commit 44d9b07e52 upstream.
Committing a transaction tx0 with a defer ops chain of (A, B, C)
creates a chain of transactions that looks like this:
tx0 -> txA -> txB -> txC
Prior to commit cb04211748, __xfs_trans_commit would run precommits
on tx0, then call xfs_defer_finish_noroll to convert A-C to tx[A-C].
Unfortunately, after the finish_noroll loop we forgot to run precommits
on txC. That was fixed by adding the second precommit call.
Unfortunately, none of us remembered that xfs_defer_finish_noroll
calls __xfs_trans_commit a second time to commit tx0 before finishing
work A in txA and committing that. In other words, we run precommits
twice on tx0:
xfs_trans_commit(tx0)
__xfs_trans_commit(tx0, false)
xfs_trans_run_precommits(tx0)
xfs_defer_finish_noroll(tx0)
xfs_trans_roll(tx0)
txA = xfs_trans_dup(tx0)
__xfs_trans_commit(tx0, true)
xfs_trans_run_precommits(tx0)
This currently isn't an issue because the inode item precommit is
idempotent; the iunlink item precommit deletes itself so it can't be
called again; and the buffer/dquot item precommits only check the incore
objects for corruption. However, it doesn't make sense to run
precommits twice.
Fix this situation by only running precommits after finish_noroll.
Cc: <stable@vger.kernel.org> # v6.4
Fixes: cb04211748 ("xfs: defered work could create precommits")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ffc3ea4f3c upstream.
Fix a minor mistakes in the scrub tracepoints that can manifest when
inode-rooted btrees are enabled. The existing code worked fine for bmap
btrees, but we should tighten the code up to be less sloppy.
Cc: <stable@vger.kernel.org> # v5.7
Fixes: 92219c292a ("xfs: convert btree cursor inode-private member names")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7f8b718c58 upstream.
V4 symlink blocks didn't have headers, so return early if this is a V4
filesystem.
Cc: <stable@vger.kernel.org> # v5.1
Fixes: 39708c20ab ("xfs: miscellaneous verifier magic value fixups")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7ce31f20a0 upstream.
Way back when we first implemented FICLONE for XFS, life was simple --
either the the entire remapping completed, or something happened and we
had to return an errno explaining what happened. Neither of those
ioctls support returning partial results, so it's all or nothing.
Then things got complicated when copy_file_range came along, because it
actually can return the number of bytes copied, so commit 3f68c1f562
tried to make it so that we could return a partial result if the
REMAP_FILE_CAN_SHORTEN flag is set. This is also how FIDEDUPERANGE can
indicate that the kernel performed a partial deduplication.
Unfortunately, the logic is wrong if an error stops the remapping and
CAN_SHORTEN is not set. Because those callers cannot return partial
results, it is an error for ->remap_file_range to return a positive
quantity that is less than the @len passed in. Implementations really
should be returning a negative errno in this case, because that's what
btrfs (which introduced FICLONE{,RANGE}) did.
Therefore, ->remap_range implementations cannot silently drop an errno
that they might have when the number of bytes remapped is less than the
number of bytes requested and CAN_SHORTEN is not set.
Found by running generic/562 on a 64k fsblock filesystem and wondering
why it reported corrupt files.
Cc: <stable@vger.kernel.org> # v4.20
Fixes: 3fc9f5e409 ("xfs: remove xfs_reflink_remap_range")
Really-Fixes: 3f68c1f562 ("xfs: support returning partial reflink results")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6d7b4bc1c3 upstream.
In commit 2c813ad66a, I partially fixed a bug wherein xfs_btree_insrec
would erroneously try to update the parent's key for a block that had
been split if we decided to insert the new record into the new block.
The solution was to detect this situation and update the in-core key
value that we pass up to the caller so that the caller will (eventually)
add the new block to the parent level of the tree with the correct key.
However, I missed a subtlety about the way inode-rooted btrees work. If
the full block was a maximally sized inode root block, we'll solve that
fullness by moving the root block's records to a new block, resizing the
root block, and updating the root to point to the new block. We don't
pass a pointer to the new block to the caller because that work has
already been done. The new record will /always/ land in the new block,
so in this case we need to use xfs_btree_update_keys to update the keys.
This bug can theoretically manifest itself in the very rare case that we
split a bmbt root block and the new record lands in the very first slot
of the new block, though I've never managed to trigger it in practice.
However, it is very easy to reproduce by running generic/522 with the
realtime rmapbt patchset if rtinherit=1.
Cc: <stable@vger.kernel.org> # v4.8
Fixes: 2c813ad66a ("xfs: support btrees with overlapping intervals for keys")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 652f03db89 ]
Compat features are new features that older kernels can safely ignore,
allowing read-write mounts without issues. The current sb write validation
implementation returns -EFSCORRUPTED for unknown compat features,
preventing filesystem write operations and contradicting the feature's
definition.
Additionally, if the mounted image is unclean, the log recovery may need
to write to the superblock. Returning an error for unknown compat features
during sb write validation can cause mount failures.
Although XFS currently does not use compat feature flags, this issue
affects current kernels' ability to mount images that may use compat
feature flags in the future.
Since superblock read validation already warns about unknown compat
features, it's unnecessary to repeat this warning during write validation.
Therefore, the relevant code in write validation is being removed.
Fixes: 9e037cb797 ("xfs: check for unknown v5 feature bits in superblock write verifier")
Cc: stable@vger.kernel.org # v4.19+
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit fb63435b7c upstream.
There is a lack of verification of the space occupied by fixed members
of xlog_op_header in the xlog_recover_process_data.
We can create a crafted image to trigger an out of bounds read by
following these steps:
1) Mount an image of xfs, and do some file operations to leave records
2) Before umounting, copy the image for subsequent steps to simulate
abnormal exit. Because umount will ensure that tail_blk and
head_blk are the same, which will result in the inability to enter
xlog_recover_process_data
3) Write a tool to parse and modify the copied image in step 2
4) Make the end of the xlog_op_header entries only 1 byte away from
xlog_rec_header->h_size
5) xlog_rec_header->h_num_logops++
6) Modify xlog_rec_header->h_crc
Fix:
Add a check to make sure there is sufficient space to access fixed members
of xlog_op_header.
Signed-off-by: lei lu <llfamsec@gmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Bin Lan <bin.lan.cn@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d984648e42 ]
Implement unshare in fsdax mode: copy data from srcmap to iomap.
Link: https://lkml.kernel.org/r/1669908753-169-1-git-send-email-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: a311a08a42 ("iomap: constrain the file range passed to iomap_file_unshare")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f1e1765aad ]
If the journal geometry results in a sector or log stripe unit
validation problem, it indicates that we cannot set the log up to
safely write to the the journal. In these cases, we must abort the
mount because the corruption needs external intervention to resolve.
Similarly, a journal that is too large cannot be written to safely,
either, so we shouldn't allow those geometries to mount, either.
If the log is too small, we risk having transaction reservations
overruning the available log space and the system hanging waiting
for space it can never provide. This is purely a runtime hang issue,
not a corruption issue as per the first cases listed above. We abort
mounts of the log is too small for V5 filesystems, but we must allow
v4 filesystems to mount because, historically, there was no log size
validity checking and so some systems may still be out there with
undersized logs.
