Merge branch 'slab/for-6.12/kmem_cache_args' into slab/for-next

Merge kmem_cache_create() refactoring by Christian Brauner.

Note this includes a merge of the vfs.file tree that contains the
prerequisity kmem_cache_create_rcu() work.
This commit is contained in:
Vlastimil Babka 2024-09-13 11:13:03 +02:00
commit ecc4d6af97
16 changed files with 547 additions and 283 deletions

View File

@ -3451,6 +3451,12 @@ static int tun_chr_fasync(int fd, struct file *file, int on)
struct tun_file *tfile = file->private_data;
int ret;
if (on) {
ret = file_f_owner_allocate(file);
if (ret)
goto out;
}
if ((ret = fasync_helper(fd, file, on, &tfile->fasync)) < 0)
goto out;

View File

@ -2225,6 +2225,12 @@ static int __tty_fasync(int fd, struct file *filp, int on)
if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
goto out;
if (on) {
retval = file_f_owner_allocate(filp);
if (retval)
goto out;
}
retval = fasync_helper(fd, filp, on, &tty->fasync);
if (retval <= 0)
goto out;

View File

@ -33,6 +33,8 @@
#include <asm/siginfo.h>
#include <linux/uaccess.h>
#include "internal.h"
#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
static int setfl(int fd, struct file * filp, unsigned int arg)
@ -87,22 +89,64 @@ static int setfl(int fd, struct file * filp, unsigned int arg)
return error;
}
/*
* Allocate an file->f_owner struct if it doesn't exist, handling racing
* allocations correctly.
*/
int file_f_owner_allocate(struct file *file)
{
struct fown_struct *f_owner;
f_owner = file_f_owner(file);
if (f_owner)
return 0;
f_owner = kzalloc(sizeof(struct fown_struct), GFP_KERNEL);
if (!f_owner)
return -ENOMEM;
rwlock_init(&f_owner->lock);
f_owner->file = file;
/* If someone else raced us, drop our allocation. */
if (unlikely(cmpxchg(&file->f_owner, NULL, f_owner)))
kfree(f_owner);
return 0;
}
EXPORT_SYMBOL(file_f_owner_allocate);
void file_f_owner_release(struct file *file)
{
struct fown_struct *f_owner;
f_owner = file_f_owner(file);
if (f_owner) {
put_pid(f_owner->pid);
kfree(f_owner);
}
}
static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
int force)
{
write_lock_irq(&filp->f_owner.lock);
if (force || !filp->f_owner.pid) {
put_pid(filp->f_owner.pid);
filp->f_owner.pid = get_pid(pid);
filp->f_owner.pid_type = type;
struct fown_struct *f_owner;
f_owner = file_f_owner(filp);
if (WARN_ON_ONCE(!f_owner))
return;
write_lock_irq(&f_owner->lock);
if (force || !f_owner->pid) {
put_pid(f_owner->pid);
f_owner->pid = get_pid(pid);
f_owner->pid_type = type;
if (pid) {
const struct cred *cred = current_cred();
filp->f_owner.uid = cred->uid;
filp->f_owner.euid = cred->euid;
f_owner->uid = cred->uid;
f_owner->euid = cred->euid;
}
}
write_unlock_irq(&filp->f_owner.lock);
write_unlock_irq(&f_owner->lock);
}
void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
@ -119,6 +163,8 @@ int f_setown(struct file *filp, int who, int force)
struct pid *pid = NULL;
int ret = 0;
might_sleep();
type = PIDTYPE_TGID;
if (who < 0) {
/* avoid overflow below */
@ -129,6 +175,10 @@ int f_setown(struct file *filp, int who, int force)
who = -who;
}
ret = file_f_owner_allocate(filp);
if (ret)
return ret;
rcu_read_lock();
if (who) {
pid = find_vpid(who);
@ -152,16 +202,21 @@ void f_delown(struct file *filp)
pid_t f_getown(struct file *filp)
{
pid_t pid = 0;
struct fown_struct *f_owner;
read_lock_irq(&filp->f_owner.lock);
f_owner = file_f_owner(filp);
if (!f_owner)
return pid;
read_lock_irq(&f_owner->lock);
rcu_read_lock();
if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
pid = pid_vnr(filp->f_owner.pid);
if (filp->f_owner.pid_type == PIDTYPE_PGID)
if (pid_task(f_owner->pid, f_owner->pid_type)) {
pid = pid_vnr(f_owner->pid);
if (f_owner->pid_type == PIDTYPE_PGID)
pid = -pid;
}
rcu_read_unlock();
read_unlock_irq(&filp->f_owner.lock);
read_unlock_irq(&f_owner->lock);
return pid;
}
@ -194,6 +249,10 @@ static int f_setown_ex(struct file *filp, unsigned long arg)
