kernels, caused by a buggy factoring-out of existing code.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmTzC5oRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hG1Q/+ICGbpxdQOrVg7QTLzgsxttxIyi4Un6lb
vPX8NO9/4HIxObR6bd+ji2499TIO6nIhRqGOzEYUe9jzEN27eM/bMo6kCcRkbWra
4V/GZd3j+XdJwIQR442cBdUcByk4X7FlE7KqizJIbvYYyLBXzboBcpOdH012e2O9
UzFjtU+pk5Lhit18jL6/AvjsMhneKb6YUH20Wbb6zjZ1FL28YGKpeOHrh6GSXlKE
GVS07pWSAB8TMXdO+8YaKoE7VIOdMaYS/mJJ6u/M8Wo+Kl0wWwmJtjmSYzvD2Uod
PGcCiGXr1QpWK66wZNnXjs3rb6bX5umCo8rc5L6rqvWTYvB8Owpl5V94+87yGEov
29lYvWdVJ7dPqP8fSQfYxBKbgfINwOO1STYnIX1Q5mDD9fK2SgOpD9+JFagYnJoI
5n6KoVArVHQXSB4odTn+Qyt0yu0iDubUFRxBTrWijq5ooHOExaxByl0ViyCfp1aS
csTcGQSJsvHKhZPejDggjp74IU/ge5lUN4uSFlPVo3jYFwUIIgBG+43QtFiVrplg
3ifpI2qNISQl65PRerZjB5jBmItUGnUl71tnEg/Cli7zvvw/nMeKh98vChtE9S3A
2eQ66rrV9eJAeYaNCV4Uz1UmocD4i2Vec9tZOUUoIga/bDIOVr+bxUr7nvcOneak
98h2ylU4W8o=
=zpfn
-----END PGP SIGNATURE-----
Merge tag 'timers-urgent-2023-09-02' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fix from Ingo Molnar:
"Fix false positive 'softirq work is pending' messages on -rt kernels,
caused by a buggy factoring-out of existing code"
* tag 'timers-urgent-2023-09-02' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick/rcu: Fix false positive "softirq work is pending" messages
- Work from Carlos Bilbao to integrate rustdoc output into the generated
HTML documentation. This took some work to figure out how to do it
without slowing the docs build and without creating people who don't have
Rust installed, but Carlos got there.
- Move the loongarch and mips architecture documentation under
Documentation/arch/.
- Some more maintainer documentation from Jakub
...plus the usual assortment of updates, translations, and fixes.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAmTvqNkPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5YgIgH/3drfLtlFtzLqDOzrzDXS8yGnE3pPdxw796b
/ZFzAK16wYKaKevYoIz8bVGGKaE1sEUW0mhlq4KGdfZuxLG8YnWS8URyCW4FDU2E
6qNL+8oJ8LZfID46f9Q8ZgfEz7yF/mhCqPk7MEswYtwbscs2ZTGCTGYB/5BHlBuT
LR+M89uLmHgr8S1o24v30OgiX+VvQFyu0xoxIhbiqUZvBd/XdfX2pgYd9BGzMj5q
C2ZP+V14g36c5pV0EO9TwhCXOF/WVrp7DbjbfWAsqBSLxvpXPydH2q1DUzGeQtP1
exujrBD1O8q3pPdaNA5R+h6cWlHmUZug9mE4BRLp9ErGrozwJsQ=
=C3Uv
-----END PGP SIGNATURE-----
Merge tag 'docs-6.6' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"Documentation work keeps chugging along; this includes:
- Work from Carlos Bilbao to integrate rustdoc output into the
generated HTML documentation. This took some work to figure out how
to do it without slowing the docs build and without creating people
who don't have Rust installed, but Carlos got there
- Move the loongarch and mips architecture documentation under
Documentation/arch/
- Some more maintainer documentation from Jakub
... plus the usual assortment of updates, translations, and fixes"
* tag 'docs-6.6' of git://git.lwn.net/linux: (56 commits)
Docu: genericirq.rst: fix irq-example
input: docs: pxrc: remove reference to phoenix-sim
Documentation: serial-console: Fix literal block marker
docs/mm: remove references to hmm_mirror ops and clean typos
docs/zh_CN: correct regi_chg(),regi_add() to region_chg(),region_add()
Documentation: Fix typos
Documentation/ABI: Fix typos
scripts: kernel-doc: fix macro handling in enums
scripts: kernel-doc: parse DEFINE_DMA_UNMAP_[ADDR|LEN]
Documentation: riscv: Update boot image header since EFI stub is supported
Documentation: riscv: Add early boot document
Documentation: arm: Add bootargs to the table of added DT parameters
docs: kernel-parameters: Refer to the correct bitmap function
doc: update params of memhp_default_state=
docs: Add book to process/kernel-docs.rst
docs: sparse: fix invalid link addresses
docs: vfs: clean up after the iterate() removal
docs: Add a section on surveys to the researcher guidelines
docs: move mips under arch
docs: move loongarch under arch
...
In commit 0345691b24 ("tick/rcu: Stop allowing RCU_SOFTIRQ in idle") the
new function report_idle_softirq() was created by breaking code out of the
existing can_stop_idle_tick() for kernels v5.18 and newer.
In doing so, the code essentially went from a one conditional:
if (a && b && c)
warn();
to a three conditional:
if (!a)
return;
if (!b)
return;
if (!c)
return;
warn();
But that conversion got the condition for the RT specific
local_bh_blocked() wrong. The original condition was:
!local_bh_blocked()
but the conversion failed to negate it so it ended up as:
if (!local_bh_blocked())
return false;
This issue lay dormant until another fixup for the same commit was added
in commit a7e282c777 ("tick/rcu: Fix bogus ratelimit condition").
This commit realized the ratelimit was essentially set to zero instead
of ten, and hence *no* softirq pending messages would ever be issued.
Once this commit was backported via linux-stable, both the v6.1 and v6.4
preempt-rt kernels started printing out 10 instances of this at boot:
NOHZ tick-stop error: local softirq work is pending, handler #80!!!
Remove the negation and return when local_bh_blocked() evaluates to true to
bring the correct behaviour back.
Fixes: 0345691b24 ("tick/rcu: Stop allowing RCU_SOFTIRQ in idle")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Reviewed-by: Wen Yang <wenyang.linux@foxmail.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230818200757.1808398-1-paul.gortmaker@windriver.com
This kunit update for Linux 6.6.rc1 consists of:
-- Adds support for running Rust documentation tests as KUnit tests
-- Makes init, str, sync, types doctests compilable/testable
-- Adds support for attributes API which include speed, modules
attributes, ability to filter and report attributes.
-- Adds support for marking tests slow using attributes API.
-- Adds attributes API documentation
-- Fixes to wild-memory-access bug in kunit_filter_suites() and
a possible memory leak in kunit_filter_suites()
-- Adds support for counting number of test suites in a module, list
action to kunit test modules, and test filtering on module tests.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEPZKym/RZuOCGeA/kCwJExA0NQxwFAmTsxL8ACgkQCwJExA0N
Qxwt6BAA5FgF7nUeGRZCnot4MQCNGRThxsns2k3CKjM1Iokp8tstTDoNHXzk2veS
WlRYOHFQqQOVTVRP+laXyjjMMHnlnhFxqbv93UKsen4JIUJDLFLq9x+0i+0bZh97
N1rE5cKUnqjAOL6MIJuomW9IzEIrbMcqdljm6SOCZp90NLvq1+I4pDGLgx2bxcow
Y/7dkx+dnlEsoACZ19CL1L2TaR21GpKdpOudpHNCShsbE0aOAlyHAVcmH64FTqCy
Z1LtrA0odS71q0yxDVCk5X3cIkeVfGBMz6aMZBRzS9k5jU4H1EN1eG1rGdGErIe5
YduwX3KMikYJB2stT64T1vgldIpT/emxqkBigmxQ37g3Flgopz4bI1snMBry+nKb
ViD/WQNjsf2iL8MooCgYBzH7yjmX6lXXQTZXROogBj4lP2/0gHiQVZyXZEAjtoO3
uNzUbfHQGnvtTphBHV4nNGaO+7kU9Y/oX8TYFcSYJQzcH5UVx16uBwevZjT1bii/
q89bRAQLnJpzkR93SGpnmsRgoDcYJSYsEA1o/f9Eqq8j3guOS2idpJvkheXq8+A2
MqTSOCJHENKZ3v0UGKlvZUPStaMaqN58z/VjlWug5EaB83LLfPcXJrGjz/EHk967
hYDHcwPoamTegr1zlg3ckOLiWEhga2tv6aHPkshkcFphpnhRU/c=
=Nsb8
-----END PGP SIGNATURE-----
Merge tag 'linux-kselftest-kunit-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest
Pull kunit updates from Shuah Khan:
- add support for running Rust documentation tests as KUnit tests
- make init, str, sync, types doctests compilable/testable
- add support for attributes API which include speed, modules
attributes, ability to filter and report attributes
- add support for marking tests slow using attributes API
- add attributes API documentation
- fix a wild-memory-access bug in kunit_filter_suites() and a possible
memory leak in kunit_filter_suites()
- add support for counting number of test suites in a module, list
action to kunit test modules, and test filtering on module tests
* tag 'linux-kselftest-kunit-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest: (25 commits)
kunit: fix struct kunit_attr header
kunit: replace KUNIT_TRIGGER_STATIC_STUB maro with KUNIT_STATIC_STUB_REDIRECT
kunit: Allow kunit test modules to use test filtering
kunit: Make 'list' action available to kunit test modules
kunit: Report the count of test suites in a module
kunit: fix uninitialized variables bug in attributes filtering
kunit: fix possible memory leak in kunit_filter_suites()
kunit: fix wild-memory-access bug in kunit_filter_suites()
kunit: Add documentation of KUnit test attributes
kunit: add tests for filtering attributes
kunit: time: Mark test as slow using test attributes
kunit: memcpy: Mark tests as slow using test attributes
kunit: tool: Add command line interface to filter and report attributes
kunit: Add ability to filter attributes
kunit: Add module attribute
kunit: Add speed attribute
kunit: Add test attributes API structure
MAINTAINERS: add Rust KUnit files to the KUnit entry
rust: support running Rust documentation tests as KUnit ones
rust: types: make doctests compilable/testable
...