The problem is that on V4 filesystems, when we discover a log
geometry problem, we skip all the remaining checks and then allow
the log to continue mounting. This mean that if one of the log size
checks fails, we skip the log stripe unit check. i.e. we allow the
mount because a "non-fatal" geometry is violated, and then fail to
check the hard fail geometries that should fail the mount.
Move all these fatal checks to the superblock verifier, and add a
new check for the two log sector size geometry variables having the
same values. This will prevent any attempt to mount a log that has
invalid or inconsistent geometries long before we attempt to mount
the log.
However, for the minimum log size checks, we can only do that once
we've setup up the log and calculated all the iclog sizes and
roundoffs. Hence this needs to remain in the log mount code after
the log has been initialised. It is also the only case where we
should allow a v4 filesystem to continue running, so leave that
handling in place, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8e698ee72c ]
Through generic/300, I discovered that mkfs.xfs creates corrupt
filesystems when given these parameters:
Filesystems formatted with --unsupported are not supported!!
meta-data=/dev/sda isize=512 agcount=8, agsize=16352 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=1
= reflink=1 bigtime=1 inobtcount=1 nrext64=1
data = bsize=4096 blocks=130816, imaxpct=25
= sunit=32 swidth=128 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=8192, version=2
= sectsz=512 sunit=32 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
= rgcount=0 rgsize=0 blks
Discarding blocks...Done.
Phase 1 - find and verify superblock...
- reporting progress in intervals of 15 minutes
Phase 2 - using internal log
- zero log...
- 16:30:50: zeroing log - 16320 of 16320 blocks done
- scan filesystem freespace and inode maps...
agf_freeblks 25, counted 0 in ag 4
sb_fdblocks 8823, counted 8798
The root cause of this problem is the numrecs handling in
xfs_freesp_init_recs, which is used to initialize a new AG. Prior to
calling the function, we set up the new bnobt block with numrecs == 1
and rely on _freesp_init_recs to format that new record. If the last
record created has a blockcount of zero, then it sets numrecs = 0.
That last bit isn't correct if the AG contains the log, the start of the
log is not immediately after the initial blocks due to stripe alignment,
and the end of the log is perfectly aligned with the end of the AG. For
this case, we actually formatted a single bnobt record to handle the
free space before the start of the (stripe aligned) log, and incremented
arec to try to format a second record. That second record turned out to
be unnecessary, so what we really want is to leave numrecs at 1.
The numrecs handling itself is overly complicated because a different
function sets numrecs == 1. Change the bnobt creation code to start
with numrecs set to zero and only increment it after successfully
formatting a free space extent into the btree block.
Fixes: f327a00745 ("xfs: account for log space when formatting new AGs")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 537c013b14 ]
During review of the patcheset that provided reloading of the incore
iunlink list, Dave made a few suggestions, and I updated the copy in my
dev tree. Unfortunately, I then got distracted by ... who even knows
what ... and forgot to backport those changes from my dev tree to my
release candidate branch. I then sent multiple pull requests with stale
patches, and that's what was merged into -rc3.
So.
This patch re-adds the use of an unlocked iunlink list check to
determine if we want to allocate the resources to recreate the incore
list. Since lost iunlinked inodes are supposed to be rare, this change
helps us avoid paying the transaction and AGF locking costs every time
we open any inode.
This also re-adds the shutdowns on failure, and re-applies the
restructuring of the inner loop in xfs_inode_reload_unlinked_bucket, and
re-adds a requested comment about the quotachecking code.
Retain the original RVB tag from Dave since there's no code change from
the last submission.
Fixes: 68b957f64f ("xfs: load uncached unlinked inodes into memory on demand")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 49813a21ed ]
Teach quotacheck to reload the unlinked inode lists when walking the
inode table. This requires extra state handling, since it's possible
that a reloaded inode will get inactivated before quotacheck tries to
scan it; in this case, we need to ensure that the reloaded inode does
not have dquots attached when it is freed.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 83771c50e4 ]
The previous patch to reload unrecovered unlinked inodes when adding a
newly created inode to the unlinked list is missing a key piece of
functionality. It doesn't handle the case that someone calls xfs_iget
on an inode that is not the last item in the incore list. For example,
if at mount time the ondisk iunlink bucket looks like this:
AGI -> 7 -> 22 -> 3 -> NULL
None of these three inodes are cached in memory. Now let's say that
someone tries to open inode 3 by handle. We need to walk the list to
make sure that inodes 7 and 22 get loaded cold, and that the
i_prev_unlinked of inode 3 gets set to 22.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f12b96683d ]
Alter the definition of i_prev_unlinked slightly to make it more obvious
when an inode with 0 link count is not part of the iunlink bucket lists
rooted in the AGI. This distinction is necessary because it is not
sufficient to check inode.i_nlink to decide if an inode is on the
unlinked list. Updates to i_nlink can happen while holding only
ILOCK_EXCL, but updates to an inode's position in the AGI unlinked list
(which happen after the nlink update) requires both ILOCK_EXCL and the
AGI buffer lock.
The next few patches will make it possible to reload an entire unlinked
bucket list when we're walking the inode table or performing handle
operations and need more than the ability to iget the last inode in the
chain.
The upcoming directory repair code also needs to be able to make this
distinction to decide if a zero link count directory should be moved to
the orphanage or allowed to inactivate. An upcoming enhancement to the
online AGI fsck code will need this distinction to check and rebuild the
AGI unlinked buckets.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 3c90c01e49 ]
The agend should be "start + length - 1", then, blockcount should be
"end + 1 - start". Correct 2 calculation mistakes.
Also, rename "agend" to "range_agend" because it's not the end of the AG
per se; it's the end of the dead region within an AG's agblock space.
Fixes: 5cf32f63b0 ("xfs: fix the calculation for "end" and "length"")
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 348a1983cf ]
Luis has been reporting an assert failure when freeing an inode
cluster during inode inactivation for a while. The assert looks
like:
XFS: Assertion failed: bp->b_flags & XBF_DONE, file: fs/xfs/xfs_trans_buf.c, line: 241
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 4 PID: 73 Comm: kworker/4:1 Not tainted 6.10.0-rc1 #4
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Workqueue: xfs-inodegc/loop5 xfs_inodegc_worker [xfs]
RIP: 0010:assfail (fs/xfs/xfs_message.c:102) xfs
RSP: 0018:ffff88810188f7f0 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffff88816e748250 RCX: 1ffffffff844b0e7
RDX: 0000000000000004 RSI: ffff88810188f558 RDI: ffffffffc2431fa0
RBP: 1ffff11020311f01 R08: 0000000042431f9f R09: ffffed1020311e9b
R10: ffff88810188f4df R11: ffffffffac725d70 R12: ffff88817a3f4000
R13: ffff88812182f000 R14: ffff88810188f998 R15: ffffffffc2423f80
FS: 0000000000000000(0000) GS:ffff8881c8400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055fe9d0f109c CR3: 000000014426c002 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
xfs_trans_read_buf_map (fs/xfs/xfs_trans_buf.c:241 (discriminator 1)) xfs
xfs_imap_to_bp (fs/xfs/xfs_trans.h:210 fs/xfs/libxfs/xfs_inode_buf.c:138) xfs
xfs_inode_item_precommit (fs/xfs/xfs_inode_item.c:145) xfs
xfs_trans_run_precommits (fs/xfs/xfs_trans.c:931) xfs
__xfs_trans_commit (fs/xfs/xfs_trans.c:966) xfs
xfs_inactive_ifree (fs/xfs/xfs_inode.c:1811) xfs
xfs_inactive (fs/xfs/xfs_inode.c:2013) xfs
xfs_inodegc_worker (fs/xfs/xfs_icache.c:1841 fs/xfs/xfs_icache.c:1886) xfs
process_one_work (kernel/workqueue.c:3231)
worker_thread (kernel/workqueue.c:3306 (discriminator 2) kernel/workqueue.c:3393 (discriminator 2))
kthread (kernel/kthread.c:389)
ret_from_fork (arch/x86/kernel/process.c:147)
ret_from_fork_asm (arch/x86/entry/entry_64.S:257)
</TASK>
And occurs when the the inode precommit handlers is attempt to look
up the inode cluster buffer to attach the inode for writeback.