return -EINVAL;
}
ret = file_f_owner_allocate(filp);
if (ret)
return ret;
rcu_read_lock();
pid = find_vpid(owner.pid);
if (owner.pid && !pid)
@ -210,13 +269,20 @@ static int f_getown_ex(struct file *filp, unsigned long arg)
struct f_owner_ex __user *owner_p = (void __user *)arg;
struct f_owner_ex owner = {};
int ret = 0;
struct fown_struct *f_owner;
enum pid_type pid_type = PIDTYPE_PID;
read_lock_irq(&filp->f_owner.lock);
rcu_read_lock();
if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
owner.pid = pid_vnr(filp->f_owner.pid);
rcu_read_unlock();
switch (filp->f_owner.pid_type) {
f_owner = file_f_owner(filp);
if (f_owner) {
read_lock_irq(&f_owner->lock);
rcu_read_lock();
if (pid_task(f_owner->pid, f_owner->pid_type))
owner.pid = pid_vnr(f_owner->pid);
rcu_read_unlock();
pid_type = f_owner->pid_type;
}
switch (pid_type) {
case PIDTYPE_PID:
owner.type = F_OWNER_TID;
break;
@ -234,7 +300,8 @@ static int f_getown_ex(struct file *filp, unsigned long arg)
ret = -EINVAL;
break;
}
read_unlock_irq(&filp->f_owner.lock);
if (f_owner)
read_unlock_irq(&f_owner->lock);
if (!ret) {
ret = copy_to_user(owner_p, &owner, sizeof(owner));
@ -248,14 +315,18 @@ static int f_getown_ex(struct file *filp, unsigned long arg)
static int f_getowner_uids(struct file *filp, unsigned long arg)
{
struct user_namespace *user_ns = current_user_ns();
struct fown_struct *f_owner;
uid_t __user *dst = (void __user *)arg;
uid_t src[2];
uid_t src[2] = {0, 0};
int err;
read_lock_irq(&filp->f_owner.lock);
src[0] = from_kuid(user_ns, filp->f_owner.uid);
src[1] = from_kuid(user_ns, filp->f_owner.euid);
read_unlock_irq(&filp->f_owner.lock);
f_owner = file_f_owner(filp);
if (f_owner) {
read_lock_irq(&f_owner->lock);
src[0] = from_kuid(user_ns, f_owner->uid);
src[1] = from_kuid(user_ns, f_owner->euid);
read_unlock_irq(&f_owner->lock);
}
err = put_user(src[0], &dst[0]);
err |= put_user(src[1], &dst[1]);
@ -343,6 +414,30 @@ static long f_dupfd_query(int fd, struct file *filp)
return f.file == filp;
}
static int f_owner_sig(struct file *filp, int signum, bool setsig)
{
int ret = 0;
struct fown_struct *f_owner;
might_sleep();
if (setsig) {
if (!valid_signal(signum))
return -EINVAL;
ret = file_f_owner_allocate(filp);
if (ret)
return ret;
}
f_owner = file_f_owner(filp);
if (setsig)
f_owner->signum = signum;
else if (f_owner)
ret = f_owner->signum;
return ret;
}
static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
struct file *filp)
{
@ -421,15 +516,10 @@ static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
err = f_getowner_uids(filp, arg);
break;
case F_GETSIG:
err = filp->f_owner.signum;
err = f_owner_sig(filp, 0, false);
break;
case F_SETSIG:
/* arg == 0 restores default behaviour. */
if (!valid_signal(argi)) {
break;
}
err = 0;
filp->f_owner.signum = argi;
err = f_owner_sig(filp, argi, true);
break;
case F_GETLEASE:
err = fcntl_getlease(filp);
@ -844,14 +934,19 @@ static void send_sigurg_to_task(struct task_struct *p,
do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
}
int send_sigurg(struct fown_struct *fown)
int send_sigurg(struct file *file)
{
struct fown_struct *fown;
struct task_struct *p;
enum pid_type type;
struct pid *pid;
unsigned long flags;
int ret = 0;
fown = file_f_owner(file);
if (!fown)
return 0;
read_lock_irqsave(&fown->lock, flags);
type = fown->pid_type;
@ -1027,13 +1122,16 @@ static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
}
read_lock_irqsave(&fa->fa_lock, flags);
if (fa->fa_file) {
fown = &fa->fa_file->f_owner;
fown = file_f_owner(fa->fa_file);
if (!fown)
goto next;
/* Don't send SIGURG to processes which have not set a
queued signum: SIGURG has its own default signalling
mechanism. */
if (!(sig == SIGURG && fown->signum == 0))
send_sigio(fown, fa->fa_fd, band);
}
next:
read_unlock_irqrestore(&fa->fa_lock, flags);
fa = rcu_dereference(fa->fa_next);
}