Mark the time KUnit test, time64_to_tm_test_date_range, as slow using test
attributes.
This test ran relatively much slower than most other KUnit tests.
By marking this test as slow, the test can now be filtered using the KUnit
test attribute filtering feature. Example: --filter "speed>slow". This will
run only the tests that have speeds faster than slow. The slow attribute
will also be outputted in KTAP.
Reviewed-by: David Gow <davidgow@google.com>
Signed-off-by: Rae Moar <rmoar@google.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
The nanosecond-to-millisecond skew computation uses unsigned arithmetic,
which produces user-unfriendly large positive numbers for negative skews.
Therefore, use signed arithmetic for this computation in order to preserve
the negativity.
Reported-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Reported-by: Feng Tang <feng.tang@intel.com>
Fixes: dd02926994 ("clocksource: Improve "skew is too large" messages")
Reviewed-by: Feng Tang <feng.tang@intel.com>
Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Add kernel-doc for all APIs that do not already have it.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: John Stultz <jstultz@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-doc@vger.kernel.org
Acked-by: John Stultz <jstultz@google.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20230704052405.5089-3-rdunlap@infradead.org
- Fix KMSAN vs FORTIFY in strlcpy/strlcat (Alexander Potapenko)
- Convert strreplace() to return string start (Andy Shevchenko)
- Flexible array conversions (Arnd Bergmann, Wyes Karny, Kees Cook)
- Add missing function prototypes seen with W=1 (Arnd Bergmann)
- Fix strscpy() kerndoc typo (Arne Welzel)
- Replace strlcpy() with strscpy() across many subsystems which were
either Acked by respective maintainers or were trivial changes that
went ignored for multiple weeks (Azeem Shaikh)
- Remove unneeded cc-option test for UBSAN_TRAP (Nick Desaulniers)
- Add KUnit tests for strcat()-family
- Enable KUnit tests of FORTIFY wrappers under UML
- Add more complete FORTIFY protections for strlcat()
- Add missed disabling of FORTIFY for all arch purgatories.
- Enable -fstrict-flex-arrays=3 globally
- Tightening UBSAN_BOUNDS when using GCC
- Improve checkpatch to check for strcpy, strncpy, and fake flex arrays
- Improve use of const variables in FORTIFY
- Add requested struct_size_t() helper for types not pointers
- Add __counted_by macro for annotating flexible array size members
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmSbftQWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJj0MD/9X9jzJzCmsAU+yNldeoAzC84Sk
GVU3RBxGcTNysL1gZXynkIgigw7DWc4htMGeSABHHwQRVP65JCH1Kw/VqIkyumbx
9LdX6IklMJb4pRT4PVU3azebV4eNmSjlur2UxMeW54Czm91/6I8RHbJOyAPnOUmo
2oomGdP/hpEHtKR7hgy8Axc6w5ySwQixh2V5sVZG3VbvCS5WKTmTXbs6puuRT5hz
iHt7v+7VtEg/Qf1W7J2oxfoghvVBsaRrSLrExWT/oZYh1ZxM7DsCAAoG/IsDgHGA
9LBXiRECgAFThbHVxLvvKZQMXdVk0i8iXLX43XMKC0wTA+NTyH7wlcQQ4RWNMuo8
sfA9Qm9gMArXaf64aymr3Uwn20Zan0391HdlbhOJZAE6v3PPJbleUnM58AzD2d3r
5Lz6AIFBxDImy+3f9iDWgacCT5/PkeiXTHzk9QnKhJyKKtRA58XJxj4q2+rPnGJP
n4haXqoxD5FJbxdXiGKk31RS0U5HBug7wkOcUrTqDHUbc/QNU2b7dxTKUx+zYtCU
uV5emPzpF4H4z+91WpO47n9gkMAfwV0lt9S2dwS8pxsgqctbmIan+Jgip7rsqZ2G
OgLXBsb43eEs+6WgO8tVt/ZHYj9ivGMdrcNcsIfikzNs/xweUJ53k2xSEn2xEa5J
cwANDmkL6QQK7yfeeg==
=s0j1
-----END PGP SIGNATURE-----
Merge tag 'hardening-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
"There are three areas of note:
A bunch of strlcpy()->strscpy() conversions ended up living in my tree
since they were either Acked by maintainers for me to carry, or got
ignored for multiple weeks (and were trivial changes).
The compiler option '-fstrict-flex-arrays=3' has been enabled
globally, and has been in -next for the entire devel cycle. This
changes compiler diagnostics (though mainly just -Warray-bounds which
is disabled) and potential UBSAN_BOUNDS and FORTIFY _warning_
coverage. In other words, there are no new restrictions, just
potentially new warnings. Any new FORTIFY warnings we've seen have
been fixed (usually in their respective subsystem trees). For more
details, see commit df8fc4e934.
The under-development compiler attribute __counted_by has been added
so that we can start annotating flexible array members with their
associated structure member that tracks the count of flexible array
elements at run-time. It is possible (likely?) that the exact syntax
of the attribute will change before it is finalized, but GCC and Clang
are working together to sort it out. Any changes can be made to the
macro while we continue to add annotations.
As an example of that last case, I have a treewide commit waiting with
such annotations found via Coccinelle:
https://git.kernel.org/linus/adc5b3cb48a049563dc673f348eab7b6beba8a9b
Also see commit dd06e72e68 for more details.
Summary:
- Fix KMSAN vs FORTIFY in strlcpy/strlcat (Alexander Potapenko)
- Convert strreplace() to return string start (Andy Shevchenko)
- Flexible array conversions (Arnd Bergmann, Wyes Karny, Kees Cook)
- Add missing function prototypes seen with W=1 (Arnd Bergmann)
- Fix strscpy() kerndoc typo (Arne Welzel)
- Replace strlcpy() with strscpy() across many subsystems which were
either Acked by respective maintainers or were trivial changes that
went ignored for multiple weeks (Azeem Shaikh)
- Remove unneeded cc-option test for UBSAN_TRAP (Nick Desaulniers)
- Add KUnit tests for strcat()-family
- Enable KUnit tests of FORTIFY wrappers under UML
- Add more complete FORTIFY protections for strlcat()
- Add missed disabling of FORTIFY for all arch purgatories.
- Enable -fstrict-flex-arrays=3 globally
- Tightening UBSAN_BOUNDS when using GCC
- Improve checkpatch to check for strcpy, strncpy, and fake flex
arrays
- Improve use of const variables in FORTIFY
- Add requested struct_size_t() helper for types not pointers
- Add __counted_by macro for annotating flexible array size members"
* tag 'hardening-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (54 commits)
netfilter: ipset: Replace strlcpy with strscpy
uml: Replace strlcpy with strscpy
um: Use HOST_DIR for mrproper
kallsyms: Replace all non-returning strlcpy with strscpy
sh: Replace all non-returning strlcpy with strscpy
of/flattree: Replace all non-returning strlcpy with strscpy
sparc64: Replace all non-returning strlcpy with strscpy
Hexagon: Replace all non-returning strlcpy with strscpy
kobject: Use return value of strreplace()
lib/string_helpers: Change returned value of the strreplace()
jbd2: Avoid printing outside the boundary of the buffer
checkpatch: Check for 0-length and 1-element arrays
riscv/purgatory: Do not use fortified string functions
s390/purgatory: Do not use fortified string functions
x86/purgatory: Do not use fortified string functions
acpi: Replace struct acpi_table_slit 1-element array with flex-array
clocksource: Replace all non-returning strlcpy with strscpy
string: use __builtin_memcpy() in strlcpy/strlcat
staging: most: Replace all non-returning strlcpy with strscpy
drm/i2c: tda998x: Replace all non-returning strlcpy with strscpy
...