The trail of logic that I can reconstruct is as follows.
1. the inode is clean when inodegc runs, so it is not
attached to a cluster buffer when precommit runs.
2. #1 implies the inode cluster buffer may be clean and not
pinned by dirty inodes when inodegc runs.
3. #2 implies that the inode cluster buffer can be reclaimed
by memory pressure at any time.
4. The assert failure implies that the cluster buffer was
attached to the transaction, but not marked done. It had
been accessed earlier in the transaction, but not marked
done.
5. #4 implies the cluster buffer has been invalidated (i.e.
marked stale).
6. #5 implies that the inode cluster buffer was instantiated
uninitialised in the transaction in xfs_ifree_cluster(),
which only instantiates the buffers to invalidate them
and never marks them as done.
Given factors 1-3, this issue is highly dependent on timing and
environmental factors. Hence the issue can be very difficult to
reproduce in some situations, but highly reliable in others. Luis
has an environment where it can be reproduced easily by g/531 but,
OTOH, I've reproduced it only once in ~2000 cycles of g/531.
I think the fix is to have xfs_ifree_cluster() set the XBF_DONE flag
on the cluster buffers, even though they may not be initialised. The
reasons why I think this is safe are:
1. A buffer cache lookup hit on a XBF_STALE buffer will
clear the XBF_DONE flag. Hence all future users of the
buffer know they have to re-initialise the contents
before use and mark it done themselves.
2. xfs_trans_binval() sets the XFS_BLI_STALE flag, which
means the buffer remains locked until the journal commit
completes and the buffer is unpinned. Hence once marked
XBF_STALE/XFS_BLI_STALE by xfs_ifree_cluster(), the only
context that can access the freed buffer is the currently
running transaction.
3. #2 implies that future buffer lookups in the currently
running transaction will hit the transaction match code
and not the buffer cache. Hence XBF_STALE and
XFS_BLI_STALE will not be cleared unless the transaction
initialises and logs the buffer with valid contents
again. At which point, the buffer will be marked marked
XBF_DONE again, so having XBF_DONE already set on the
stale buffer is a moot point.
4. #2 also implies that any concurrent access to that
cluster buffer will block waiting on the buffer lock
until the inode cluster has been fully freed and is no
longer an active inode cluster buffer.
5. #4 + #1 means that any future user of the disk range of
that buffer will always see the range of disk blocks
covered by the cluster buffer as not done, and hence must
initialise the contents themselves.
6. Setting XBF_DONE in xfs_ifree_cluster() then means the
unlinked inode precommit code will see a XBF_DONE buffer
from the transaction match as it expects. It can then
attach the stale but newly dirtied inode to the stale
but newly dirtied cluster buffer without unexpected
failures. The stale buffer will then sail through the
journal and do the right thing with the attached stale
inode during unpin.
Hence the fix is just one line of extra code. The explanation of
why we have to set XBF_DONE in xfs_ifree_cluster, OTOH, is long and
complex....
Fixes: 82842fee6e ("xfs: fix AGF vs inode cluster buffer deadlock")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1bba82fe1a ]
In commit 8ee81ed581, Ye Bin complained about an ASSERT in the bmapx
code that trips if we encounter a delalloc extent after flushing the
pagecache to disk. The ioctl code does not hold MMAPLOCK so it's
entirely possible that a racing write page fault can create a delalloc
extent after the file has been flushed. The proposed solution was to
replace the assertion with an early return that avoids filling out the
bmap recordset with a delalloc entry if the caller didn't ask for it.
At the time, I recall thinking that the forward logic sounded ok, but
felt hesitant because I suspected that changing this code would cause
something /else/ to burst loose due to some other subtlety.
syzbot of course found that subtlety. If all the extent mappings found
after the flush are delalloc mappings, we'll reach the end of the data
fork without ever incrementing bmv->bmv_entries. This is new, since
before we'd have emitted the delalloc mappings even though the caller
didn't ask for them. Once we reach the end, we'll try to set
BMV_OF_LAST on the -1st entry (because bmv_entries is zero) and go
corrupt something else in memory. Yay.
I really dislike all these stupid patches that fiddle around with debug
code and break things that otherwise worked well enough. Nobody was
complaining that calling XFS_IOC_BMAPX without BMV_IF_DELALLOC would
return BMV_OF_DELALLOC records, and now we've gone from "weird behavior
that nobody cared about" to "bad behavior that must be addressed
immediately".
Maybe I'll just ignore anything from Huawei from now on for my own sake.
Reported-by: syzbot+c103d3808a0de5faaf80@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-xfs/20230412024907.GP360889@frogsfrogsfrogs/
Fixes: 8ee81ed581 ("xfs: fix BUG_ON in xfs_getbmap()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 68b957f64f ]
shrikanth hegde reports that filesystems fail shortly after mount with
the following failure:
WARNING: CPU: 56 PID: 12450 at fs/xfs/xfs_inode.c:1839 xfs_iunlink_lookup+0x58/0x80 [xfs]
This of course is the WARN_ON_ONCE in xfs_iunlink_lookup:
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
if (WARN_ON_ONCE(!ip || !ip->i_ino)) { ... }
>From diagnostic data collected by the bug reporters, it would appear
that we cleanly mounted a filesystem that contained unlinked inodes.
Unlinked inodes are only processed as a final step of log recovery,
which means that clean mounts do not process the unlinked list at all.
Prior to the introduction of the incore unlinked lists, this wasn't a
problem because the unlink code would (very expensively) traverse the
entire ondisk metadata iunlink chain to keep things up to date.
However, the incore unlinked list code complains when it realizes that
it is out of sync with the ondisk metadata and shuts down the fs, which
is bad.
Ritesh proposed to solve this problem by unconditionally parsing the
unlinked lists at mount time, but this imposes a mount time cost for
every filesystem to catch something that should be very infrequent.
Instead, let's target the places where we can encounter a next_unlinked
pointer that refers to an inode that is not in cache, and load it into
cache.
Note: This patch does not address the problem of iget loading an inode
from the middle of the iunlink list and needing to set i_prev_unlinked
correctly.
Reported-by: shrikanth hegde <sshegde@linux.vnet.ibm.com>
Triaged-by: Ritesh Harjani <ritesh.list@gmail.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5cf32f63b0 ]
The value of "end" should be "start + length - 1".
