rust: alloc: add Allocator trait

Add a kernel specific `Allocator` trait, that in contrast to the one in
Rust's core library doesn't require unstable features and supports GFP
flags.

Subsequent patches add the following trait implementors: `Kmalloc`,
`Vmalloc` and `KVmalloc`.

Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
Link: https://lore.kernel.org/r/20241004154149.93856-2-dakr@kernel.org
[ Fixed typo. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This commit is contained in:
Danilo Krummrich 2024-10-04 17:41:05 +02:00 committed by Miguel Ojeda
parent ce1c54fdff
commit b7a084ba4f

View File

@ -11,6 +11,7 @@ pub mod vec_ext;
/// Indicates an allocation error.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct AllocError;
use core::{alloc::Layout, ptr::NonNull};
/// Flags to be used when allocating memory.
///
@ -86,3 +87,103 @@ pub mod flags {
/// small allocations.
pub const GFP_NOWAIT: Flags = Flags(bindings::GFP_NOWAIT);
}
/// The kernel's [`Allocator`] trait.
///
/// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffers described
/// via [`Layout`].
///
/// [`Allocator`] is designed to be implemented as a ZST; [`Allocator`] functions do not operate on
/// an object instance.
///
/// In order to be able to support `#[derive(SmartPointer)]` later on, we need to avoid a design
/// that requires an `Allocator` to be instantiated, hence its functions must not contain any kind
/// of `self` parameter.
///
/// # Safety
///
/// - A memory allocation returned from an allocator must remain valid until it is explicitly freed.
///
/// - Any pointer to a valid memory allocation must be valid to be passed to any other [`Allocator`]
/// function of the same type.
///
/// - Implementers must ensure that all trait functions abide by the guarantees documented in the
/// `# Guarantees` sections.
pub unsafe trait Allocator {
/// Allocate memory based on `layout` and `flags`.
///
/// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout
/// constraints (i.e. minimum size and alignment as specified by `layout`).
///
/// This function is equivalent to `realloc` when called with `None`.
///
/// # Guarantees
///
/// When the return value is `Ok(ptr)`, then `ptr` is
/// - valid for reads and writes for `layout.size()` bytes, until it is passed to
/// [`Allocator::free`] or [`Allocator::realloc`],
/// - aligned to `layout.align()`,
///
/// Additionally, `Flags` are honored as documented in
/// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>.
fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
// SAFETY: Passing `None` to `realloc` is valid by its safety requirements and asks for a
// new memory allocation.
unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) }
}
/// Re-allocate an existing memory allocation to satisfy the requested `layout`.
///
/// If the requested size is zero, `realloc` behaves equivalent to `free`.
///
/// If the requested size is larger than the size of the existing allocation, a successful call
/// to `realloc` guarantees that the new or grown buffer has at least `Layout::size` bytes, but
/// may also be larger.
///
/// If the requested size is smaller than the size of the existing allocation, `realloc` may or
/// may not shrink the buffer; this is implementation specific to the allocator.
///
/// On allocation failure, the existing buffer, if any, remains valid.
///
/// The buffer is represented as `NonNull<[u8]>`.
///
/// # Safety
///
/// - If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation
/// created by this [`Allocator`]; if `old_layout` is zero-sized `p` does not need to be a
/// pointer returned by this [`Allocator`].
/// - `ptr` is allowed to be `None`; in this case a new memory allocation is created and
/// `old_layout` is ignored.
/// - `old_layout` must match the `Layout` the allocation has been created with.
///
/// # Guarantees
///
/// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then
/// it additionally guarantees that:
/// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new
/// and old size, i.e. `ret_ptr[0..min(layout.size(), old_layout.size())] ==
/// p[0..min(layout.size(), old_layout.size())]`.
/// - when the return value is `Err(AllocError)`, then `ptr` is still valid.
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
layout: Layout,
old_layout: Layout,
flags: Flags,
) -> Result<NonNull<[u8]>, AllocError>;
/// Free an existing memory allocation.
///
/// # Safety
///
/// - `ptr` must point to an existing and valid memory allocation created by this [`Allocator`];
/// if `old_layout` is zero-sized `p` does not need to be a pointer returned by this
/// [`Allocator`].
/// - `layout` must match the `Layout` the allocation has been created with.
/// - The memory allocation at `ptr` must never again be read from or written to.
unsafe fn free(ptr: NonNull<u8>, layout: Layout) {
// SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this
// allocator. We are passing a `Layout` with the smallest possible alignment, so it is
// smaller than or equal to the alignment previously used with this allocation.
let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) };
}
}