perf intel-pt: Support itrace A option to approximate IPC

Normally, for cycle-acccurate mode, IPC values are an exact number of
instructions and cycles. Due to the granularity of timestamps, that happens
only when a CYC packet correlates to the event.

Support the itrace 'A' option, to use instead, the number of cycles
associated with the current timestamp. This provides IPC information for
every change of timestamp, but at the expense of accuracy. Due to the
granularity of timestamps, the actual number of cycles increases even
though the cycles reported does not. The number of instructions is known,
but if IPC is reported, cycles can be too low and so IPC is too high. Note
that inaccuracy decreases as the period of sampling increases i.e. if the
number of cycles is too low by a small amount, that becomes less
significant if the number of cycles is large.

Furthermore, it can be used in conjunction with dlfilter-show-cycles.so
to provide higher granularity cycle information.

Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20211027080334.365596-4-adrian.hunter@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This commit is contained in:
Adrian Hunter 2021-10-27 11:03:31 +03:00 committed by Arnaldo Carvalho de Melo
parent b6778fe1bb
commit f2b91386ff
4 changed files with 24 additions and 4 deletions

View File

@ -157,6 +157,15 @@ of instructions and number of cycles since the last update, and thus represent
the average IPC since the last IPC for that event type. Note IPC for "branches"
events is calculated separately from IPC for "instructions" events.
Even with the 'cyc' config term, it is possible to produce IPC information for
every change of timestamp, but at the expense of accuracy. That is selected by
specifying the itrace 'A' option. Due to the granularity of timestamps, the
actual number of cycles increases even though the cycles reported does not.
The number of instructions is known, but if IPC is reported, cycles can be too
low and so IPC is too high. Note that inaccuracy decreases as the period of
sampling increases i.e. if the number of cycles is too low by a small amount,
that becomes less significant if the number of cycles is large.
Also note that the IPC instruction count may or may not include the current
instruction. If the cycle count is associated with an asynchronous branch
(e.g. page fault or interrupt), then the instruction count does not include the
@ -873,6 +882,7 @@ The letters are:
L synthesize last branch entries on existing event records
s skip initial number of events
q quicker (less detailed) decoding
A approximate IPC
Z prefer to ignore timestamps (so-called "timeless" decoding)
"Instructions" events look like they were recorded by "perf record -e

View File

@ -608,6 +608,7 @@ static inline void intel_pt_update_sample_time(struct intel_pt_decoder *decoder)
{
decoder->sample_timestamp = decoder->timestamp;
decoder->sample_insn_cnt = decoder->timestamp_insn_cnt;
decoder->state.cycles = decoder->tot_cyc_cnt;
}
static void intel_pt_reposition(struct intel_pt_decoder *decoder)

View File

@ -218,6 +218,7 @@ struct intel_pt_state {
uint64_t to_ip;
uint64_t tot_insn_cnt;
uint64_t tot_cyc_cnt;
uint64_t cycles;
uint64_t timestamp;
uint64_t est_timestamp;
uint64_t trace_nr;

View File

@ -172,6 +172,7 @@ struct intel_pt_queue {
bool step_through_buffers;
bool use_buffer_pid_tid;
bool sync_switch;
bool sample_ipc;
pid_t pid, tid;
int cpu;
int switch_state;
@ -1581,7 +1582,7 @@ static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
sample.branch_stack = (struct branch_stack *)&dummy_bs;
}
if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
if (ptq->sample_ipc)
sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
if (sample.cyc_cnt) {
sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
@ -1632,7 +1633,7 @@ static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
else
sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
if (ptq->sample_ipc)
sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
if (sample.cyc_cnt) {
sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
@ -2245,8 +2246,15 @@ static int intel_pt_sample(struct intel_pt_queue *ptq)
ptq->have_sample = false;
ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
if (pt->synth_opts.approx_ipc) {
ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
ptq->ipc_cyc_cnt = ptq->state->cycles;
ptq->sample_ipc = true;
} else {
ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
}
/*
* Do PEBS first to allow for the possibility that the PEBS timestamp