- Scheduler SMP load-balancer improvements:
- Avoid unnecessary migrations within SMT domains on hybrid systems.
Problem:
On hybrid CPU systems, (processors with a mixture of higher-frequency
SMT cores and lower-frequency non-SMT cores), under the old code
lower-priority CPUs pulled tasks from the higher-priority cores if
more than one SMT sibling was busy - resulting in many unnecessary
task migrations.
Solution:
The new code improves the load balancer to recognize SMT cores with more
than one busy sibling and allows lower-priority CPUs to pull tasks, which
avoids superfluous migrations and lets lower-priority cores inspect all SMT
siblings for the busiest queue.
- Implement the 'runnable boosting' feature in the EAS balancer: consider CPU
contention in frequency, EAS max util & load-balance busiest CPU selection.
This improves CPU utilization for certain workloads, while leaves other key
workloads unchanged.
- Scheduler infrastructure improvements:
- Rewrite the scheduler topology setup code by consolidating it
into the build_sched_topology() helper function and building
it dynamically on the fly.
- Resolve the local_clock() vs. noinstr complications by rewriting
the code: provide separate sched_clock_noinstr() and
local_clock_noinstr() functions to be used in instrumentation code,
and make sure it is all instrumentation-safe.
- Fixes:
- Fix a kthread_park() race with wait_woken()
- Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
- Fix UP PREEMPT bug by unifying the SMP and UP implementations.
- Fix task_struct::saved_state handling.
- Fix various rq clock update bugs, unearthed by turning on the rq clock
debugging code.
- Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger by
creating enough cgroups, by removing the warnign and restricting
window size triggers to PSI file write-permission or CAP_SYS_RESOURCE.
- Propagate SMT flags in the topology when removing degenerate domain
- Fix grub_reclaim() calculation bug in the deadline scheduler code
- Avoid resetting the min update period when it is unnecessary, in
psi_trigger_destroy().
- Don't balance a task to its current running CPU in load_balance(),
which was possible on certain NUMA topologies with overlapping
groups.
- Fix the sched-debug printing of rq->nr_uninterruptible
- Cleanups:
- Address various -Wmissing-prototype warnings, as a preparation
to (maybe) enable this warning in the future.
- Remove unused code
- Mark more functions __init
- Fix shadow-variable warnings
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSatWQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j62xAAuGOx1LcDfRGC6WGQzp1zOdlsVQtnDvlS
qL58zYSHgizprpVQ3j87SBaG4CHCdvd2Bo36yW0lNZS4nd203qdq7fkrMb3hPP/w
egUQUzMegf5fF6BWldKeMjuHSt+twFQz/ZAKK8iSbAir6CHNAqbNst1oL0i/+Tyk
o33hBs1hT5tnbFb1NSVZkX4k+qT3LzTW4K2QgjjGtkScr6yHh2BdEVefyigWOjdo
9s02d00ll9a2r+F5txlN7Dnw6TN7rmTXGMOJU5bZvBE90/anNiAorMXHJdEKCyUR
u9+JtBdJWiCplGa/tSRcxT16ZW1VdtTnd9q66TDhXREd2UNDFqBEyg5Wl77K4Tlf
vKFajmj/to+cTbuv6m6TVR+zyXpdEpdL6F04P44U3qiJvDobBqeDNKHHIqpmbHXl
AXUXcPWTVAzXX1Ce5M+BeAgTBQ1T7C5tELILrTNQHJvO1s9VVBRFZ/l65Ps4vu7T
wIZ781IFuopk0zWqHovNvgKrJ7oFmOQQZFttQEe8n6nafkjI7u+IZ8FayiGaUMRr
4GawFGUCEdYh8z9qyslGKe8Q/Rphfk6hxMFRYUJpDmubQ0PkMeDjDGq77jDGl1PF
VqwSDEyOaBJs7Gqf/mem00JtzBmXhkhm1SEjggHMI2IQbr/eeBXoLQOn3CDapO/N
PiDbtX760ic=
=EWQA
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Scheduler SMP load-balancer improvements:
- Avoid unnecessary migrations within SMT domains on hybrid systems.
Problem:
On hybrid CPU systems, (processors with a mixture of
higher-frequency SMT cores and lower-frequency non-SMT cores),
under the old code lower-priority CPUs pulled tasks from the
higher-priority cores if more than one SMT sibling was busy -
resulting in many unnecessary task migrations.
Solution:
The new code improves the load balancer to recognize SMT cores
with more than one busy sibling and allows lower-priority CPUs
to pull tasks, which avoids superfluous migrations and lets
lower-priority cores inspect all SMT siblings for the busiest
queue.
- Implement the 'runnable boosting' feature in the EAS balancer:
consider CPU contention in frequency, EAS max util & load-balance
busiest CPU selection.
This improves CPU utilization for certain workloads, while leaves
other key workloads unchanged.
Scheduler infrastructure improvements:
- Rewrite the scheduler topology setup code by consolidating it into
the build_sched_topology() helper function and building it
dynamically on the fly.
- Resolve the local_clock() vs. noinstr complications by rewriting
the code: provide separate sched_clock_noinstr() and
local_clock_noinstr() functions to be used in instrumentation code,
and make sure it is all instrumentation-safe.
Fixes:
- Fix a kthread_park() race with wait_woken()
- Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
- Fix UP PREEMPT bug by unifying the SMP and UP implementations
- Fix task_struct::saved_state handling
- Fix various rq clock update bugs, unearthed by turning on the rq
clock debugging code.
- Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger
by creating enough cgroups, by removing the warnign and restricting
window size triggers to PSI file write-permission or
CAP_SYS_RESOURCE.
- Propagate SMT flags in the topology when removing degenerate domain
- Fix grub_reclaim() calculation bug in the deadline scheduler code
- Avoid resetting the min update period when it is unnecessary, in
psi_trigger_destroy().
- Don't balance a task to its current running CPU in load_balance(),
which was possible on certain NUMA topologies with overlapping
groups.
- Fix the sched-debug printing of rq->nr_uninterruptible
Cleanups:
- Address various -Wmissing-prototype warnings, as a preparation to
(maybe) enable this warning in the future.
- Remove unused code
- Mark more functions __init
- Fix shadow-variable warnings"
* tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()
sched/core: Avoid double calling update_rq_clock() in __balance_push_cpu_stop()
sched/core: Fixed missing rq clock update before calling set_rq_offline()
sched/deadline: Update GRUB description in the documentation
sched/deadline: Fix bandwidth reclaim equation in GRUB
sched/wait: Fix a kthread_park race with wait_woken()
sched/topology: Mark set_sched_topology() __init
sched/fair: Rename variable cpu_util eff_util
arm64/arch_timer: Fix MMIO byteswap
sched/fair, cpufreq: Introduce 'runnable boosting'
sched/fair: Refactor CPU utilization functions
cpuidle: Use local_clock_noinstr()
sched/clock: Provide local_clock_noinstr()
x86/tsc: Provide sched_clock_noinstr()
clocksource: hyper-v: Provide noinstr sched_clock()
clocksource: hyper-v: Adjust hv_read_tsc_page_tsc() to avoid special casing U64_MAX
x86/vdso: Fix gettimeofday masking
math64: Always inline u128 version of mul_u64_u64_shr()
s390/time: Provide sched_clock_noinstr()
loongarch: Provide noinstr sched_clock_read()
...
- Core:
- A set of fixes, cleanups and enhancements to the posix timer code:
- Prevent another possible live lock scenario in the exit() path,
which affects POSIX_CPU_TIMERS_TASK_WORK enabled architectures.
- Fix a loop termination issue which was reported syzcaller/KSAN in
the posix timer ID allocation code.
That triggered a deeper look into the posix-timer code which
unearthed more small issues.
- Add missing READ/WRITE_ONCE() annotations
- Fix or remove completely outdated comments
- Document places which are subtle and completely undocumented.