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c3b880acad ]
I found a corruption during growfs:
XFS (loop0): Internal error agbno >= mp->m_sb.sb_agblocks at line 3661 of
file fs/xfs/libxfs/xfs_alloc.c. Caller __xfs_free_extent+0x28e/0x3c0
CPU: 0 PID: 573 Comm: xfs_growfs Not tainted 6.3.0-rc7-next-20230420-00001-gda8c95746257
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
__xfs_free_extent+0x2c1/0x3c0
xfs_ag_extend_space+0x291/0x3e0
xfs_growfs_data+0xd72/0xe90
xfs_file_ioctl+0x5f9/0x14a0
__x64_sys_ioctl+0x13e/0x1c0
do_syscall_64+0x39/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
XFS (loop0): Corruption detected. Unmount and run xfs_repair
XFS (loop0): Internal error xfs_trans_cancel at line 1097 of file
fs/xfs/xfs_trans.c. Caller xfs_growfs_data+0x691/0xe90
CPU: 0 PID: 573 Comm: xfs_growfs Not tainted 6.3.0-rc7-next-20230420-00001-gda8c95746257
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_error_report+0x93/0xc0
xfs_trans_cancel+0x2c0/0x350
xfs_growfs_data+0x691/0xe90
xfs_file_ioctl+0x5f9/0x14a0
__x64_sys_ioctl+0x13e/0x1c0
do_syscall_64+0x39/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f2d86706577
The bug can be reproduced with the following sequence:
# truncate -s 1073741824 xfs_test.img
# mkfs.xfs -f -b size=1024 -d agcount=4 xfs_test.img
# truncate -s 2305843009213693952 xfs_test.img
# mount -o loop xfs_test.img /mnt/test
# xfs_growfs -D 1125899907891200 /mnt/test
The root cause is that during growfs, user space passed in a large value
of newblcoks to xfs_growfs_data_private(), due to current sb_agblocks is
too small, new AG count will exceed UINT_MAX. Because of AG number type
is unsigned int and it would overflow, that caused nagcount much smaller
than the actual value. During AG extent space, delta blocks in
xfs_resizefs_init_new_ags() will much larger than the actual value due to
incorrect nagcount, even exceed UINT_MAX. This will cause corruption and
be detected in __xfs_free_extent. Fix it by growing the filesystem to up
to the maximally allowed AGs and not return EINVAL when new AG count
overflow.
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d4d12c02bf ]
Unlinked list recovery requires errors removing the inode the from
the unlinked list get fed back to the main recovery loop. Now that
we offload the unlinking to the inodegc work, we don't get errors
being fed back when we trip over a corruption that prevents the
inode from being removed from the unlinked list.
This means we never clear the corrupt unlinked list bucket,
resulting in runtime operations eventually tripping over it and
shutting down.
Fix this by collecting inodegc worker errors and feed them
back to the flush caller. This is largely best effort - the only
context that really cares is log recovery, and it only flushes a
single inode at a time so we don't need complex synchronised
handling. Essentially the inodegc workers will capture the first
error that occurs and the next flush will gather them and clear
them. The flush itself will only report the first gathered error.
In the cases where callers can return errors, propagate the
collected inodegc flush error up the error handling chain.
In the case of inode unlinked list recovery, there are several
superfluous calls to flush queued unlinked inodes -
xlog_recover_iunlink_bucket() guarantees that it has flushed the
inodegc and collected errors before it returns. Hence nothing in the
calling path needs to run a flush, even when an error is returned.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 82842fee6e ]
Lock order in XFS is AGI -> AGF, hence for operations involving
inode unlinked list operations we always lock the AGI first. Inode
unlinked list operations operate on the inode cluster buffer,
so the lock order there is AGI -> inode cluster buffer.
For O_TMPFILE operations, this now means the lock order set down in
xfs_rename and xfs_link is AGI -> inode cluster buffer -> AGF as the
unlinked ops are done before the directory modifications that may
allocate space and lock the AGF.
Unfortunately, we also now lock the inode cluster buffer when
logging an inode so that we can attach the inode to the cluster
buffer and pin it in memory. This creates a lock order of AGF ->
inode cluster buffer in directory operations as we have to log the
inode after we've allocated new space for it.
This creates a lock inversion between the AGF and the inode cluster
buffer. Because the inode cluster buffer is shared across multiple
inodes, the inversion is not specific to individual inodes but can
occur when inodes in the same cluster buffer are accessed in
different orders.
To fix this we need move all the inode log item cluster buffer
interactions to the end of the current transaction. Unfortunately,
xfs_trans_log_inode() calls are littered throughout the transactions
with no thought to ordering against other items or locking. This
makes it difficult to do anything that involves changing the call
sites of xfs_trans_log_inode() to change locking orders.
However, we do now have a mechanism that allows is to postpone dirty
item processing to just before we commit the transaction: the
->iop_precommit method. This will be called after all the
modifications are done and high level objects like AGI and AGF
buffers have been locked and modified, thereby providing a mechanism
that guarantees we don't lock the inode cluster buffer before those
high level objects are locked.
This change is largely moving the guts of xfs_trans_log_inode() to
xfs_inode_item_precommit() and providing an extra flag context in
the inode log item to track the dirty state of the inode in the
current transaction. This also means we do a lot less repeated work
in xfs_trans_log_inode() by only doing it once per transaction when
all the work is done.
Fixes: 298f7bec50 ("xfs: pin inode backing buffer to the inode log item")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit cb04211748 ]
To fix a AGI-AGF-inode cluster buffer deadlock, we need to move
inode cluster buffer operations to the ->iop_precommit() method.
However, this means that deferred operations can require precommits
to be run on the final transaction that the deferred ops pass back
to xfs_trans_commit() context. This will be exposed by attribute
handling, in that the last changes to the inode in the attr set
state machine "disappear" because the precommit operation is not run.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 89a4bf0dc3 ]
When a buffer is unpinned by xfs_buf_item_unpin(), we need to access
the buffer after we've dropped the buffer log item reference count.
This opens a window where we can have two racing unpins for the
buffer item (e.g. shutdown checkpoint context callback processing
racing with journal IO iclog completion processing) and both attempt
to access the buffer after dropping the BLI reference count. If we
are unlucky, the "BLI freed" context wins the race and frees the
buffer before the "BLI still active" case checks the buffer pin
count.
This results in a use after free that can only be triggered
in active filesystem shutdown situations.
To fix this, we need to ensure that buffer existence extends beyond
the BLI reference count checks and until the unpin processing is
complete. This implies that a buffer pin operation must also take a
buffer reference to ensure that the buffer cannot be freed until the
buffer unpin processing is complete.
Reported-by: yangerkun <yangerkun@huawei.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 0c7273e494 ]
The background inode inactivation can attached dquots to inodes, but
this can race with a foreground quotacheck failure that leads to
disabling quotas and freeing the mp->m_quotainfo structure. The
background inode inactivation then tries to allocate a quota, tries
to dereference mp->m_quotainfo, and crashes like so:
XFS (loop1): Quotacheck: Unsuccessful (Error -5): Disabling quotas.
xfs filesystem being mounted at /root/syzkaller.qCVHXV/0/file0 supports timestamps until 2038 (0x7fffffff)
BUG: kernel NULL pointer dereference, address: 00000000000002a8
....
CPU: 0 PID: 161 Comm: kworker/0:4 Not tainted 6.2.0-c9c3395d5e3d #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Workqueue: xfs-inodegc/loop1 xfs_inodegc_worker
RIP: 0010:xfs_dquot_alloc+0x95/0x1e0
....