View File

@ -155,7 +155,6 @@ static int init_file(struct file *f, int flags, const struct cred *cred)
return error;
}
rwlock_init(&f->f_owner.lock);
spin_lock_init(&f->f_lock);
mutex_init(&f->f_pos_lock);
f->f_flags = flags;
@ -425,7 +424,7 @@ static void __fput(struct file *file)
cdev_put(inode->i_cdev);
}
fops_put(file->f_op);
put_pid(file->f_owner.pid);
file_f_owner_release(file);
put_file_access(file);
dput(dentry);
if (unlikely(mode & FMODE_NEED_UNMOUNT))
@ -512,9 +511,14 @@ EXPORT_SYMBOL(__fput_sync);
void __init files_init(void)
{
filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN |
SLAB_PANIC | SLAB_ACCOUNT, NULL);
struct kmem_cache_args args = {
.use_freeptr_offset = true,
.freeptr_offset = offsetof(struct file, f_freeptr),
};
filp_cachep = kmem_cache_create("filp", sizeof(struct file), &args,
SLAB_HWCACHE_ALIGN | SLAB_PANIC |
SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
percpu_counter_init(&nr_files, 0, GFP_KERNEL);
}

View File

@ -337,3 +337,4 @@ static inline bool path_mounted(const struct path *path)
{
return path->mnt->mnt_root == path->dentry;
}
void file_f_owner_release(struct file *file);

View File

@ -1451,7 +1451,7 @@ int lease_modify(struct file_lease *fl, int arg, struct list_head *dispose)
struct file *filp = fl->c.flc_file;
f_delown(filp);
filp->f_owner.signum = 0;
file_f_owner(filp)->signum = 0;
fasync_helper(0, fl->c.flc_file, 0, &fl->fl_fasync);
if (fl->fl_fasync != NULL) {
printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
@ -1783,6 +1783,10 @@ generic_add_lease(struct file *filp, int arg, struct file_lease **flp, void **pr
lease = *flp;
trace_generic_add_lease(inode, lease);
error = file_f_owner_allocate(filp);
if (error)
return error;
/* Note that arg is never F_UNLCK here */
ctx = locks_get_lock_context(inode, arg);
if (!ctx)

View File

@ -110,7 +110,7 @@ static int dnotify_handle_event(struct fsnotify_mark *inode_mark, u32 mask,
prev = &dn->dn_next;
continue;
}
fown = &dn->dn_filp->f_owner;
fown = file_f_owner(dn->dn_filp);
send_sigio(fown, dn->dn_fd, POLL_MSG);
if (dn->dn_mask & FS_DN_MULTISHOT)
prev = &dn->dn_next;
@ -316,6 +316,10 @@ int fcntl_dirnotify(int fd, struct file *filp, unsigned int arg)
goto out_err;
}
error = file_f_owner_allocate(filp);
if (error)
goto out_err;
/* set up the new_fsn_mark and new_dn_mark */
new_fsn_mark = &new_dn_mark->fsn_mark;
fsnotify_init_mark(new_fsn_mark, dnotify_group);