- Add missing hrtimer modes to the trace event decoder
- Small cleanups and enhancements all over the place
- Drivers:
- Rework the Hyper-V clocksource and sched clock setup code
- Remove a deprecated clocksource driver
- Small fixes and enhancements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSZctYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoQqpEACAzSDKH7lpWFXwXMR0j6GKi5erZEYg
I0PtvK70+zV0Fk2DOXplxDIis3qtYPSinSEK5Kzycyf+MNOuWKaB8//4PsCbD6aR
3DWWi5xUGAOkmtFQMlmQBKahDcfFhSTN7GeYYcTd5TaQIwVPjb+Qh9XuOG5d/O0q
66jeiYRkiOqTwOM8jZqWOWeKOt56xd9BmCvSdNbnAbZZEjUNAFT7LN6Oux2I91BU
VUh1luoKPPKRFQN07oWaBKg/V7Iib10SCejDmAd6QKZQg1A/UulJl0WBOtRYr3RG
81b05dG2Ulp2ygm5YuRWtkpIC6pcFKjhh6WzDio0do6aOtWHOn5oefqJqUmufM9K
h6WRRmGecoSvon1euzciy/ArzzoI0fSHYtB2cgBaBS7ImGb+7hDk0RkNota4alLG
gfn98Rufqx/FXHFUJeHxoZTQbW1PUoU0VIF1r/nmSwDRJsxmqPyCW+52/TOjnSo1
cvrTflAu/JYazhggsIpOCyVlnaiXZnfGUdbvnzlhaB1vQ8M4X+aq48b1sPU9XawN
VB9WDdh8Ba6w8ebALjM0apNaLYLq71P9dzs5dHsmjMkqx2rA+Kafc/jIu37h6ZEp
RBFDcI/WAPnp6lS6w2v0F852xBzIJe4zbTIrUivuVxcTo5Rh8iW0AexmHFN2PN4N
MGyyJHu8bMdIww==
=hRV9
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Time, timekeeping and related device driver updates:
Core:
- A set of fixes, cleanups and enhancements to the posix timer code:
- Prevent another possible live lock scenario in the exit() path,
which affects POSIX_CPU_TIMERS_TASK_WORK enabled architectures.
- Fix a loop termination issue which was reported syzcaller/KSAN
in the posix timer ID allocation code.
That triggered a deeper look into the posix-timer code which
unearthed more small issues.
- Add missing READ/WRITE_ONCE() annotations
- Fix or remove completely outdated comments
- Document places which are subtle and completely undocumented.
- Add missing hrtimer modes to the trace event decoder
- Small cleanups and enhancements all over the place
Drivers:
- Rework the Hyper-V clocksource and sched clock setup code
- Remove a deprecated clocksource driver
- Small fixes and enhancements all over the place"
* tag 'timers-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits)
clocksource/drivers/cadence-ttc: Fix memory leak in ttc_timer_probe
dt-bindings: timers: Add Ralink SoCs timer
clocksource/drivers/hyper-v: Rework clocksource and sched clock setup
dt-bindings: timer: brcm,kona-timer: convert to YAML
clocksource/drivers/imx-gpt: Fold <soc/imx/timer.h> into its only user
clk: imx: Drop inclusion of unused header <soc/imx/timer.h>
hrtimer: Add missing sparse annotations to hrtimer locking
clocksource/drivers/imx-gpt: Use only a single name for functions
clocksource/drivers/loongson1: Move PWM timer to clocksource framework
dt-bindings: timer: Add Loongson-1 clocksource
MIPS: Loongson32: Remove deprecated PWM timer clocksource
clocksource/drivers/ingenic-timer: Use pm_sleep_ptr() macro
tracing/timer: Add missing hrtimer modes to decode_hrtimer_mode().
posix-timers: Add sys_ni_posix_timers() prototype
tick/rcu: Fix bogus ratelimit condition
alarmtimer: Remove unnecessary (void *) cast
alarmtimer: Remove unnecessary initialization of variable 'ret'
posix-timers: Refer properly to CONFIG_HIGH_RES_TIMERS
posix-timers: Polish coding style in a few places
posix-timers: Remove pointless comments
...
Sparse warns about lock imbalance vs. the hrtimer_base lock due to missing
sparse annotations:
kernel/time/hrtimer.c:175:33: warning: context imbalance in 'lock_hrtimer_base' - wrong count at exit
kernel/time/hrtimer.c:1301:28: warning: context imbalance in 'hrtimer_start_range_ns' - unexpected unlock
kernel/time/hrtimer.c:1336:28: warning: context imbalance in 'hrtimer_try_to_cancel' - unexpected unlock
kernel/time/hrtimer.c:1457:9: warning: context imbalance in '__hrtimer_get_remaining' - unexpected unlock
Add the annotations to the relevant functions.
Signed-off-by: Ben Dooks <ben.dooks@codethink.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230621075928.394481-1-ben.dooks@codethink.co.uk
The ratelimit logic in report_idle_softirq() is broken because the
exit condition is always true:
static int ratelimit;
if (ratelimit < 10)
return false; ---> always returns here
ratelimit++; ---> no chance to run
Make it check for >= 10 instead.
Fixes: 0345691b24 ("tick/rcu: Stop allowing RCU_SOFTIRQ in idle")
Signed-off-by: Wen Yang <wenyang.linux@foxmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/tencent_5AAA3EEAB42095C9B7740BE62FBF9A67E007@qq.com
Commit c78f261e5dcb ("posix-timers: Clarify posix_timer_fn() comments")
turns an ifdef CONFIG_HIGH_RES_TIMERS into an conditional on
"IS_ENABLED(CONFIG_HIGHRES_TIMERS)"; note that the new conditional refers
to "HIGHRES_TIMERS" not "HIGH_RES_TIMERS" as before.
Fix this typo introduced in that refactoring.
Fixes: c78f261e5dcb ("posix-timers: Clarify posix_timer_fn() comments")
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230609094643.26253-1-lukas.bulwahn@gmail.com
Make the issues vs. SIG_IGN understandable and remove the 15 years old
promise that a proper solution is already on the horizon.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/874jnrdmrq.ffs@tglx
The comment about timer lifetime at the end of the function is misplaced
and uncomprehensible.
Make it understandable and put it at the right place. Add a new comment
about the visibility of the new timer ID to user space.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.619897296@linutronix.de
The descriptions for common_nsleep() is wrong and common_nsleep_timens()
lacks any form of comment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.567072835@linutronix.de
The documentation of sys_clock_settime() permissions is at a random place
and mostly word salad.
Remove it and add a concise comment into sys_clock_settime().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.514700292@linutronix.de
The decades old comment about Posix clock resolution is confusing at best.
Remove it and add a proper explanation to sys_clock_getres().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.356427330@linutronix.de
release_posix_timers() is called for cleaning up both hashed and unhashed
timers. The cases are differentiated by an argument and the usage is
hideous.
Seperate the actual free path out and use it for unhashed timers. Provide a
function for hashed timers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.301432503@linutronix.de
All usage of hash_lock is in thread context. No point in using
spin_lock_irqsave()/irqrestore() for a single usage site.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.249063953@linutronix.de
Technically it's not required to set k_itimer::it_signal to NULL on exit()
because there is no other thread anymore which could lookup the timer
concurrently.
Set it to NULL for consistency sake and add a comment to that effect.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.196462644@linutronix.de
k_itimer::it_signal is read lockless in the RCU protected hash lookup, but
it can be written concurrently in the timer_create() and timer_delete()
path. Annotate these places with READ_ONCE() and WRITE_ONCE()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.143596887@linutronix.de
Explain it better and add the CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y aspect
for completeness.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183312.985681995@linutronix.de
posix_timer_add() tries to allocate a posix timer ID by starting from the
cached ID which was stored by the last successful allocation.
This is done in a loop searching the ID space for a free slot one by
one. The loop has to terminate when the search wrapped around to the
starting point.
But that's racy vs. establishing the starting point. That is read out
lockless, which leads to the following problem:
CPU0 CPU1
posix_timer_add()
start = sig->posix_timer_id;
lock(hash_lock);
... posix_timer_add()
if (++sig->posix_timer_id < 0)
start = sig->posix_timer_id;
sig->posix_timer_id = 0;
So CPU1 can observe a negative start value, i.e. -1, and the loop break
never happens because the condition can never be true:
if (sig->posix_timer_id == start)
break;
While this is unlikely to ever turn into an endless loop as the ID space is
huge (INT_MAX), the racy read of the start value caught the attention of
KCSAN and Dmitry unearthed that incorrectness.
Rewrite it so that all id operations are under the hash lock.
Reported-by: syzbot+5c54bd3eb218bb595aa9@syzkaller.appspotmail.com
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87bkhzdn6g.ffs@tglx
itimer_delete() has a retry loop when the timer is concurrently expired. On
non-RT kernels this just spin-waits until the timer callback has completed,
except for posix CPU timers which have HAVE_POSIX_CPU_TIMERS_TASK_WORK
enabled.