Call Trace:
<TASK>
xfs_qm_dqread+0x46/0x440
xfs_qm_dqget_inode+0x154/0x500
xfs_qm_dqattach_one+0x142/0x3c0
xfs_qm_dqattach_locked+0x14a/0x170
xfs_qm_dqattach+0x52/0x80
xfs_inactive+0x186/0x340
xfs_inodegc_worker+0xd3/0x430
process_one_work+0x3b1/0x960
worker_thread+0x52/0x660
kthread+0x161/0x1a0
ret_from_fork+0x29/0x50
</TASK>
....
Prevent this race by flushing all the queued background inode
inactivations pending before purging all the cached dquots when
quotacheck fails.
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 60b730a40c ]
If the end position of a GETFSMAP query overlaps an allocated space and
we're using the free space info to generate fsmap info, the akeys
information gets fed into the fsmap formatter with bad results.
Zero-init the space.
Reported-by: syzbot+090ae72d552e6bd93cfe@syzkaller.appspotmail.com
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d5753847b2 ]
When we enter xfs_bmbt_alloc_block() without having first allocated
a data extent (i.e. tp->t_firstblock == NULLFSBLOCK) because we
are doing something like unwritten extent conversion, the transaction
block reservation is used as the minleft value.
This works for operations like unwritten extent conversion, but it
assumes that the block reservation is only for a BMBT split. THis is
not always true, and sometimes results in larger than necessary
minleft values being set. We only actually need enough space for a
btree split, something we already handle correctly in
xfs_bmapi_write() via the xfs_bmapi_minleft() calculation.
We should use xfs_bmapi_minleft() in xfs_bmbt_alloc_block() to
calculate the number of blocks a BMBT split on this inode is going to
require, not use the transaction block reservation that contains the
maximum number of blocks this transaction may consume in it...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f08f984c63 ]
When an XFS filesystem has free inodes in chunks already allocated
on disk, it will still allocate new inode chunks if the target AG
has no free inodes in it. Normally, this is a good idea as it
preserves locality of all the inodes in a given directory.
However, at ENOSPC this can lead to using the last few remaining
free filesystem blocks to allocate a new chunk when there are many,
many free inodes that could be allocated without consuming free
space. This results in speeding up the consumption of the last few
blocks and inode create operations then returning ENOSPC when there
free inodes available because we don't have enough block left in the
filesystem for directory creation reservations to proceed.
Hence when we are near ENOSPC, we should be attempting to preserve
the remaining blocks for directory block allocation rather than
using them for unnecessary inode chunk creation.
This particular behaviour is exposed by xfs/294, when it drives to
ENOSPC on empty file creation whilst there are still thousands of
free inodes available for allocation in other AGs in the filesystem.
Hence, when we are within 1% of ENOSPC, change the inode allocation
behaviour to prefer to use existing free inodes over allocating new
inode chunks, even though it results is poorer locality of the data
set. It is more important for the allocations to be space efficient
near ENOSPC than to have optimal locality for performance, so lets
modify the inode AG selection code to reflect that fact.
This allows generic/294 to not only pass with this allocator rework
patchset, but to increase the number of post-ENOSPC empty inode
allocations to from ~600 to ~9080 before we hit ENOSPC on the
directory create transaction reservation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1dd0510f6d ]
I've recently encountered an ABBA deadlock with g/476. The upcoming
changes seem to make this much easier to hit, but the underlying
problem is a pre-existing one.
Essentially, if we select an AG for allocation, then lock the AGF
and then fail to allocate for some reason (e.g. minimum length
requirements cannot be satisfied), then we drop out of the
allocation with the AGF still locked.
The caller then modifies the allocation constraints - usually
loosening them up - and tries again. This can result in trying to
access AGFs that are lower than the AGF we already have locked from
the failed attempt. e.g. the failed attempt skipped several AGs
before failing, so we have locks an AG higher than the start AG.
Retrying the allocation from the start AG then causes us to violate
AGF lock ordering and this can lead to deadlocks.
The deadlock exists even if allocation succeeds - we can do a
followup allocations in the same transaction for BMBT blocks that
aren't guaranteed to be in the same AG as the original, and can move
into higher AGs. Hence we really need to move the tp->t_firstblock
tracking down into xfs_alloc_vextent() where it can be set when we
exit with a locked AG.
xfs_alloc_vextent() can also check there if the requested
allocation falls within the allow range of AGs set by
tp->t_firstblock. If we can't allocate within the range set, we have
to fail the allocation. If we are allowed to to non-blocking AGF
locking, we can ignore the AG locking order limitations as we can
use try-locks for the first iteration over requested AG range.
This invalidates a set of post allocation asserts that check that
the allocation is always above tp->t_firstblock if it is set.
Because we can use try-locks to avoid the deadlock in some
circumstances, having a pre-existing locked AGF doesn't always
prevent allocation from lower order AGFs. Hence those ASSERTs need
to be removed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c85007e2e3 ]
When we split a BMBT due to record insertion, we offload it to a
worker thread because we can be deep in the stack when we try to
allocate a new block for the BMBT. Allocation can use several
kilobytes of stack (full memory reclaim, swap and/or IO path can
end up on the stack during allocation) and we can already be several
kilobytes deep in the stack when we need to split the BMBT.
A recent workload demonstrated a deadlock in this BMBT split
offload. It requires several things to happen at once:
1. two inodes need a BMBT split at the same time, one must be
unwritten extent conversion from IO completion, the other must be
from extent allocation.
2. there must be a no available xfs_alloc_wq worker threads
available in the worker pool.
3. There must be sustained severe memory shortages such that new
kworker threads cannot be allocated to the xfs_alloc_wq pool for
both threads that need split work to be run
4. The split work from the unwritten extent conversion must run
first.
5. when the BMBT block allocation runs from the split work, it must
loop over all AGs and not be able to either trylock an AGF
successfully, or each AGF is is able to lock has no space available
for a single block allocation.
6. The BMBT allocation must then attempt to lock the AGF that the
second task queued to the rescuer thread already has locked before
it finds an AGF it can allocate from.
At this point, we have an ABBA deadlock between tasks queued on the
xfs_alloc_wq rescuer thread and a locked AGF. i.e. The queued task
holding the AGF lock can't be run by the rescuer thread until the
task the rescuer thread is runing gets the AGF lock....
This is a highly improbably series of events, but there it is.
There's a couple of ways to fix this, but the easiest way to ensure
that we only punt tasks with a locked AGF that holds enough space
for the BMBT block allocations to the worker thread.
This works for unwritten extent conversion in IO completion (which
doesn't have a locked AGF and space reservations) because we have
tight control over the IO completion stack. It is typically only 6
functions deep when xfs_btree_split() is called because we've
already offloaded the IO completion work to a worker thread and
hence we don't need to worry about stack overruns here.
The other place we can be called for a BMBT split without a
preceeding allocation is __xfs_bunmapi() when punching out the
center of an existing extent. We don't remove extents in the IO
path, so these operations don't tend to be called with a lot of
stack consumed. Hence we don't really need to ship the split off to
a worker thread in these cases, either.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 601a27ea09 ]
In xfs_extent_busy_update_extent() case 6 and 7, whenever bno is modified on
extent busy, the relavent length has to be modified accordingly.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 52f31ed228 ]
Resulting in a UAF if the shrinker races with some other dquot
freeing mechanism that sets XFS_DQFLAG_FREEING before the dquot is
removed from the LRU. This can occur if a dquot purge races with
drop_caches.
Reported-by: syzbot+912776840162c13db1a3@syzkaller.appspotmail.com
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 45cf976008 upstream.