View File

@ -947,6 +947,7 @@ static inline unsigned imajor(const struct inode *inode)
}
struct fown_struct {
struct file *file; /* backpointer for security modules */
rwlock_t lock; /* protects pid, uid, euid fields */
struct pid *pid; /* pid or -pgrp where SIGIO should be sent */
enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */
@ -986,52 +987,65 @@ static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
index < ra->start + ra->size);
}
/*
* f_{lock,count,pos_lock} members can be highly contended and share
* the same cacheline. f_{lock,mode} are very frequently used together
* and so share the same cacheline as well. The read-mostly
* f_{path,inode,op} are kept on a separate cacheline.
/**
* struct file - Represents a file
* @f_count: reference count
* @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context.
* @f_mode: FMODE_* flags often used in hotpaths
* @f_op: file operations
* @f_mapping: Contents of a cacheable, mappable object.
* @private_data: filesystem or driver specific data
* @f_inode: cached inode
* @f_flags: file flags
* @f_iocb_flags: iocb flags
* @f_cred: stashed credentials of creator/opener
* @f_path: path of the file
* @f_pos_lock: lock protecting file position
* @f_pos: file position
* @f_version: file version
* @f_security: LSM security context of this file
* @f_owner: file owner
* @f_wb_err: writeback error
* @f_sb_err: per sb writeback errors
* @f_ep: link of all epoll hooks for this file
* @f_task_work: task work entry point
* @f_llist: work queue entrypoint
* @f_ra: file's readahead state
* @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.)
*/
struct file {
union {
/* fput() uses task work when closing and freeing file (default). */
struct callback_head f_task_work;
/* fput() must use workqueue (most kernel threads). */
struct llist_node f_llist;
unsigned int f_iocb_flags;
};
/*
* Protects f_ep, f_flags.
* Must not be taken from IRQ context.
*/
spinlock_t f_lock;
fmode_t f_mode;
atomic_long_t f_count;
struct mutex f_pos_lock;
loff_t f_pos;
unsigned int f_flags;
struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;
struct path f_path;
struct inode *f_inode; /* cached value */
atomic_long_t f_count;
spinlock_t f_lock;
fmode_t f_mode;
const struct file_operations *f_op;
u64 f_version;
struct address_space *f_mapping;
void *private_data;
struct inode *f_inode;
unsigned int f_flags;
unsigned int f_iocb_flags;
const struct cred *f_cred;
/* --- cacheline 1 boundary (64 bytes) --- */
struct path f_path;
struct mutex f_pos_lock;
loff_t f_pos;
u64 f_version;
/* --- cacheline 2 boundary (128 bytes) --- */
#ifdef CONFIG_SECURITY
void *f_security;
void *f_security;
#endif
/* needed for tty driver, and maybe others */
void *private_data;
struct fown_struct *f_owner;
errseq_t f_wb_err;
errseq_t f_sb_err;
#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c to link all the hooks to this file */
struct hlist_head *f_ep;
#endif /* #ifdef CONFIG_EPOLL */
struct address_space *f_mapping;
errseq_t f_wb_err;
errseq_t f_sb_err; /* for syncfs */
struct hlist_head *f_ep;
#endif
union {
struct callback_head f_task_work;
struct llist_node f_llist;
struct file_ra_state f_ra;
freeptr_t f_freeptr;
};
/* --- cacheline 3 boundary (192 bytes) --- */
} __randomize_layout
__attribute__((aligned(4))); /* lest something weird decides that 2 is OK */
@ -1076,6 +1090,12 @@ struct file_lease;
#define OFFT_OFFSET_MAX type_max(off_t)
#endif
int file_f_owner_allocate(struct file *file);
static inline struct fown_struct *file_f_owner(const struct file *file)
{
return READ_ONCE(file->f_owner);
}
extern void send_sigio(struct fown_struct *fown, int fd, int band);
static inline struct inode *file_inode(const struct file *f)
@ -1124,7 +1144,7 @@ extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force
extern int f_setown(struct file *filp, int who, int force);
extern void f_delown(struct file *filp);
extern pid_t f_getown(struct file *filp);
extern int send_sigurg(struct fown_struct *fown);
extern int send_sigurg(struct file *file);
/*
* sb->s_flags. Note that these mirror the equivalent MS_* flags where