In that case and on RT kernels the existing task could live lock when
preempting the task which does the timer delivery.
Replace spin_unlock() with an invocation of timer_wait_running() to handle
it the same way as the other retry loops in the posix timer code.
Fixes: ec8f954a40 ("posix-timers: Use a callback for cancel synchronization on PREEMPT_RT")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87v8g7c50d.ffs@tglx
The tick period is aligned very early while the first clock_event_device is
registered. At that point the system runs in periodic mode and switches
later to one-shot mode if possible.
The next wake-up event is programmed based on the aligned value
(tick_next_period) but the delta value, that is used to program the
clock_event_device, is computed based on ktime_get().
With the subtracted offset, the device fires earlier than the exact time
frame. With a large enough offset the system programs the timer for the
next wake-up and the remaining time left is too small to make any boot
progress. The system hangs.
Move the alignment later to the setup of tick_sched timer. At this point
the system switches to oneshot mode and a high resolution clocksource is
available. At this point it is safe to align tick_next_period because
ktime_get() will now return accurate (not jiffies based) time.
[bigeasy: Patch description + testing].
Fixes: e9523a0d81 ("tick/common: Align tick period with the HZ tick.")
Reported-by: Mathias Krause <minipli@grsecurity.net>
Reported-by: "Bhatnagar, Rishabh" <risbhat@amazon.com>
Suggested-by: Mathias Krause <minipli@grsecurity.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Acked-by: SeongJae Park <sj@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/5a56290d-806e-b9a5-f37c-f21958b5a8c0@grsecurity.net
Link: https://lore.kernel.org/12c6f9a3-d087-b824-0d05-0d18c9bc1bf3@amazon.com
Link: https://lore.kernel.org/r/20230615091830.RxMV2xf_@linutronix.de
With the intent to provide local_clock_noinstr(), a variant of
local_clock() that's safe to be called from noinstr code (with the
assumption that any such code will already be non-preemptible),
prepare for things by providing a noinstr sched_clock_noinstr() function.
Specifically, preempt_enable_*() calls out to schedule(), which upsets
noinstr validation efforts.
As such, pull out the preempt_{dis,en}able_notrace() requirements from
the sched_clock_read() implementations by explicitly providing it in
the sched_clock() function.
This further requires said sched_clock_read() functions to be noinstr
themselves, for ARCH_WANTS_NO_INSTR users. See the next few patches.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com> # Hyper-V
Link: https://lore.kernel.org/r/20230519102715.302350330@infradead.org
The read side of seqcount_latch consists of:
do {
seq = raw_read_seqcount_latch(&latch->seq);
...
} while (read_seqcount_latch_retry(&latch->seq, seq));
which is asymmetric in the raw_ department, and sure enough,
read_seqcount_latch_retry() includes (explicit) instrumentation where
raw_read_seqcount_latch() does not.
This inconsistency becomes a problem when trying to use it from
noinstr code. As such, fix it by renaming and re-implementing
raw_read_seqcount_latch_retry() without the instrumentation.
Specifically the instrumentation in question is kcsan_atomic_next(0)
in do___read_seqcount_retry(). Loosing this annotation is not a
problem because raw_read_seqcount_latch() does not pass through
kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Tested-by: Michael Kelley <mikelley@microsoft.com> # Hyper-V
Link: https://lore.kernel.org/r/20230519102715.233598176@infradead.org
When a tick broadcast clockevent device is initialized for one shot mode
then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode
cpumask into the oneshot broadcast cpumask.
This is required when switching from periodic broadcast mode to oneshot
broadcast mode to ensure that CPUs which are waiting for periodic
broadcast are woken up on the next tick.
But it is subtly broken, when an active broadcast device is replaced and
the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed
this and debugged the issue.
Then the OR of the periodic broadcast CPU mask is wrong as the periodic
cpumask bits are sticky after tick_broadcast_enable() set it for a CPU
unless explicitly cleared via tick_broadcast_disable().
That means that this sets all other CPUs which have tick broadcasting
enabled at that point unconditionally in the oneshot broadcast mask.
If the affected CPUs were already idle and had their bits set in the
oneshot broadcast mask then this does no harm. But for non idle CPUs
which were not set this corrupts their state.
On their next invocation of tick_broadcast_enable() they observe the bit
set, which indicates that the broadcast for the CPU is already set up.
As a consequence they fail to update the broadcast event even if their
earliest expiring timer is before the actually programmed broadcast
event.
If the programmed broadcast event is far in the future, then this can
cause stalls or trigger the hung task detector.
Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether
this is the initial switch over from periodic to oneshot broadcast which
must take the periodic broadcast mask into account. In the case of
initialization of a replacement device this prevents that the broadcast
oneshot mask is modified.
There is a second problem with broadcast device replacement in this
function. The broadcast device is only armed when the previous state of
the device was periodic.
That is correct for the switch from periodic broadcast mode to oneshot
broadcast mode as the underlying broadcast device could operate in
oneshot state already due to lack of periodic state in hardware. In that
case it is already armed to expire at the next tick.
For the replacement case this is wrong as the device is in shutdown
state. That means that any already pending broadcast event will not be
armed.
This went unnoticed because any CPU which goes idle will observe that
the broadcast device has an expiry time of KTIME_MAX and therefore any
CPUs next timer event will be earlier and cause a reprogramming of the
broadcast device. But that does not guarantee that the events of the
CPUs which were already in idle are delivered on time.
Fix this by arming the newly installed device for an immediate event
which will reevaluate the per CPU expiry times and reprogram the
broadcast device accordingly. This is simpler than caching the last
expiry time in yet another place or saving it before the device exchange
and handing it down to the setup function. Replacement of broadcast
devices is not a frequent operation and usually happens once somewhere
late in the boot process.
Fixes: 9c336c9935 ("tick/broadcast: Allow late registered device to enter oneshot mode")
Reported-by: Victor Hassan <victor@allwinnertech.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
- A trivial documentation fix in the timekeeping core
- A really boring set of small fixes, enhancements and cleanups in the
drivers code. No new clocksource/clockevent drivers for a change.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmRLuTsTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoQ+vEACSlqE5SN+6SxNQOwWcou79d1loB0Lk
3kSlFvRH9CdPDdW5a0Qnr3YJx4mFXrN9mMdFsywhl5NGrZQcH3nGPEYN74B3ynhP
WpE5PSDJDVOA9F/yK6kmf5xX39RPh0aVy+C6ShaHD/anqwX2mTlXVBAg/3nOGeNy
iHNYHzP4AtQfE+EtgbEPEZaOUpzmGL/dZb1HAzJaFU1QBmsrXWHLs4xqGUR0A36+
1I0TGK53WVSXHvEVciTx4lH7mHR1xzR3LvnotdET6rRsqLREptosqA4nBRqYZLGK
uF+jNxVE/0OwVzge5gPvwL3YSAjiln9cZjhA/q7z3L/pdoj/kR3hXv4XyXGrLPN6
L371RA/RLtjkrBb/rHcB/VNADBmtwLQjo7gJJ3UMzIuuvnkokzQrl3fxTxJjmegK
ypR8dpMUaO5vlwIGqwSuQyKxkNEeuNzm2fv84IpZJNSKoQj5nGHPmk+0u6FLhJeG
sqvIfDfuH/+Hc8fxbG5BKBu5lNvmCD4MZ3xxf3Wv80fykJBX6dvJs30B/iuJFQXr
VylbUbxddCNjdHGtByswY5tLGfpWuou0g2XWqtsEB5P0aLs54R0gaoDeTPuBTzJW
Io4tHnvRu7nZCSncxzHUuUfnve0WjMDBgJeSfa2Rx4Qz8M7G5l3XQLO4n+iFGzI5
gdYnrztBLSegww==
=LWO6
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2023-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more timer updates from Thomas Gleixner:
"Timekeeping and clocksource/event driver updates the second batch:
- A trivial documentation fix in the timekeeping core
- A really boring set of small fixes, enhancements and cleanups in
the drivers code. No new clocksource/clockevent drivers for a
change"
* tag 'timers-core-2023-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timekeeping: Fix references to nonexistent ktime_get_fast_ns()
dt-bindings: timer: rockchip: Add rk3588 compatible
dt-bindings: timer: rockchip: Drop superfluous rk3288 compatible
clocksource/drivers/ti: Use of_property_read_bool() for boolean properties
clocksource/drivers/timer-ti-dm: Fix finding alwon timer
clocksource/drivers/davinci: Fix memory leak in davinci_timer_register when init fails
clocksource/drivers/stm32-lp: Drop of_match_ptr for ID table
clocksource/drivers/timer-ti-dm: Convert to platform remove callback returning void
clocksource/drivers/timer-tegra186: Convert to platform remove callback returning void
clocksource/drivers/timer-ti-dm: Improve error message in .remove
clocksource/drivers/timer-stm32-lp: Mark driver as non-removable
clocksource/drivers/sh_mtu2: Mark driver as non-removable
clocksource/drivers/timer-ti-dm: Use of_address_to_resource()
clocksource/drivers/timer-imx-gpt: Remove non-DT function
clocksource/drivers/timer-mediatek: Split out CPUXGPT timers
clocksource/drivers/exynos_mct: Explicitly return 0 for shared timer
Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening in
the driver core in the quest to be able to move "struct bus" and "struct
class" into read-only memory, a task now complete with these changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules for
all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most of
them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZEp7Sw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykitQCfamUHpxGcKOAGuLXMotXNakTEsxgAoIquENm5
LEGadNS38k5fs+73UaxV
=7K4B
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening
in the driver core in the quest to be able to move "struct bus" and
"struct class" into read-only memory, a task now complete with these
changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules
for all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most
of them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems"
* tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits)
device property: make device_property functions take const device *
driver core: update comments in device_rename()
driver core: Don't require dynamic_debug for initcall_debug probe timing
firmware_loader: rework crypto dependencies
firmware_loader: Strip off \n from customized path
zram: fix up permission for the hot_add sysfs file
cacheinfo: Add use_arch[|_cache]_info field/function
arch_topology: Remove early cacheinfo error message if -ENOENT
cacheinfo: Check cache properties are present in DT
cacheinfo: Check sib_leaf in cache_leaves_are_shared()
cacheinfo: Allow early level detection when DT/ACPI info is missing/broken
cacheinfo: Add arm64 early level initializer implementation
cacheinfo: Add arch specific early level initializer
tty: make tty_class a static const structure
driver core: class: remove struct class_interface * from callbacks
driver core: class: mark the struct class in struct class_interface constant
driver core: class: make class_register() take a const *
driver core: class: mark class_release() as taking a const *
driver core: remove incorrect comment for device_create*
MIPS: vpe-cmp: remove module owner pointer from struct class usage.
