32s->tx) / n_bytes;
tx_room = pic32s->fifo_n_elm - pic32_tx_fifo_level(pic32s);
/*
* Another concern is about the tx/rx mismatch, we
* though to use (pic32s->fifo_n_byte - rxfl - txfl) as
* one maximum value for tx, but it doesn't cover the
* data which is out of tx/rx fifo and inside the
* shift registers. So a ctrl from sw point of
* view is taken.
*/
rxtx_gap = ((pic32s->rx_end - pic32s->rx) -
(pic32s->tx_end - pic32s->tx)) / n_bytes;
return min3(tx_left, tx_room, (u32)(pic32s->fifo_n_elm - rxtx_gap));
}
/* Return the max entries we should read out of rx fifo */
static u32 pic32_rx_max(struct pic32_spi *pic32s, int n_bytes)
{
u32 rx_left = (pic32s->rx_end - pic32s->rx) / n_bytes;
return min_t(u32, rx_left, pic32_rx_fifo_level(pic32s));
}
#define BUILD_SPI_FIFO_RW(__name, __type, __bwl) \
static void pic32_spi_rx_##__name(struct pic32_spi *pic32s) \
{ \
__type v; \
u32 mx = pic32_rx_max(pic32s, sizeof(__type)); \
for (; mx; mx--) { \
v = read##__bwl(&pic32s->regs->buf); \
if (pic32s->rx_end - pic32s->len) \
*(__type *)(pic32s->rx) = v; \
pic32s->rx += sizeof(__type); \
} \
} \
\
static void pic32_spi_tx_##__name(struct pic32_spi *pic32s) \
{ \
__type v; \
u32 mx = pic32_tx_max(pic32s, sizeof(__type)); \
for (; mx ; mx--) { \
v = (__type)~0U; \
if (pic32s->tx_end - pic32s->len) \
v = *(__type *)(pic32s->tx); \
write##__bwl(v, &pic32s->regs->buf); \
pic32s->tx += sizeof(__type); \
} \
}
BUILD_SPI_FIFO_RW(byte, u8, b);
BUILD_SPI_FIFO_RW(word, u16, w);
BUILD_SPI_FIFO_RW(dword, u32, l);
static void pic32_err_stop(struct pic32_spi *pic32s, const char *msg)
{
/* disable all interrupts */
disable_irq_nosync(pic32s->fault_irq);
disable_irq_nosync(pic32s->rx_irq);
disable_irq_nosync(pic32s->tx_irq);
/* Show err message and abort xfer with err */
dev_err(&pic32s->master->dev, "%s\n", msg);
if (pic32s->master->cur_msg)
pic32s->master->cur_msg->status = -EIO;
complete(&pic32s->xfer_done);
}
static irqreturn_t pic32_spi_fault_irq(int irq, void *dev_id)
{
struct pic32_spi *pic32s = dev_id;
u32 status;
status = readl(&pic32s->regs->status);
/* Error handling */
if (status & (STAT_RX_OV | STAT_TX_UR)) {
writel(STAT_RX_OV, &pic32s->regs->status_clr);
writel(STAT_TX_UR, &pic32s->regs->status_clr);
pic32_err_stop(pic32s, "err_irq: fifo ov/ur-run\n");
return IRQ_HANDLED;
}
if (status & STAT_FRM_ERR) {
pic32_err_stop(pic32s, "err_irq: frame error");
return IRQ_HANDLED;
}
if (!pic32s->master->cur_msg) {
pic32_err_stop(pic32s, "err_irq: no mesg");
return IRQ_NONE;
}
return IRQ_NONE;
}
static irqreturn_t pic32_spi_rx_irq(int irq, void *dev_id)
{
struct pic32_spi *pic32s = dev_id;
pic32s->rx_fifo(pic32s);
/* rx complete ? */
if (pic32s->rx_end == pic32s->rx) {
/* disable all interrupts */
disable_irq_nosync(pic32s->fault_irq);
disable_irq_nosync(pic32s->rx_irq);
/* complete current xfer */
complete(&pic32s->xfer_done);
}
return IRQ_HANDLED;
}
static irqreturn_t pic32_spi_tx_irq(int irq, void *dev_id)
{
struct pic32_spi *pic32s = dev_id;
pic32s->tx_fifo(pic32s);
/* tx complete? disable tx interrupt */
if (pic32s->tx_end == pic32s->tx)
disable_irq_nosync(pic32s->tx_irq);
return IRQ_HANDLED;
}
static void pic32_spi_dma_rx_notify(void *data)
{
struct pic32_spi *pic32s = data;
complete(&pic32s->xfer_done);
}
static int pic32_spi_dma_transfer(struct pic32_spi *pic32s,
struct spi_transfer *xfer)
{
struct spi_master *master = pic32s->master;
struct dma_async_tx_descriptor *desc_rx;