View File

@ -212,6 +212,12 @@ enum _slab_flag_bits {
#define SLAB_NO_OBJ_EXT __SLAB_FLAG_UNUSED
#endif
/*
* freeptr_t represents a SLUB freelist pointer, which might be encoded
* and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
*/
typedef struct { unsigned long v; } freeptr_t;
/*
* ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
*
@ -234,14 +240,173 @@ struct mem_cgroup;
*/
bool slab_is_available(void);
struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
unsigned int align, slab_flags_t flags,
void (*ctor)(void *));
struct kmem_cache *kmem_cache_create_usercopy(const char *name,
unsigned int size, unsigned int align,
slab_flags_t flags,
unsigned int useroffset, unsigned int usersize,
void (*ctor)(void *));
/**
* struct kmem_cache_args - Less common arguments for kmem_cache_create()
*
* Any uninitialized fields of the structure are interpreted as unused. The
* exception is @freeptr_offset where %0 is a valid value, so
* @use_freeptr_offset must be also set to %true in order to interpret the field
* as used. For @useroffset %0 is also valid, but only with non-%0
* @usersize.
*
* When %NULL args is passed to kmem_cache_create(), it is equivalent to all
* fields unused.
*/
struct kmem_cache_args {
/**
* @align: The required alignment for the objects.
*
* %0 means no specific alignment is requested.
*/
unsigned int align;
/**
* @useroffset: Usercopy region offset.
*
* %0 is a valid offset, when @usersize is non-%0
*/
unsigned int useroffset;
/**
* @usersize: Usercopy region size.
*
* %0 means no usercopy region is specified.
*/
unsigned int usersize;
/**
* @freeptr_offset: Custom offset for the free pointer
* in &SLAB_TYPESAFE_BY_RCU caches
*
* By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer
* outside of the object. This might cause the object to grow in size.
* Cache creators that have a reason to avoid this can specify a custom
* free pointer offset in their struct where the free pointer will be
* placed.
*
* Note that placing the free pointer inside the object requires the
* caller to ensure that no fields are invalidated that are required to
* guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for
* details).
*
* Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset
* is specified, %use_freeptr_offset must be set %true.
*
* Note that @ctor currently isn't supported with custom free pointers
* as a @ctor requires an external free pointer.
*/
unsigned int freeptr_offset;
/**
* @use_freeptr_offset: Whether a @freeptr_offset is used.
*/
bool use_freeptr_offset;
/**
* @ctor: A constructor for the objects.
*
* The constructor is invoked for each object in a newly allocated slab
* page. It is the cache user's responsibility to free object in the
* same state as after calling the constructor, or deal appropriately
* with any differences between a freshly constructed and a reallocated
* object.
*
* %NULL means no constructor.
*/
void (*ctor)(void *);
};
struct kmem_cache *__kmem_cache_create_args(const char *name,
unsigned int object_size,
struct kmem_cache_args *args,
slab_flags_t flags);
static inline struct kmem_cache *
__kmem_cache_create(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *))
{
struct kmem_cache_args kmem_args = {
.align = align,
.ctor = ctor,
};
return __kmem_cache_create_args(name, size, &kmem_args, flags);
}
/**
* kmem_cache_create_usercopy - Create a kmem cache with a region suitable
* for copying to userspace.
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @useroffset: Usercopy region offset
* @usersize: Usercopy region size
* @ctor: A constructor for the objects, or %NULL.
*
* This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY()
* if whitelisting a single field is sufficient, or kmem_cache_create() with
* the necessary parameters passed via the args parameter (see
* &struct kmem_cache_args)
*
* Return: a pointer to the cache on success, NULL on failure.
*/
static inline struct kmem_cache *
kmem_cache_create_usercopy(const char *name, unsigned int size,
unsigned int align, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize,
void (*ctor)(void *))
{
struct kmem_cache_args kmem_args = {
.align = align,
.ctor = ctor,
.useroffset = useroffset,
.usersize = usersize,
};
return __kmem_cache_create_args(name, size, &kmem_args, flags);
}
/* If NULL is passed for @args, use this variant with default arguments. */
static inline struct kmem_cache *
__kmem_cache_default_args(const char *name, unsigned int size,
struct kmem_cache_args *args,
slab_flags_t flags)
{
struct kmem_cache_args kmem_default_args = {};
/* Make sure we don't get passed garbage. */
if (WARN_ON_ONCE(args))
return ERR_PTR(-EINVAL);
return __kmem_cache_create_args(name, size, &kmem_default_args, flags);
}
/**
* kmem_cache_create - Create a kmem cache.
* @__name: A string which is used in /proc/slabinfo to identify this cache.
* @__object_size: The size of objects to be created in this cache.
* @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL
* means defaults will be used for all the arguments.
*
* This is currently implemented as a macro using ``_Generic()`` to call
* either the new variant of the function, or a legacy one.
*
* The new variant has 4 parameters:
* ``kmem_cache_create(name, object_size, args, flags)``
*
* See __kmem_cache_create_args() which implements this.
*
* The legacy variant has 5 parameters:
* ``kmem_cache_create(name, object_size, align, flags, ctor)``
*
* The align and ctor parameters map to the respective fields of
* &struct kmem_cache_args
*
* Context: Cannot be called within a interrupt, but can be interrupted.
*
* Return: a pointer to the cache on success, NULL on failure.
*/
#define kmem_cache_create(__name, __object_size, __args, ...) \
_Generic((__args), \
struct kmem_cache_args *: __kmem_cache_create_args, \
void *: __kmem_cache_default_args, \
default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__)
void kmem_cache_destroy(struct kmem_cache *s);
int kmem_cache_shrink(struct kmem_cache *s);
@ -253,20 +418,23 @@ int kmem_cache_shrink(struct kmem_cache *s);
* f.e. add ____cacheline_aligned_in_smp to the struct declaration
* then the objects will be properly aligned in SMP configurations.
*/
#define KMEM_CACHE(__struct, __flags) \
kmem_cache_create(#__struct, sizeof(struct __struct), \
__alignof__(struct __struct), (__flags), NULL)
#define KMEM_CACHE(__struct, __flags) \
__kmem_cache_create_args(#__struct, sizeof(struct __struct), \
&(struct kmem_cache_args) { \
.align = __alignof__(struct __struct), \
}, (__flags))
/*
* To whitelist a single field for copying to/from usercopy, use this
* macro instead for KMEM_CACHE() above.
*/
#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
kmem_cache_create_usercopy(#__struct, \
sizeof(struct __struct), \
__alignof__(struct __struct), (__flags), \
offsetof(struct __struct, __field), \
sizeof_field(struct __struct, __field), NULL)
#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
__kmem_cache_create_args(#__struct, sizeof(struct __struct), \
&(struct kmem_cache_args) { \
.align = __alignof__(struct __struct), \
.useroffset = offsetof(struct __struct, __field), \
.usersize = sizeof_field(struct __struct, __field), \
}, (__flags))
/*
* Common kmalloc functions provided by all allocators