...
There was never a function named ktime_get_fast_ns().
Presumably these should refer to ktime_get_mono_fast_ns() instead.
Fixes: c1ce406e80 ("timekeeping: Fix up function documentation for the NMI safe accessors")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/06df7b3cbd94f016403bbf6cd2b38e4368e7468f.1682516546.git.geert+renesas@glider.be
- Improve the VDSO build time checks to cover all dynamic relocations
VDSO does not allow dynamic relcations, but the build time check is
incomplete and fragile.
It's based on architectures specifying the relocation types to search
for and does not handle R_*_NONE relocation entries correctly.
R_*_NONE relocations are injected by some GNU ld variants if they fail
to determine the exact .rel[a]/dyn_size to cover trailing zeros.
R_*_NONE relocations must be ignored by dynamic loaders, so they
should be ignored in the build time check too.
Remove the architecture specific relocation types to check for and
validate strictly that no other relocations than R_*_NONE end up
in the VSDO .so file.
- Prefer signal delivery to the current thread for
CLOCK_PROCESS_CPUTIME_ID based posix-timers
Such timers prefer to deliver the signal to the main thread of a
process even if the context in which the timer expires is the current
task. This has the downside that it might wake up an idle thread.
As there is no requirement or guarantee that the signal has to be
delivered to the main thread, avoid this by preferring the current
task if it is part of the thread group which shares sighand.
This not only avoids waking idle threads, it also distributes the
signal delivery in case of multiple timers firing in the context
of different threads close to each other better.
- Align the tick period properly (again)
For a long time the tick was starting at CLOCK_MONOTONIC zero, which
allowed users space applications to either align with the tick or to
place a periodic computation so that it does not interfere with the
tick. The alignement of the tick period was more by chance than by
intention as the tick is set up before a high resolution clocksource is
installed, i.e. timekeeping is still tick based and the tick period
advances from there.
The early enablement of sched_clock() broke this alignement as the time
accumulated by sched_clock() is taken into account when timekeeping is
initialized. So the base value now(CLOCK_MONOTONIC) is not longer a
multiple of tick periods, which breaks applications which relied on
that behaviour.
Cure this by aligning the tick starting point to the next multiple of
tick periods, i.e 1000ms/CONFIG_HZ.
- A set of NOHZ fixes and enhancements
- Cure the concurrent writer race for idle and IO sleeptime statistics
The statitic values which are exposed via /proc/stat are updated from
the CPU local idle exit and remotely by cpufreq, but that happens
without any form of serialization. As a consequence sleeptimes can be
accounted twice or worse.
Prevent this by restricting the accumulation writeback to the CPU
local idle exit and let the remote access compute the accumulated
value.
- Protect idle/iowait sleep time with a sequence count
Reading idle/iowait sleep time, e.g. from /proc/stat, can race with
idle exit updates. As a consequence the readout may result in random
and potentially going backwards values.
Protect this by a sequence count, which fixes the idle time
statistics issue, but cannot fix the iowait time problem because
iowait time accounting races with remote wake ups decrementing the
remote runqueues nr_iowait counter. The latter is impossible to fix,
so the only way to deal with that is to document it properly and to
remove the assertion in the selftest which triggers occasionally due
to that.
- Restructure struct tick_sched for better cache layout
- Some small cleanups and a better cache layout for struct tick_sched
- Implement the missing timer_wait_running() callback for POSIX CPU timers
For unknown reason the introduction of the timer_wait_running() callback
missed to fixup posix CPU timers, which went unnoticed for almost four
years.
While initially only targeted to prevent livelocks between a timer
deletion and the timer expiry function on PREEMPT_RT enabled kernels, it
turned out that fixing this for mainline is not as trivial as just
implementing a stub similar to the hrtimer/timer callbacks.
The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled systems
there is a livelock issue independent of RT.
CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU timers
out from hard interrupt context to task work, which is handled before
returning to user space or to a VM. The expiry mechanism moves the
expired timers to a stack local list head with sighand lock held. Once
sighand is dropped the task can be preempted and a task which wants to
delete a timer will spin-wait until the expiry task is scheduled back
in. In the worst case this will end up in a livelock when the preempting
task and the expiry task are pinned on the same CPU.
The timer wheel has a timer_wait_running() mechanism for RT, which uses
a per CPU timer-base expiry lock which is held by the expiry code and the
task waiting for the timer function to complete blocks on that lock.
This does not work in the same way for posix CPU timers as there is no
timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry lock
can be used too in a slightly different way.
Add a per task mutex to struct posix_cputimers_work, let the expiry task
hold it accross the expiry function and let the deleting task which
waits for the expiry to complete block on the mutex.
In the non-contended case this results in an extra mutex_lock()/unlock()
pair on both sides.
This avoids spin-waiting on a task which is scheduled out, prevents the
livelock and cures the problem for RT and !RT systems.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmRGrj4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZhdEAC/lwfDWCnTXHC8ExQQRDIVNyXmDlLb
EHB8ZY7Wc4gNZ8UEXEOLOXJHMG9bsbtPGctVewJwRGnXZWKVhpPwQba6kCRycyX0
0J6l5DlvUaGGrpoOzOZwgETRmtIZE9tEArZR8xlfRScYd93a7yLhwIjO8JaV9vKs
IQpAQMeJ/ysp6gHrS59qakYfoHU/ERUAu3Tk4GqHUtPtcyz3nX3eTlLWV8LySqs+
00qr2yc0bQFUFoKzTCxtM8lcEi9ja9SOj1rw28348O+BXE4d0HC12Ie7eU/CDN2Y
OAlWYxVjy4LMh24LDrRQKTzoVqx9MXDx2g+09B3t8NK5LgeS+EJIjujDhZF147/H
5y906nplZUKa8BiZW5Rpm/HKH8tFI80T9XWSQCRBeMgTEJyRyRU1yASAwO4xw+dY
Dn3tGmFGymcV/72o4ic9JFKQd8cTSxPjEJS3qqzMkEAtyI/zPBmKxj/Tce50OH40
6FSZq1uU21ZQzszwSHISwgFtNr75laUSK4Z1te5OhPOOz+C7O9YqHvqS/1jwhPj2
tMd8X17fRW3UTUBlBj+zqxqiEGBl/Yk2AvKrJIXGUtfWYCtjMJ7ieCf0kZ7NSVJx
9ewubA0gqseMD783YomZsy8LLtMKnhclJeslUOVb1oKs1q/WF1R/k6qjy9vUwYaB
nIJuHl8mxSetag==
=SVnj
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers and timekeeping updates from Thomas Gleixner:
- Improve the VDSO build time checks to cover all dynamic relocations
VDSO does not allow dynamic relocations, but the build time check is
incomplete and fragile.