Commit a70f9fe52d ("xfs: detect and handle invalid iclog size set by
mkfs") added a fixup for incorrect h_size values used for the initial
umount record in old xfsprogs versions. Later commit 0c771b99d6
("xfs: clean up calculation of LR header blocks") cleaned up the log
reover buffer calculation, but stoped using the fixed up h_size value
to size the log recovery buffer, which can lead to an out of bounds
access when the incorrect h_size does not come from the old mkfs
tool, but a fuzzer.
Fix this by open coding xlog_logrec_hblks and taking the fixed h_size
into account for this calculation.
Fixes: 0c771b99d6 ("xfs: clean up calculation of LR header blocks")
Reported-by: Sam Sun <samsun1006219@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Kevin Berry <kpberry@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 84712492e6 ]
Although xfs_growfs_data() doesn't call xfs_growfs_data_private()
if in->newblocks == mp->m_sb.sb_dblocks, xfs_growfs_data_private()
further massages the new block count so that we don't i.e. try
to create a too-small new AG.
This may lead to a delta of "0" in xfs_growfs_data_private(), so
we end up in the shrink case and emit the EXPERIMENTAL warning
even if we're not changing anything at all.
Fix this by returning straightaway if the block delta is zero.
(nb: in older kernels, the result of entering the shrink case
with delta == 0 may actually let an -ENOSPC escape to userspace,
which is confusing for users.)
Fixes: fb2fc17201 ("xfs: support shrinking unused space in the last AG")
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 817644fa45 ]
The root inode number should be set to `breq->startino` for getting stat
information of the root when XFS_BULK_IREQ_SPECIAL_ROOT is used.
Otherwise, the inode search is started from 1
(XFS_BULK_IREQ_SPECIAL_ROOT) and the inode with the lowest number in a
filesystem is returned.
Fixes: bf3cb39447 ("xfs: allow single bulkstat of special inodes")
Signed-off-by: Hironori Shiina <shiina.hironori@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 74ad4693b6 ]
Log recovery has always run on read only mounts, even where the primary
superblock advertises unknown rocompat bits. Due to a misunderstanding
between Eric and Darrick back in 2018, we accidentally changed the
superblock write verifier to shutdown the fs over that exact scenario.
As a result, the log cleaning that occurs at the end of the mounting
process fails if there are unknown rocompat bits set.
As we now allow writing of the superblock if there are unknown rocompat
bits set on a RO mount, we no longer want to turn off RO state to allow
log recovery to succeed on a RO mount. Hence we also remove all the
(now unnecessary) RO state toggling from the log recovery path.
Fixes: 9e037cb797 ("xfs: check for unknown v5 feature bits in superblock write verifier"
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 76e589013f ]
In the next patch, we're going to prohibit log recovery if the primary
superblock contains an unrecognized rocompat feature bit even on
readonly mounts. This requires removing all the code in the log
mounting process that temporarily disables the readonly state.
Unfortunately, inode inactivation disables itself on readonly mounts.
Clearing the iunlinked lists after log recovery needs inactivation to
run to free the unreferenced inodes, which (AFAICT) is the only reason
why log mounting plays games with the readonly state in the first place.
Therefore, change the inactivation predicates to allow inactivation
during log recovery of a readonly mount.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit ddfdd530e4 ]
While investigating test failures in xfs/17[1-3] in alwayscow mode, I
noticed through code inspection that xfs_bmap_alloc_userdata isn't
setting XFS_ALLOC_USERDATA when allocating extents for a file's CoW
fork. COW staging extents should be flagged as USERDATA, since user
data are persisted to these blocks before being remapped into a file.
This mis-classification has a few impacts on the behavior of the system.
First, the filestreams allocator is supposed to keep allocating from a
chosen AG until it runs out of space in that AG. However, it only does
that for USERDATA allocations, which means that COW allocations aren't
tied to the filestreams AG. Fortunately, few people use filestreams, so
nobody's noticed.
A more serious problem is that xfs_alloc_ag_vextent_small looks for a
buffer to invalidate *if* the USERDATA flag is set and the AG is so full
that the allocation had to come from the AGFL because the cntbt is
empty. The consequences of not invalidating the buffer are severe --
if the AIL incorrectly checkpoints a buffer that is now being used to
store user data, that action will clobber the user's written data.
Fix filestreams and yet another data corruption vector by flagging COW
allocations as USERDATA.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b25d1984aa ]
Upon enabling fsdax + reflink for XFS, xfs/179 began to report refcount
metadata corruptions after being run. Specifically, xfs_repair noticed
single-block refcount records that could be combined but had not been.
The root cause of this is improper MAXREFCOUNT edge case handling in
xfs_refcount_merge_extents. When we're trying to find candidates for a
refcount btree record merge, we compute the refcount attribute of the
merged record, but we fail to account for the fact that once a record
hits rc_refcount == MAXREFCOUNT, it is pinned that way forever. Hence
the computed refcount is wrong, and we fail to merge the extents.
Fix this by adjusting the merge predicates to compute the adjusted
refcount correctly.
Fixes: 3172725814 ("xfs: adjust refcount of an extent of blocks in refcount btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Xiao Yang <yangx.jy@fujitsu.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 9d720a5a65 ]
Hoist these multiline conditionals into separate static inline helpers
to improve readability and set the stage for corruption fixes that will
be introduced in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Xiao Yang <yangx.jy@fujitsu.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 575689fc0f ]
xfs log io error will trigger xlog shut down, and end_io worker call
xlog_state_shutdown_callbacks to unpin and release the buf log item.
The race condition is that when there are some thread doing transaction
commit and happened not to be intercepted by xlog_is_shutdown, then,
these log item will be insert into CIL, when unpin and release these
buf log item, UAF will occur. BTW, add delay before `xlog_cil_commit`
can increase recurrence probability.
The following call graph actually encountered this bad situation.
fsstress io end worker kworker/0:1H-216
xlog_ioend_work
->xlog_force_shutdown
->xlog_state_shutdown_callbacks
->xlog_cil_process_committed
->xlog_cil_committed
->xfs_trans_committed_bulk
->xfs_trans_apply_sb_deltas ->li_ops->iop_unpin(lip, 1);
->xfs_trans_getsb
->_xfs_trans_bjoin
->xfs_buf_item_init
->if (bip) { return 0;} //relog
->xlog_cil_commit
->xlog_cil_insert_items //insert into CIL
->xfs_buf_ioend_fail(bp);
->xfs_buf_ioend
->xfs_buf_item_done
->xfs_buf_item_relse
->xfs_buf_item_free
when cil push worker gather percpu cil and insert super block buf log item
into ctx->log_items then uaf occurs.