View File

@ -3638,6 +3638,11 @@ SYSCALL_DEFINE2(io_uring_setup, u32, entries,
static int __init io_uring_init(void)
{
struct kmem_cache_args kmem_args = {
.useroffset = offsetof(struct io_kiocb, cmd.data),
.usersize = sizeof_field(struct io_kiocb, cmd.data),
};
#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
@ -3722,12 +3727,9 @@ static int __init io_uring_init(void)
* range, and HARDENED_USERCOPY will complain if we haven't
* correctly annotated this range.
*/
req_cachep = kmem_cache_create_usercopy("io_kiocb",
sizeof(struct io_kiocb), 0,
SLAB_HWCACHE_ALIGN | SLAB_PANIC |
SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
offsetof(struct io_kiocb, cmd.data),
sizeof_field(struct io_kiocb, cmd.data), NULL);
req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
SLAB_TYPESAFE_BY_RCU);
io_buf_cachep = KMEM_CACHE(io_buffer,
SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);

View File

@ -422,7 +422,9 @@ kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller)
gfp_t kmalloc_fix_flags(gfp_t flags);
/* Functions provided by the slab allocators */
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
int do_kmem_cache_create(struct kmem_cache *s, const char *name,
unsigned int size, struct kmem_cache_args *args,
slab_flags_t flags);
void __init kmem_cache_init(void);
extern void create_boot_cache(struct kmem_cache *, const char *name,