It's based on architectures specifying the relocation types to search
for and does not handle R_*_NONE relocation entries correctly.
R_*_NONE relocations are injected by some GNU ld variants if they
fail to determine the exact .rel[a]/dyn_size to cover trailing zeros.
R_*_NONE relocations must be ignored by dynamic loaders, so they
should be ignored in the build time check too.
Remove the architecture specific relocation types to check for and
validate strictly that no other relocations than R_*_NONE end up in
the VSDO .so file.
- Prefer signal delivery to the current thread for
CLOCK_PROCESS_CPUTIME_ID based posix-timers
Such timers prefer to deliver the signal to the main thread of a
process even if the context in which the timer expires is the current
task. This has the downside that it might wake up an idle thread.
As there is no requirement or guarantee that the signal has to be
delivered to the main thread, avoid this by preferring the current
task if it is part of the thread group which shares sighand.
This not only avoids waking idle threads, it also distributes the
signal delivery in case of multiple timers firing in the context of
different threads close to each other better.
- Align the tick period properly (again)
For a long time the tick was starting at CLOCK_MONOTONIC zero, which
allowed users space applications to either align with the tick or to
place a periodic computation so that it does not interfere with the
tick. The alignement of the tick period was more by chance than by
intention as the tick is set up before a high resolution clocksource
is installed, i.e. timekeeping is still tick based and the tick
period advances from there.
The early enablement of sched_clock() broke this alignement as the
time accumulated by sched_clock() is taken into account when
timekeeping is initialized. So the base value now(CLOCK_MONOTONIC) is
not longer a multiple of tick periods, which breaks applications
which relied on that behaviour.
Cure this by aligning the tick starting point to the next multiple of
tick periods, i.e 1000ms/CONFIG_HZ.
- A set of NOHZ fixes and enhancements:
* Cure the concurrent writer race for idle and IO sleeptime
statistics
The statitic values which are exposed via /proc/stat are updated
from the CPU local idle exit and remotely by cpufreq, but that
happens without any form of serialization. As a consequence
sleeptimes can be accounted twice or worse.
Prevent this by restricting the accumulation writeback to the CPU
local idle exit and let the remote access compute the accumulated
value.
* Protect idle/iowait sleep time with a sequence count
Reading idle/iowait sleep time, e.g. from /proc/stat, can race
with idle exit updates. As a consequence the readout may result
in random and potentially going backwards values.
Protect this by a sequence count, which fixes the idle time
statistics issue, but cannot fix the iowait time problem because
iowait time accounting races with remote wake ups decrementing
the remote runqueues nr_iowait counter. The latter is impossible
to fix, so the only way to deal with that is to document it
properly and to remove the assertion in the selftest which
triggers occasionally due to that.
* Restructure struct tick_sched for better cache layout
* Some small cleanups and a better cache layout for struct
tick_sched
- Implement the missing timer_wait_running() callback for POSIX CPU
timers
For unknown reason the introduction of the timer_wait_running()
callback missed to fixup posix CPU timers, which went unnoticed for
almost four years.
While initially only targeted to prevent livelocks between a timer
deletion and the timer expiry function on PREEMPT_RT enabled kernels,
it turned out that fixing this for mainline is not as trivial as just
implementing a stub similar to the hrtimer/timer callbacks.
The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled
systems there is a livelock issue independent of RT.
CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU
timers out from hard interrupt context to task work, which is handled
before returning to user space or to a VM. The expiry mechanism moves
the expired timers to a stack local list head with sighand lock held.
Once sighand is dropped the task can be preempted and a task which
wants to delete a timer will spin-wait until the expiry task is
scheduled back in. In the worst case this will end up in a livelock
when the preempting task and the expiry task are pinned on the same
CPU.
The timer wheel has a timer_wait_running() mechanism for RT, which
uses a per CPU timer-base expiry lock which is held by the expiry
code and the task waiting for the timer function to complete blocks
on that lock.
This does not work in the same way for posix CPU timers as there is
no timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry
lock can be used too in a slightly different way.
Add a per task mutex to struct posix_cputimers_work, let the expiry
task hold it accross the expiry function and let the deleting task
which waits for the expiry to complete block on the mutex.
In the non-contended case this results in an extra
mutex_lock()/unlock() pair on both sides.
This avoids spin-waiting on a task which is scheduled out, prevents
the livelock and cures the problem for RT and !RT systems
* tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-cpu-timers: Implement the missing timer_wait_running callback
selftests/proc: Assert clock_gettime(CLOCK_BOOTTIME) VS /proc/uptime monotonicity
selftests/proc: Remove idle time monotonicity assertions
MAINTAINERS: Remove stale email address
timers/nohz: Remove middle-function __tick_nohz_idle_stop_tick()
timers/nohz: Add a comment about broken iowait counter update race
timers/nohz: Protect idle/iowait sleep time under seqcount
timers/nohz: Only ever update sleeptime from idle exit
timers/nohz: Restructure and reshuffle struct tick_sched
tick/common: Align tick period with the HZ tick.
selftests/timers/posix_timers: Test delivery of signals across threads
posix-timers: Prefer delivery of signals to the current thread
vdso: Improve cmd_vdso_check to check all dynamic relocations
For some unknown reason the introduction of the timer_wait_running callback
missed to fixup posix CPU timers, which went unnoticed for almost four years.
Marco reported recently that the WARN_ON() in timer_wait_running()
triggers with a posix CPU timer test case.
Posix CPU timers have two execution models for expiring timers depending on
CONFIG_POSIX_CPU_TIMERS_TASK_WORK:
1) If not enabled, the expiry happens in hard interrupt context so
spin waiting on the remote CPU is reasonably time bound.
Implement an empty stub function for that case.
2) If enabled, the expiry happens in task work before returning to user
space or guest mode. The expired timers are marked as firing and moved
from the timer queue to a local list head with sighand lock held. Once
the timers are moved, sighand lock is dropped and the expiry happens in
fully preemptible context. That means the expiring task can be scheduled
out, migrated, interrupted etc. So spin waiting on it is more than
suboptimal.
The timer wheel has a timer_wait_running() mechanism for RT, which uses
a per CPU timer-base expiry lock which is held by the expiry code and the
task waiting for the timer function to complete blocks on that lock.
This does not work in the same way for posix CPU timers as there is no
timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry lock
can be used too in a slightly different way:
- Add a mutex to struct posix_cputimers_work. This struct is per task
and used to schedule the expiry task work from the timer interrupt.
- Add a task_struct pointer to struct cpu_timer which is used to store
a the task which runs the expiry. That's filled in when the task
moves the expired timers to the local expiry list. That's not
affecting the size of the k_itimer union as there are bigger union
members already
- Let the task take the expiry mutex around the expiry function
- Let the waiter acquire a task reference with rcu_read_lock() held and
block on the expiry mutex
This avoids spin-waiting on a task which might not even be on a CPU and
works nicely for RT too.
Fixes: ec8f954a40 ("posix-timers: Use a callback for cancel synchronization on PREEMPT_RT")
Reported-by: Marco Elver <elver@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marco Elver <elver@google.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87zg764ojw.ffs@tglx
There is no need for the __tick_nohz_idle_stop_tick() function between
tick_nohz_idle_stop_tick() and its implementation. Remove that
unnecessary step.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230222144649.624380-6-frederic@kernel.org
The per-cpu iowait task counter is incremented locally upon sleeping.
But since the task can be woken to (and by) another CPU, the counter may
then be decremented remotely. This is the source of a race involving
readers VS writer of idle/iowait sleeptime.
The following scenario shows an example where a /proc/stat reader
observes a pending sleep time as IO whereas that pending sleep time
later eventually gets accounted as non-IO.
CPU 0 CPU 1 CPU 2
----- ----- ------
//io_schedule() TASK A
current->in_iowait = 1
rq(0)->nr_iowait++
//switch to idle
// READ /proc/stat
// See nr_iowait_cpu(0) == 1
return ts->iowait_sleeptime +
ktime_sub(ktime_get(), ts->idle_entrytime)
//try_to_wake_up(TASK A)
rq(0)->nr_iowait--
//idle exit
// See nr_iowait_cpu(0) == 0
ts->idle_sleeptime += ktime_sub(ktime_get(), ts->idle_entrytime)
As a result subsequent reads on /proc/stat may expose backward progress.
This is unfortunately hardly fixable. Just add a comment about that
condition.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230222144649.624380-5-frederic@kernel.org
Reading idle/IO sleep time (eg: from /proc/stat) can race with idle exit
updates because the state machine handling the stats is not atomic and
requires a coherent read batch.