struct dma_async_tx_descriptor *desc_tx;
dma_cookie_t cookie;
int ret;
if (!master->dma_rx || !master->dma_tx)
return -ENODEV;
desc_rx = dmaengine_prep_slave_sg(master->dma_rx,
xfer->rx_sg.sgl,
xfer->rx_sg.nents,
DMA_FROM_DEVICE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_rx) {
ret = -EINVAL;
goto err_dma;
}
desc_tx = dmaengine_prep_slave_sg(master->dma_tx,
xfer->tx_sg.sgl,
xfer->tx_sg.nents,
DMA_TO_DEVICE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_tx) {
ret = -EINVAL;
goto err_dma;
}
/* Put callback on the RX transfer, that should finish last */
desc_rx->callback = pic32_spi_dma_rx_notify;
desc_rx->callback_param = pic32s;
cookie = dmaengine_submit(desc_rx);
ret = dma_submit_error(cookie);
if (ret)
goto err_dma;
cookie = dmaengine_submit(desc_tx);
ret = dma_submit_error(cookie);
if (ret)
goto err_dma_tx;
dma_async_issue_pending(master->dma_rx);
dma_async_issue_pending(master->dma_tx);
return 0;
err_dma_tx:
dmaengine_terminate_all(master->dma_rx);
err_dma:
return ret;
}
static int pic32_spi_dma_config(struct pic32_spi *pic32s, u32 dma_width)
{
int buf_offset = offsetof(struct pic32_spi_regs, buf);
struct spi_master *master = pic32s->master;
struct dma_slave_config cfg;
int ret;
cfg.device_fc = true;
cfg.src_addr = pic32s->dma_base + buf_offset;
cfg.dst_addr = pic32s->dma_base + buf_offset;
cfg.src_maxburst = pic32s->fifo_n_elm / 2; /* fill one-half */
cfg.dst_maxburst = pic32s->fifo_n_elm / 2; /* drain one-half */
cfg.src_addr_width = dma_width;
cfg.dst_addr_width = dma_width;
/* tx channel */
cfg.slave_id = pic32s->tx_irq;
cfg.direction = DMA_MEM_TO_DEV;
ret = dmaengine_slave_config(master->dma_tx, &cfg);
if (ret) {
dev_err(&master->dev, "tx channel setup failed\n");
return ret;
}
/* rx channel */
cfg.slave_id = pic32s->rx_irq;
cfg.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(master->dma_rx, &cfg);
if (ret)
dev_err(&master->dev, "rx channel setup failed\n");
return ret;
}
static int pic32_spi_set_word_size(struct pic32_spi *pic32s, u8 bits_per_word)
{
enum dma_slave_buswidth dmawidth;
u32 buswidth, v;
switch (bits_per_word) {
case 8:
pic32s->rx_fifo = pic32_spi_rx_byte;
pic32s->tx_fifo = pic32_spi_tx_byte;
buswidth = PIC32_BPW_8;
dmawidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
break;
case 16:
pic32s->rx_fifo = pic32_spi_rx_word;
pic32s->tx_fifo = pic32_spi_tx_word;
buswidth = PIC32_BPW_16;
dmawidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
case 32:
pic32s->rx_fifo = pic32_spi_rx_dword;
pic32s->tx_fifo = pic32_spi_tx_dword;
buswidth = PIC32_BPW_32;
dmawidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
default:
/* not supported */
return -EINVAL;
}
/* calculate maximum number of words fifos can hold */
pic32s->fifo_n_elm = DIV_ROUND_UP(pic32s->fifo_n_byte,
bits_per_word / 8);
/* set word size */
v = readl(&pic32s->regs->ctrl);
v &= ~(CTRL_BPW_MASK << CTRL_BPW_SHIFT);
v |= buswidth << CTRL_BPW_SHIFT;
writel(v, &pic32s->regs->ctrl);
/* re-configure dma width, if required */
if (test_bit(PIC32F_DMA_PREP, &pic32s->flags))
pic32_spi_dma_config(pic32s, dmawidth);
return 0;
}
static int pic32_spi_prepare_hardware(struct spi_master *master)
{
struct pic32_spi *pic32s = spi_master_get_devdata(master);
pic32_spi_enable(pic32s);
return 0;
}
static int pic32_spi_prepare_message(struct spi_master *master,
struct spi_message *msg)
{
struct pic32_spi *pic32s = spi_master_get_devdata(master);
struct spi_device *spi = msg->spi;
u32 val;