View File

@ -215,32 +215,29 @@ struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
}
static struct kmem_cache *create_cache(const char *name,
unsigned int object_size, unsigned int align,
slab_flags_t flags, unsigned int useroffset,
unsigned int usersize, void (*ctor)(void *),
struct kmem_cache *root_cache)
unsigned int object_size,
struct kmem_cache_args *args,
slab_flags_t flags)
{
struct kmem_cache *s;
int err;
if (WARN_ON(useroffset + usersize > object_size))
useroffset = usersize = 0;
if (WARN_ON(args->useroffset + args->usersize > object_size))
args->useroffset = args->usersize = 0;
/* If a custom freelist pointer is requested make sure it's sane. */
err = -EINVAL;
if (args->use_freeptr_offset &&
(args->freeptr_offset >= object_size ||
!(flags & SLAB_TYPESAFE_BY_RCU) ||
!IS_ALIGNED(args->freeptr_offset, sizeof(freeptr_t))))
goto out;
err = -ENOMEM;
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
if (!s)
goto out;
s->name = name;
s->size = s->object_size = object_size;
s->align = align;
s->ctor = ctor;
#ifdef CONFIG_HARDENED_USERCOPY
s->useroffset = useroffset;
s->usersize = usersize;
#endif
err = __kmem_cache_create(s, flags);
err = do_kmem_cache_create(s, name, object_size, args, flags);
if (err)
goto out_free_cache;
@ -255,39 +252,24 @@ static struct kmem_cache *create_cache(const char *name,
}
/**
* kmem_cache_create_usercopy - Create a cache with a region suitable
* for copying to userspace
* __kmem_cache_create_args - Create a kmem cache.
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @useroffset: Usercopy region offset
* @usersize: Usercopy region size
* @ctor: A constructor for the objects.
* @object_size: The size of objects to be created in this cache.
* @args: Additional arguments for the cache creation (see
* &struct kmem_cache_args).
* @flags: See %SLAB_* flags for an explanation of individual @flags.
*
* Cannot be called within a interrupt, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
* Not to be called directly, use the kmem_cache_create() wrapper with the same
* parameters.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
* Context: Cannot be called within a interrupt, but can be interrupted.
*
* Return: a pointer to the cache on success, NULL on failure.
*/
struct kmem_cache *
kmem_cache_create_usercopy(const char *name,
unsigned int size, unsigned int align,
slab_flags_t flags,
unsigned int useroffset, unsigned int usersize,
void (*ctor)(void *))
struct kmem_cache *__kmem_cache_create_args(const char *name,
unsigned int object_size,
struct kmem_cache_args *args,
slab_flags_t flags)
{
struct kmem_cache *s = NULL;
const char *cache_name;
@ -309,7 +291,7 @@ kmem_cache_create_usercopy(const char *name,
mutex_lock(&slab_mutex);
err = kmem_cache_sanity_check(name, size);
err = kmem_cache_sanity_check(name, object_size);
if (err) {
goto out_unlock;
}
@ -330,12 +312,14 @@ kmem_cache_create_usercopy(const char *name,
/* Fail closed on bad usersize of useroffset values. */
if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
WARN_ON(!usersize && useroffset) ||
WARN_ON(size < usersize || size - usersize < useroffset))
usersize = useroffset = 0;
WARN_ON(!args->usersize && args->useroffset) ||
WARN_ON(object_size < args->usersize ||
object_size - args->usersize < args->useroffset))
args->usersize = args->useroffset = 0;
if (!usersize)
s = __kmem_cache_alias(name, size, align, flags, ctor);
if (!args->usersize)
s = __kmem_cache_alias(name, object_size, args->align, flags,
args->ctor);
if (s)
goto out_unlock;
@ -345,9 +329,8 @@ kmem_cache_create_usercopy(const char *name,
goto out_unlock;
}
s = create_cache(cache_name, size,
calculate_alignment(flags, align, size),
flags, useroffset, usersize, ctor, NULL);
args->align = calculate_alignment(flags, args->align, object_size);
s = create_cache(cache_name, object_size, args, flags);
if (IS_ERR(s)) {
err = PTR_ERR(s);
kfree_const(cache_name);
@ -369,41 +352,7 @@ kmem_cache_create_usercopy(const char *name,
}
return s;
}
EXPORT_SYMBOL(kmem_cache_create_usercopy);
/**
* kmem_cache_create - Create a cache.
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @ctor: A constructor for the objects.
*
* Cannot be called within a interrupt, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*
* Return: a pointer to the cache on success, NULL on failure.
*/
struct kmem_cache *
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *))
{
return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
ctor);
}
EXPORT_SYMBOL(kmem_cache_create);
EXPORT_SYMBOL(__kmem_cache_create_args);
static struct kmem_cache *kmem_buckets_cache __ro_after_init;
@ -689,9 +638,7 @@ void __init create_boot_cache(struct kmem_cache *s, const char *name,
{
int err;
unsigned int align = ARCH_KMALLOC_MINALIGN;
s->name = name;
s->size = s->object_size = size;
struct kmem_cache_args kmem_args = {};
/*
* kmalloc caches guarantee alignment of at least the largest
@ -700,14 +647,14 @@ void __init create_boot_cache(struct kmem_cache *s, const char *name,
*/
if (flags & SLAB_KMALLOC)
align = max(align, 1U << (ffs(size) - 1));
s->align = calculate_alignment(flags, align, size);
kmem_args.align = calculate_alignment(flags, align, size);
#ifdef CONFIG_HARDENED_USERCOPY
s->useroffset = useroffset;
s->usersize = usersize;
kmem_args.useroffset = useroffset;
kmem_args.usersize = usersize;
#endif
err = __kmem_cache_create(s, flags);
err = do_kmem_cache_create(s, name, size, &kmem_args, flags);
if (err)
panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",