==================================================================
BUG: KASAN: use-after-free in xlog_cil_push_work+0x1c8f/0x22f0
Write of size 8 at addr ffff88801800f3f0 by task kworker/u4:4/105
CPU: 0 PID: 105 Comm: kworker/u4:4 Tainted: G W
6.1.0-rc1-00001-g274115149b42 #136
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Workqueue: xfs-cil/sda xlog_cil_push_work
Call Trace:
<TASK>
dump_stack_lvl+0x4d/0x66
print_report+0x171/0x4a6
kasan_report+0xb3/0x130
xlog_cil_push_work+0x1c8f/0x22f0
process_one_work+0x6f9/0xf70
worker_thread+0x578/0xf30
kthread+0x28c/0x330
ret_from_fork+0x1f/0x30
</TASK>
Allocated by task 2145:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_slab_alloc+0x54/0x60
kmem_cache_alloc+0x14a/0x510
xfs_buf_item_init+0x160/0x6d0
_xfs_trans_bjoin+0x7f/0x2e0
xfs_trans_getsb+0xb6/0x3f0
xfs_trans_apply_sb_deltas+0x1f/0x8c0
__xfs_trans_commit+0xa25/0xe10
xfs_symlink+0xe23/0x1660
xfs_vn_symlink+0x157/0x280
vfs_symlink+0x491/0x790
do_symlinkat+0x128/0x220
__x64_sys_symlink+0x7a/0x90
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 216:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
__kasan_slab_free+0x105/0x1a0
kmem_cache_free+0xb6/0x460
xfs_buf_ioend+0x1e9/0x11f0
xfs_buf_item_unpin+0x3d6/0x840
xfs_trans_committed_bulk+0x4c2/0x7c0
xlog_cil_committed+0xab6/0xfb0
xlog_cil_process_committed+0x117/0x1e0
xlog_state_shutdown_callbacks+0x208/0x440
xlog_force_shutdown+0x1b3/0x3a0
xlog_ioend_work+0xef/0x1d0
process_one_work+0x6f9/0xf70
worker_thread+0x578/0xf30
kthread+0x28c/0x330
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff88801800f388
which belongs to the cache xfs_buf_item of size 272
The buggy address is located 104 bytes inside of
272-byte region [ffff88801800f388, ffff88801800f498)
The buggy address belongs to the physical page:
page:ffffea0000600380 refcount:1 mapcount:0 mapping:0000000000000000
index:0xffff88801800f208 pfn:0x1800e
head:ffffea0000600380 order:1 compound_mapcount:0 compound_pincount:0
flags: 0x1fffff80010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff)
raw: 001fffff80010200 ffffea0000699788 ffff88801319db50 ffff88800fb50640
raw: ffff88801800f208 000000000015000a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff88801800f280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88801800f300: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff88801800f380: fc fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff88801800f400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88801800f480: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================
Disabling lock debugging due to kernel taint
Signed-off-by: Guo Xuenan <guoxuenan@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1eb52a6a71 ]
Fix uaf in xfs_trans_ail_delete during xlog force shutdown.
In commit cd6f79d1fb ("xfs: run callbacks before waking waiters in
xlog_state_shutdown_callbacks") changed the order of running callbacks
and wait for iclog completion to avoid unmount path untimely destroy AIL.
But which seems not enough to ensue this, adding mdelay in
`xfs_buf_item_unpin` can prove that.
The reproduction is as follows. To ensure destroy AIL safely,
we should wait all xlog ioend workers done and sync the AIL.
==================================================================
BUG: KASAN: use-after-free in xfs_trans_ail_delete+0x240/0x2a0
Read of size 8 at addr ffff888023169400 by task kworker/1:1H/43
CPU: 1 PID: 43 Comm: kworker/1:1H Tainted: G W
6.1.0-rc1-00002-gc28266863c4a #137
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Workqueue: xfs-log/sda xlog_ioend_work
Call Trace:
<TASK>
dump_stack_lvl+0x4d/0x66
print_report+0x171/0x4a6
kasan_report+0xb3/0x130
xfs_trans_ail_delete+0x240/0x2a0
xfs_buf_item_done+0x7b/0xa0
xfs_buf_ioend+0x1e9/0x11f0
xfs_buf_item_unpin+0x4c8/0x860
xfs_trans_committed_bulk+0x4c2/0x7c0
xlog_cil_committed+0xab6/0xfb0
xlog_cil_process_committed+0x117/0x1e0
xlog_state_shutdown_callbacks+0x208/0x440
xlog_force_shutdown+0x1b3/0x3a0
xlog_ioend_work+0xef/0x1d0
process_one_work+0x6f9/0xf70
worker_thread+0x578/0xf30
kthread+0x28c/0x330
ret_from_fork+0x1f/0x30
</TASK>
Allocated by task 9606:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0x7a/0x90
__kmalloc+0x59/0x140
kmem_alloc+0xb2/0x2f0
xfs_trans_ail_init+0x20/0x320
xfs_log_mount+0x37e/0x690
xfs_mountfs+0xe36/0x1b40
xfs_fs_fill_super+0xc5c/0x1a70
get_tree_bdev+0x3c5/0x6c0
vfs_get_tree+0x85/0x250
path_mount+0xec3/0x1830
do_mount+0xef/0x110
__x64_sys_mount+0x150/0x1f0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 9662:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
__kasan_slab_free+0x105/0x1a0
__kmem_cache_free+0x99/0x2d0
kvfree+0x3a/0x40
xfs_log_unmount+0x60/0xf0
xfs_unmountfs+0xf3/0x1d0
xfs_fs_put_super+0x78/0x300
generic_shutdown_super+0x151/0x400
kill_block_super+0x9a/0xe0
deactivate_locked_super+0x82/0xe0
deactivate_super+0x91/0xb0
cleanup_mnt+0x32a/0x4a0
task_work_run+0x15f/0x240
exit_to_user_mode_prepare+0x188/0x190
syscall_exit_to_user_mode+0x12/0x30
do_syscall_64+0x42/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff888023169400
which belongs to the cache kmalloc-128 of size 128
The buggy address is located 0 bytes inside of
128-byte region [ffff888023169400, ffff888023169480)
The buggy address belongs to the physical page:
page:ffffea00008c5a00 refcount:1 mapcount:0 mapping:0000000000000000
index:0xffff888023168f80 pfn:0x23168
head:ffffea00008c5a00 order:1 compound_mapcount:0 compound_pincount:0
flags: 0x1fffff80010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff)
raw: 001fffff80010200 ffffea00006b3988 ffffea0000577a88 ffff88800f842ac0
raw: ffff888023168f80 0000000000150007 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888023169300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888023169380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff888023169400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888023169480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888023169500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================
Disabling lock debugging due to kernel taint
Fixes: cd6f79d1fb ("xfs: run callbacks before waking waiters in xlog_state_shutdown_callbacks")
Signed-off-by: Guo Xuenan <guoxuenan@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4c6dbfd275 ]
I've been running near-continuous integration testing of online fsck,
and I've noticed that once a day, one of the ARM VMs will fail the test
with out of order records in the data fork.
xfs/804 races fsstress with online scrub (aka scan but do not change
anything), so I think this might be a bug in the core xfs code. This
also only seems to trigger if one runs the test for more than ~6 minutes
via TIME_FACTOR=13 or something.
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfstests-dev.git/tree/tests/xfs/804?h=djwong-wtf
I added a debugging patch to the kernel to check the data fork extents
after taking the ILOCK, before dropping ILOCK, and before and after each
bmapping operation. So far I've narrowed it down to the delalloc code
inserting a record in the wrong place in the iext tree:
xfs_bmap_add_extent_hole_delay, near line 2691:
case 0:
/*
* New allocation is not contiguous with another
* delayed allocation.
* Insert a new entry.