/* set device specific bits_per_word */
if (pic32s->bits_per_word != spi->bits_per_word) {
pic32_spi_set_word_size(pic32s, spi->bits_per_word);
pic32s->bits_per_word = spi->bits_per_word;
}
/* device specific speed change */
if (pic32s->speed_hz != spi->max_speed_hz) {
pic32_spi_set_clk_rate(pic32s, spi->max_speed_hz);
pic32s->speed_hz = spi->max_speed_hz;
}
/* device specific mode change */
if (pic32s->mode != spi->mode) {
val = readl(&pic32s->regs->ctrl);
/* active low */
if (spi->mode & SPI_CPOL)
val |= CTRL_CKP;
else
val &= ~CTRL_CKP;
/* tx on rising edge */
if (spi->mode & SPI_CPHA)
val &= ~CTRL_CKE;
else
val |= CTRL_CKE;
/* rx at end of tx */
val |= CTRL_SMP;
writel(val, &pic32s->regs->ctrl);
pic32s->mode = spi->mode;
}
return 0;
}
static bool pic32_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct pic32_spi *pic32s = spi_master_get_devdata(master);
/* skip using DMA on small size transfer to avoid overhead.*/
return (xfer->len >= PIC32_DMA_LEN_MIN) &&
test_bit(PIC32F_DMA_PREP, &pic32s->flags);
}
static int pic32_spi_one_transfer(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *transfer)
{
struct pic32_spi *pic32s;
bool dma_issued = false;
int ret;
pic32s = spi_master_get_devdata(master);
/* handle transfer specific word size change */
if (transfer->bits_per_word &&
(transfer->bits_per_word != pic32s->bits_per_word)) {
ret = pic32_spi_set_word_size(pic32s, transfer->bits_per_word);
if (ret)
return ret;
pic32s->bits_per_word = transfer->bits_per_word;
}
/* handle transfer specific speed change */
if (transfer->speed_hz && (transfer->speed_hz != pic32s->speed_hz)) {
pic32_spi_set_clk_rate(pic32s, transfer->speed_hz);
pic32s->speed_hz = transfer->speed_hz;
}
reinit_completion(&pic32s->xfer_done);
/* transact by DMA mode */
if (transfer->rx_sg.nents && transfer->tx_sg.nents) {
ret = pic32_spi_dma_transfer(pic32s, transfer);
if (ret) {
dev_err(&spi->dev, "dma submit error\n");
return ret;
}
/* DMA issued */
dma_issued = true;
} else {
/* set current transfer information */
pic32s->tx = (const void *)transfer->tx_buf;
pic32s->rx = (const void *)transfer->rx_buf;
pic32s->tx_end = pic32s->tx + transfer->len;
pic32s->rx_end = pic32s->rx + transfer->len;
pic32s->len = transfer->len;
/* transact by interrupt driven PIO */
enable_irq(pic32s->fault_irq);
enable_irq(pic32s->rx_irq);
enable_irq(pic32s->tx_irq);
}
/* wait for completion */
ret = wait_for_completion_timeout(&pic32s->xfer_done, 2 * HZ);
if (ret <= 0) {
dev_err(&spi->dev, "wait error/timedout\n");
if (dma_issued) {
dmaengine_terminate_all(master->dma_rx);
dmaengine_terminate_all(master->dma_rx);
}
ret = -ETIMEDOUT;
} else {
ret = 0;
}
return ret;
}
static int pic32_spi_unprepare_message(struct spi_master *master,
struct spi_message *msg)
{
/* nothing to do */
return 0;
}
static int pic32_spi_unprepare_hardware(struct spi_master *master)
{
struct pic32_spi *pic32s = spi_master_get_devdata(master);
pic32_spi_disable(pic32s);
return 0;
}
/* This may be called multiple times by same spi dev */
static int pic32_spi_setup(struct spi_device *spi)
{
if (!spi->max_speed_hz) {
dev_err(&spi->dev, "No max speed HZ parameter\n");
return -EINVAL;
}
/* PIC32 spi controller can drive /CS during transfer depending
* on tx fifo fill-level. /CS will stay asserted as long as TX
* fifo is non-empty, else will be deasserted indicating
* completion of the ongoing transfer. This might result into
* unreliable/erroneous SPI transactions.