160
mm/slub.c
View File

@ -465,12 +465,6 @@ static struct workqueue_struct *flushwq;
* Core slab cache functions
*******************************************************************/
/*
* freeptr_t represents a SLUB freelist pointer, which might be encoded
* and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
*/
typedef struct { unsigned long v; } freeptr_t;
/*
* Returns freelist pointer (ptr). With hardening, this is obfuscated
* with an XOR of the address where the pointer is held and a per-cache
@ -4019,6 +4013,8 @@ static void *__slab_alloc_node(struct kmem_cache *s,
/*
* If the object has been wiped upon free, make sure it's fully initialized by
* zeroing out freelist pointer.
*
* Note that we also wipe custom freelist pointers.
*/
static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
void *obj)
@ -5282,7 +5278,7 @@ static void set_cpu_partial(struct kmem_cache *s)
* calculate_sizes() determines the order and the distribution of data within
* a slab object.
*/
static int calculate_sizes(struct kmem_cache *s)
static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
{
slab_flags_t flags = s->flags;
unsigned int size = s->object_size;
@ -5323,7 +5319,8 @@ static int calculate_sizes(struct kmem_cache *s)
*/
s->inuse = size;
if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor ||
if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
(flags & SLAB_POISON) || s->ctor ||
((flags & SLAB_RED_ZONE) &&
(s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
/*
@ -5344,6 +5341,8 @@ static int calculate_sizes(struct kmem_cache *s)
*/
s->offset = size;
size += sizeof(void *);
} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
s->offset = args->freeptr_offset;
} else {
/*
* Store freelist pointer near middle of object to keep
@ -5418,65 +5417,6 @@ static int calculate_sizes(struct kmem_cache *s)
return !!oo_objects(s->oo);
}
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
{
s->flags = kmem_cache_flags(flags, s->name);
#ifdef CONFIG_SLAB_FREELIST_HARDENED
s->random = get_random_long();
#endif
if (!calculate_sizes(s))
goto error;
if (disable_higher_order_debug) {
/*
* Disable debugging flags that store metadata if the min slab
* order increased.
*/
if (get_order(s->size) > get_order(s->object_size)) {
s->flags &= ~DEBUG_METADATA_FLAGS;
s->offset = 0;
if (!calculate_sizes(s))
goto error;
}
}
#ifdef system_has_freelist_aba
if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
/* Enable fast mode */
s->flags |= __CMPXCHG_DOUBLE;
}
#endif
/*
* The larger the object size is, the more slabs we want on the partial
* list to avoid pounding the page allocator excessively.
*/
s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
set_cpu_partial(s);
#ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 1000;
#endif
/* Initialize the pre-computed randomized freelist if slab is up */
if (slab_state >= UP) {
if (init_cache_random_seq(s))
goto error;
}
if (!init_kmem_cache_nodes(s))
goto error;
if (alloc_kmem_cache_cpus(s))
return 0;
error:
__kmem_cache_release(s);
return -EINVAL;
}
static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
const char *text)
{
@ -6030,28 +5970,90 @@ __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
return s;
}
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
int do_kmem_cache_create(struct kmem_cache *s, const char *name,
unsigned int size, struct kmem_cache_args *args,
slab_flags_t flags)
{
int err;
int err = -EINVAL;
err = kmem_cache_open(s, flags);
if (err)
return err;
s->name = name;
s->size = s->object_size = size;
s->flags = kmem_cache_flags(flags, s->name);
#ifdef CONFIG_SLAB_FREELIST_HARDENED
s->random = get_random_long();
#endif
s->align = args->align;
s->ctor = args->ctor;
#ifdef CONFIG_HARDENED_USERCOPY
s->useroffset = args->useroffset;
s->usersize = args->usersize;
#endif
if (!calculate_sizes(args, s))
goto out;
if (disable_higher_order_debug) {
/*
* Disable debugging flags that store metadata if the min slab
* order increased.
*/
if (get_order(s->size) > get_order(s->object_size)) {
s->flags &= ~DEBUG_METADATA_FLAGS;
s->offset = 0;
if (!calculate_sizes(args, s))
goto out;
}
}
#ifdef system_has_freelist_aba
if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
/* Enable fast mode */
s->flags |= __CMPXCHG_DOUBLE;
}
#endif
/*
* The larger the object size is, the more slabs we want on the partial
* list to avoid pounding the page allocator excessively.
*/
s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
set_cpu_partial(s);
#ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 1000;
#endif
/* Initialize the pre-computed randomized freelist if slab is up */
if (slab_state >= UP) {
if (init_cache_random_seq(s))
goto out;
}
if (!init_kmem_cache_nodes(s))
goto out;
if (!alloc_kmem_cache_cpus(s))
goto out;
/* Mutex is not taken during early boot */
if (slab_state <= UP)
return 0;
if (slab_state <= UP) {
err = 0;
goto out;
}
err = sysfs_slab_add(s);
if (err) {
__kmem_cache_release(s);
return err;
}
if (err)
goto out;
if (s->flags & SLAB_STORE_USER)
debugfs_slab_add(s);
return 0;
out:
if (err)
__kmem_cache_release(s);
return err;
}
#ifdef SLAB_SUPPORTS_SYSFS

View File

@ -3429,7 +3429,7 @@ static void sock_def_destruct(struct sock *sk)
void sk_send_sigurg(struct sock *sk)
{
if (sk->sk_socket && sk->sk_socket->file)
if (send_sigurg(&sk->sk_socket->file->f_owner))
if (send_sigurg(sk->sk_socket->file))
sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
}
EXPORT_SYMBOL(sk_send_sigurg);

View File

@ -3950,7 +3950,7 @@ static int selinux_file_send_sigiotask(struct task_struct *tsk,
struct file_security_struct *fsec;
/* struct fown_struct is never outside the context of a struct file */
file = container_of(fown, struct file, f_owner);
file = fown->file;
fsec = selinux_file(file);

View File

@ -1950,7 +1950,7 @@ static int smack_file_send_sigiotask(struct task_struct *tsk,
/*
* struct fown_struct is never outside the context of a struct file
*/
file = container_of(fown, struct file, f_owner);
file = fown->file;
/* we don't log here as rc can be overriden */
blob = smack_file(file);