*/
oldlen = newlen = 0;
xfs_iunlock_check_datafork(ip); <-- ok here
xfs_iext_insert(ip, icur, new, state);
xfs_iunlock_check_datafork(ip); <-- bad here
break;
}
I recorded the state of the data fork mappings and iext cursor state
when a corrupt data fork is detected immediately after the
xfs_bmap_add_extent_hole_delay call in xfs_bmapi_reserve_delalloc:
ino 0x140bb3 func xfs_bmapi_reserve_delalloc line 4164 data fork:
ino 0x140bb3 nr 0x0 nr_real 0x0 offset 0xb9 blockcount 0x1f startblock 0x935de2 state 1
ino 0x140bb3 nr 0x1 nr_real 0x1 offset 0xe6 blockcount 0xa startblock 0xffffffffe0007 state 0
ino 0x140bb3 nr 0x2 nr_real 0x1 offset 0xd8 blockcount 0xe startblock 0x935e01 state 0
Here we see that a delalloc extent was inserted into the wrong position
in the iext leaf, same as all the other times. The extra trace data I
collected are as follows:
ino 0x140bb3 fork 0 oldoff 0xe6 oldlen 0x4 oldprealloc 0x6 isize 0xe6000
ino 0x140bb3 oldgotoff 0xea oldgotstart 0xfffffffffffffffe oldgotcount 0x0 oldgotstate 0
ino 0x140bb3 crapgotoff 0x0 crapgotstart 0x0 crapgotcount 0x0 crapgotstate 0
ino 0x140bb3 freshgotoff 0xd8 freshgotstart 0x935e01 freshgotcount 0xe freshgotstate 0
ino 0x140bb3 nowgotoff 0xe6 nowgotstart 0xffffffffe0007 nowgotcount 0xa nowgotstate 0
ino 0x140bb3 oldicurpos 1 oldleafnr 2 oldleaf 0xfffffc00f0609a00
ino 0x140bb3 crapicurpos 2 crapleafnr 2 crapleaf 0xfffffc00f0609a00
ino 0x140bb3 freshicurpos 1 freshleafnr 2 freshleaf 0xfffffc00f0609a00
ino 0x140bb3 newicurpos 1 newleafnr 3 newleaf 0xfffffc00f0609a00
The first line shows that xfs_bmapi_reserve_delalloc was called with
whichfork=XFS_DATA_FORK, off=0xe6, len=0x4, prealloc=6.
The second line ("oldgot") shows the contents of @got at the beginning
of the call, which are the results of the first iext lookup in
xfs_buffered_write_iomap_begin.
Line 3 ("crapgot") is the result of duplicating the cursor at the start
of the body of xfs_bmapi_reserve_delalloc and performing a fresh lookup
at @off.
Line 4 ("freshgot") is the result of a new xfs_iext_get_extent right
before the call to xfs_bmap_add_extent_hole_delay. Totally garbage.
Line 5 ("nowgot") is contents of @got after the
xfs_bmap_add_extent_hole_delay call.
Line 6 is the contents of @icur at the beginning fo the call. Lines 7-9
are the contents of the iext cursors at the point where the block
mappings were sampled.
I think @oldgot is a HOLESTARTBLOCK extent because the first lookup
didn't find anything, so we filled in imap with "fake hole until the
end". At the time of the first lookup, I suspect that there's only one
32-block unwritten extent in the mapping (hence oldicurpos==1) but by
the time we get to recording crapgot, crapicurpos==2.
Dave then added:
Ok, that's much simpler to reason about, and implies the smoke is
coming from xfs_buffered_write_iomap_begin() or
xfs_bmapi_reserve_delalloc(). I suspect the former - it does a lot
of stuff with the ILOCK_EXCL held.....
.... including calling xfs_qm_dqattach_locked().
xfs_buffered_write_iomap_begin
ILOCK_EXCL
look up icur
xfs_qm_dqattach_locked
xfs_qm_dqattach_one
xfs_qm_dqget_inode
dquot cache miss
xfs_iunlock(ip, XFS_ILOCK_EXCL);
error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
xfs_ilock(ip, XFS_ILOCK_EXCL);
....
xfs_bmapi_reserve_delalloc(icur)
Yup, that's what is letting the magic smoke out -
xfs_qm_dqattach_locked() can cycle the ILOCK. If that happens, we
can pass a stale icur to xfs_bmapi_reserve_delalloc() and it all
goes downhill from there.
Back to Darrick now:
So. Fix this by moving the dqattach_locked call up before we take the
ILOCK, like all the other callers in that file.
Fixes: a526c85c22 ("xfs: move xfs_file_iomap_begin_delay around") # goes further back than this
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 032e160305 ]
Every now and then I see fstests failures on aarch64 (64k pages) that
trigger on the following sequence:
mkfs.xfs $dev
mount $dev $mnt
touch $mnt/a
umount $mnt
xfs_db -c 'path /a' -c 'print' $dev
99% of the time this succeeds, but every now and then xfs_db cannot find
/a and fails. This turns out to be a race involving udev/blkid, the
page cache for the block device, and the xfs_db process.
udev is triggered whenever anyone closes a block device or unmounts it.
The default udev rules invoke blkid to read the fs super and create
symlinks to the bdev under /dev/disk. For this, it uses buffered reads
through the page cache.
xfs_db also uses buffered reads to examine metadata. There is no
coordination between xfs_db and udev, which means that they can run
concurrently. Note there is no coordination between the kernel and
blkid either.
On a system with 64k pages, the page cache can cache the superblock and
the root inode (and hence the root dir) with the same 64k page. If
udev spawns blkid after the mkfs and the system is busy enough that it
is still running when xfs_db starts up, they'll both read from the same
page in the pagecache.
The unmount writes updated inode metadata to disk directly. The XFS
buffer cache does not use the bdev pagecache, nor does it invalidate the
pagecache on umount. If the above scenario occurs, the pagecache no
longer reflects what's on disk, xfs_db reads the stale metadata, and
fails to find /a. Most of the time this succeeds because closing a bdev
invalidates the page cache, but when processes race, everyone loses.
Fix the problem by invalidating the bdev pagecache after flushing the
bdev, so that xfs_db will see up to date metadata.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 28b4b05963 ]
The following error occurred during the fsstress test:
XFS: Assertion failed: VFS_I(ip)->i_nlink >= 2, file: fs/xfs/xfs_inode.c, line: 2452
The problem was that inode race condition causes incorrect i_nlink to be
written to disk, and then it is read into memory. Consider the following
call graph, inodes that are marked as both XFS_IFLUSHING and
XFS_IRECLAIMABLE, i_nlink will be reset to 1 and then restored to original
value in xfs_reinit_inode(). Therefore, the i_nlink of directory on disk
may be set to 1.
xfsaild
xfs_inode_item_push
xfs_iflush_cluster
xfs_iflush
xfs_inode_to_disk
xfs_iget
xfs_iget_cache_hit
xfs_iget_recycle
xfs_reinit_inode
inode_init_always
xfs_reinit_inode() needs to hold the ILOCK_EXCL as it is changing internal
inode state and can race with other RCU protected inode lookups. On the
read side, xfs_iflush_cluster() grabs the ILOCK_SHARED while under rcu +
ip->i_flags_lock, and so xfs_iflush/xfs_inode_to_disk() are protected from
racing inode updates (during transactions) by that lock.
Fixes: ff7bebeb91 ("xfs: refactor the inode recycling code") # goes further back than this
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 59f6ab40fd ]
When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:
XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed
This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.
#!/bin/bash
device=/dev/sda
testdir=/mnt/test
round=0
function fail()
{
echo "$*"
exit 1
}
mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done
With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:
CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)
After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.
When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.
Fixes: 8756a5af18 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>