* To avoid that we will always handle /CS by toggling GPIO.
*/
if (!gpio_is_valid(spi->cs_gpio))
return -EINVAL;
gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
return 0;
}
static void pic32_spi_cleanup(struct spi_device *spi)
{
/* de-activate cs-gpio */
gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
}
static void pic32_spi_dma_prep(struct pic32_spi *pic32s, struct device *dev)
{
struct spi_master *master = pic32s->master;
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
master->dma_rx = dma_request_slave_channel_compat(mask, NULL, NULL,
dev, "spi-rx");
if (!master->dma_rx) {
dev_warn(dev, "RX channel not found.\n");
goto out_err;
}
master->dma_tx = dma_request_slave_channel_compat(mask, NULL, NULL,
dev, "spi-tx");
if (!master->dma_tx) {
dev_warn(dev, "TX channel not found.\n");
goto out_err;
}
if (pic32_spi_dma_config(pic32s, DMA_SLAVE_BUSWIDTH_1_BYTE))
goto out_err;
/* DMA chnls allocated and prepared */
set_bit(PIC32F_DMA_PREP, &pic32s->flags);
return;
out_err:
if (master->dma_rx)
dma_release_channel(master->dma_rx);
if (master->dma_tx)
dma_release_channel(master->dma_tx);
}
static void pic32_spi_dma_unprep(struct pic32_spi *pic32s)
{
if (!test_bit(PIC32F_DMA_PREP, &pic32s->flags))
return;
clear_bit(PIC32F_DMA_PREP, &pic32s->flags);
if (pic32s->master->dma_rx)
dma_release_channel(pic32s->master->dma_rx);
if (pic32s->master->dma_tx)
dma_release_channel(pic32s->master->dma_tx);
}
static void pic32_spi_hw_init(struct pic32_spi *pic32s)
{
u32 ctrl;
/* disable hardware */
pic32_spi_disable(pic32s);
ctrl = readl(&pic32s->regs->ctrl);
/* enable enhanced fifo of 128bit deep */
ctrl |= CTRL_ENHBUF;
pic32s->fifo_n_byte = 16;
/* disable framing mode */
ctrl &= ~CTRL_FRMEN;
/* enable master mode while disabled */
ctrl |= CTRL_MSTEN;
/* set tx fifo threshold interrupt */
ctrl &= ~(0x3 << CTRL_TX_INT_SHIFT);
ctrl |= (TX_FIFO_HALF_EMPTY << CTRL_TX_INT_SHIFT);
/* set rx fifo threshold interrupt */
ctrl &= ~(0x3 << CTRL_RX_INT_SHIFT);
ctrl |= (RX_FIFO_NOT_EMPTY << CTRL_RX_INT_SHIFT);
/* select clk source */
ctrl &= ~CTRL_MCLKSEL;
/* set manual /CS mode */
ctrl &= ~CTRL_MSSEN;
writel(ctrl, &pic32s->regs->ctrl);
/* enable error reporting */
ctrl = CTRL2_TX_UR_EN | CTRL2_RX_OV_EN | CTRL2_FRM_ERR_EN;
writel(ctrl, &pic32s->regs->ctrl2_set);
}
static int pic32_spi_hw_probe(struct platform_device *pdev,
struct pic32_spi *pic32s)
{
struct resource *mem;
int ret;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
pic32s->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(pic32s->regs))
return PTR_ERR(pic32s->regs);
pic32s->dma_base = mem->start;
/* get irq resources: err-irq, rx-irq, tx-irq */
pic32s->fault_irq = platform_get_irq_byname(pdev, "fault");
if (pic32s->fault_irq < 0) {
dev_err(&pdev->dev, "fault-irq not found\n");
return pic32s->fault_irq;
}
pic32s->rx_irq = platform_get_irq_byname(pdev, "rx");
if (pic32s->rx_irq < 0) {
dev_err(&pdev->dev, "rx-irq not found\n");
return pic32s->rx_irq;
}
pic32s->tx_irq = platform_get_irq_byname(pdev, "tx");
if (pic32s->tx_irq < 0) {
dev_err(&pdev->dev, "tx-irq not found\n");
return pic32s->tx_irq;
}
/* get clock */
pic32s->clk = devm_clk_get(&pdev->dev, "mck0");
if (IS_ERR(pic32s->clk)) {
dev_err(&pdev->dev, "clk not found\n");
ret = PTR_ERR(pic32s->clk);
goto err_unmap_mem;
}
ret = clk_prepare_enable(pic32s->clk);
if (ret)
goto err_unmap_mem;
pic32_spi_hw_init(pic32s);
return 0;
err_unmap_mem:
dev_err(&pdev->dev, "%s failed, err %d\n", __func__, ret);
return ret;
}
static int pic32_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct pic32_spi *pic32s;
int ret;
master = spi_alloc_master(&pdev->dev, sizeof(*pic32s));
if (!master)
return -ENOMEM;
pic32s = spi_master_get_devdata(master);
pic32s->master = master;
ret = pic32_spi_hw_probe(pdev, pic32s);
if (ret)
goto err_master;
master->dev.of_node = of_node_get(pdev->dev.of_node);
master->mode_bits = SPI_MODE_3 | SPI_MODE_0 | SPI_CS_HIGH;
master->num_chipselect = 1; /* single chip-select */
master->max_speed_hz = clk_get_rate(pic32s->clk);
master->setup = pic32_spi_setup;
master->cleanup = pic32_spi_cleanup;
master->flags = SPI_MASTER_MUST_TX | SPI_MASTER_MUST_RX;
master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
SPI_BPW_MASK(32);
master->transfer_one = pic32_spi_one_transfer;
master->prepare_message = pic32_spi_prepare_message;
master->unprepare_message = pic32_spi_unprepare_message;
master->prepare_transfer_hardware = pic32_spi_prepare_hardware;
master->unprepare_transfer_hardware = pic32_spi_unprepare_hardware;
/* optional DMA support */
pic32_spi_dma_prep(pic32s, &pdev->dev);
if (test_bit(PIC32F_DMA_PREP, &pic32s->flags))
master->can_dma = pic32_spi_can_dma;
init_completion(&pic32s->xfer_done);
pic32s->mode = -1;
/* install irq handlers (with irq-disabled) */
irq_set_status_flags(pic32s->fault_irq, IRQ_NOAUTOEN);
ret = devm_request_irq(&pdev->dev, pic32s->fault_irq,
pic32_spi_fault_irq, IRQF_NO_THREAD,
dev_name(&pdev->dev), pic32s);
if (ret < 0) {
dev_err(&pdev->dev, "request fault-irq %d\n", pic32s->rx_irq);
goto err_bailout;
}
/* receive interrupt handler */
irq_set_status_flags(pic32s->rx_irq, IRQ_NOAUTOEN);
ret = devm_request_irq(&pdev->dev, pic32s->rx_irq,
pic32_spi_rx_irq, IRQF_NO_THREAD,
dev_name(&pdev->dev), pic32s);
if (ret < 0) {
dev_err(&pdev->dev, "request rx-irq %d\n", pic32s->rx_irq);
goto err_bailout;
}
/* transmit interrupt handler */
irq_set_status_flags(pic32s->tx_irq, IRQ_NOAUTOEN);
ret = devm_request_irq(&pdev->dev, pic32s->tx_irq,
pic32_spi_tx_irq, IRQF_NO_THREAD,
dev_name(&pdev->dev), pic32s);
if (ret < 0) {
dev_err(&pdev->dev, "request tx-irq %d\n", pic32s->tx_irq);
goto err_bailout;
}
/* register master */
ret = devm_spi_register_master(&pdev->dev, master);
if (ret) {
dev_err(&master->dev, "failed registering spi master\n");
goto err_bailout;
}
platform_set_drvdata(pdev, pic32s);
return 0;
err_bailout:
clk_disable_unprepare(pic32s->clk);
err_master:
spi_master_put(master);
return ret;
}
static int pic32_spi_remove(struct platform_device *pdev)
{
struct pic32_spi *pic32s;
pic32s = platform_get_drvdata(pdev);
pic32_spi_disable(pic32s);
clk_disable_unprepare(pic32s->clk);
pic32_spi_dma_unprep(pic32s);
return 0;
}
static const struct of_device_id pic32_spi_of_match[] = {
{.compatible = "microchip,pic32mzda-spi",},
{},
};
MODULE_DEVICE_TABLE(of, pic32_spi_of_match);
static struct platform_driver pic32_spi_driver = {
.driver = {
.name = "spi-pic32",
.of_match_table = of_match_ptr(pic32_spi_of_match),
},
.probe = pic32_spi_probe,
.remove = pic32_spi_remove,
};
module_platform_driver(pic32_spi_driver);
MODULE_AUTHOR("Purna Chandra Mandal <purna.mandal@microchip.com>");
MODULE_DESCRIPTION("Microchip SPI driver for PIC32 SPI controller.");
MODULE_LICENSE("GPL v2");