As a result reading the sleep time may report irrelevant or backward
values.
Fix this with protecting the simple state machine within a seqcount.
This is expected to be cheap enough not to add measurable performance
impact on the idle path.
Note this only fixes reader VS writer condition partitially. A race
remains that involves remote updates of the CPU iowait task counter. It
can hardly be fixed.
Reported-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230222144649.624380-4-frederic@kernel.org
The idle and IO sleeptime statistics appearing in /proc/stat can be
currently updated from two sites: locally on idle exit and remotely
by cpufreq. However there is no synchronization mechanism protecting
concurrent updates. It is therefore possible to account the sleeptime
twice, among all the other possible broken scenarios.
To prevent from breaking the sleeptime accounting source, restrict the
sleeptime updates to the local idle exit site. If there is a delta to
add since the last update, IO/Idle sleep time readers will now only
compute the delta without actually writing it back to the internal idle
statistic fields.
This fixes a writer VS writer race. Note there are still two known
reader VS writer races to handle. A subsequent patch will fix one.
Reported-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230222144649.624380-3-frederic@kernel.org
Restructure and group fields by access in order to optimize cache
layout. While at it, also add missing kernel doc for two fields:
@last_jiffies and @idle_expires.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230222144649.624380-2-frederic@kernel.org
With HIGHRES enabled tick_sched_timer() is programmed every jiffy to
expire the timer_list timers. This timer is programmed accurate in
respect to CLOCK_MONOTONIC so that 0 seconds and nanoseconds is the
first tick and the next one is 1000/CONFIG_HZ ms later. For HZ=250 it is
every 4 ms and so based on the current time the next tick can be
computed.
This accuracy broke since the commit mentioned below because the jiffy
based clocksource is initialized with higher accuracy in
read_persistent_wall_and_boot_offset(). This higher accuracy is
inherited during the setup in tick_setup_device(). The timer still fires
every 4ms with HZ=250 but timer is no longer aligned with
CLOCK_MONOTONIC with 0 as it origin but has an offset in the us/ns part
of the timestamp. The offset differs with every boot and makes it
impossible for user land to align with the tick.
Align the tick period with CLOCK_MONOTONIC ensuring that it is always a
multiple of 1000/CONFIG_HZ ms.
Fixes: 857baa87b6 ("sched/clock: Enable sched clock early")
Reported-by: Gusenleitner Klaus <gus@keba.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/20230406095735.0_14edn3@linutronix.de
Link: https://lore.kernel.org/r/20230418122639.ikgfvu3f@linutronix.de
For CONFIG_NO_HZ_FULL systems, the tick_do_timer_cpu cannot be offlined.
However, cpu_is_hotpluggable() still returns true for those CPUs. This causes
torture tests that do offlining to end up trying to offline this CPU causing
test failures. Such failure happens on all architectures.
Fix the repeated error messages thrown by this (even if the hotplug errors are
harmless) by asking the opinion of the nohz subsystem on whether the CPU can be
hotplugged.
[ Apply Frederic Weisbecker feedback on refactoring tick_nohz_cpu_down(). ]
For drivers/base/ portion:
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Zhouyi Zhou <zhouzhouyi@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: rcu <rcu@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: 2987557f52 ("driver-core/cpu: Expose hotpluggability to the rest of the kernel")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The add_dev and remove_dev callbacks in struct class_interface currently
pass in a pointer back to the class_interface structure that is calling
them, but none of the callback implementations actually use this pointer
as it is pointless (the structure is known, the driver passed it in in
the first place if it is really needed again.)
So clean this up and just remove the pointer from the callbacks and fix
up all callback functions.
Cc: Jean Delvare <jdelvare@suse.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: Kurt Schwemmer <kurt.schwemmer@microsemi.com>
Cc: Jon Mason <jdmason@kudzu.us>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Allen Hubbe <allenbh@gmail.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Alexandre Bounine <alex.bou9@gmail.com>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Doug Gilbert <dgilbert@interlog.com>
Cc: John Stultz <jstultz@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Wang Weiyang <wangweiyang2@huawei.com>
Cc: Yang Yingliang <yangyingliang@huawei.com>
Cc: Jakob Koschel <jakobkoschel@gmail.com>
Cc: Cai Xinchen <caixinchen1@huawei.com>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Logan Gunthorpe <logang@deltatee.com>
Link: https://lore.kernel.org/r/2023040250-pushover-platter-509c@gregkh
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Core:
- Yet another round of improvements to make the clocksource watchdog
more robust:
- Relax the clocksource-watchdog skew criteria to match the NTP
criteria.
- Temporarily skip the watchdog when high memory latencies are
detected which can lead to false-positives.
- Provide an option to enable TSC skew detection even on systems
where TSC is marked as reliable.
Sigh!
- Initialize the restart block in the nanosleep syscalls to be directed
to the no restart function instead of doing a partial setup on entry.
This prevents an erroneous restart_syscall() invocation from
corrupting user space data. While such a situation is clearly a user
space bug, preventing this is a correctness issue and caters to the
least suprise principle.
- Ignore the hrtimer slack for realtime tasks in schedule_hrtimeout()
to align it with the nanosleep semantics.
Drivers:
- The obligatory new driver bindings for Mediatek, Rockchip and RISC-V
variants.
- Add support for the C3STOP misfeature to the RISC-V timer to handle
the case where the timer stops in deeper idle state.
- Set up a static key in the RISC-V timer correctly before first use.
- The usual small improvements and fixes all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmPzV+cTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoYlDEACMrjN2F6qeiOW94t4nQ3qP1M9AMSgO
OihC04XuM14/3tEviu/cUOd60wYcUQ/kfI5C+IL35ezeP2w9lnuKqeFpG7aDOa33
5F3isDPamJdXZEZs44CW15brR6dqDlEi5acKee/TtFV9mN6xNhzxM64IaFqecPmW
P+BTwunB8xwquY8RzsHXor/GOGb6mqWQIPoHEPnywTDe/xQYWt0Exzi7ch6HQr5Z
ZzHG6X4h6UTNimjay6L4qsRQWILmPIg4Z5IlycWMQ8qDFM0lbnIJqkG4JwceolI6
aRQyLe3NQFcPYgq3ue+SNm4RckYn4NbAa1zFm0d5VDgKp4xW1sxvtkxOJuxjaOw2
/rLkHkmyuVvCeTMAySfxrwnszAoM505CHC6CEYc1xELbeCkROFUaymtVyNFnnTru
V/Jt/T2Gyx6tOrafX7u+djUjv9figddRpNbskVZvEi3Ztq4MQ069nK3oSUqtP5vO
INApNg4lq6s8aGqVE+Kp9+CKwGqZqI4MdxQMNMAmCRLPon6apActVawbj18qO/wS
qblQ0cbF8a16itlQ3V68qmhcPh6EZOuq8II4etNq6U0ulV9712WfMbat3z53LG94
QNkAmZ3/wui93I+Q2NPxhf5ybJFQZhR0SOtVO6xIdTgOntkODwzzGu9UapfD8mLb
k5BpWnH8CoUgiw==
=I67j
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Updates for timekeeping, timers and clockevent/source drivers:
Core:
- Yet another round of improvements to make the clocksource watchdog
more robust:
- Relax the clocksource-watchdog skew criteria to match the NTP
criteria.
- Temporarily skip the watchdog when high memory latencies are
detected which can lead to false-positives.
- Provide an option to enable TSC skew detection even on systems
where TSC is marked as reliable.
Sigh!
- Initialize the restart block in the nanosleep syscalls to be
directed to the no restart function instead of doing a partial
setup on entry.
This prevents an erroneous restart_syscall() invocation from
corrupting user space data. While such a situation is clearly a
user space bug, preventing this is a correctness issue and caters
to the least suprise principle.
- Ignore the hrtimer slack for realtime tasks in schedule_hrtimeout()
to align it with the nanosleep semantics.
Drivers:
- The obligatory new driver bindings for Mediatek, Rockchip and
RISC-V variants.
- Add support for the C3STOP misfeature to the RISC-V timer to handle
the case where the timer stops in deeper idle state.
- Set up a static key in the RISC-V timer correctly before first use.
- The usual small improvements and fixes all over the place"
* tag 'timers-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits)
clocksource/drivers/timer-sun4i: Add CLOCK_EVT_FEAT_DYNIRQ
clocksource/drivers/em_sti: Mark driver as non-removable
clocksource/drivers/sh_tmu: Mark driver as non-removable
clocksource/drivers/riscv: Patch riscv_clock_next_event() jump before first use
clocksource/drivers/timer-microchip-pit64b: Add delay timer
clocksource/drivers/timer-microchip-pit64b: Select driver only on ARM
dt-bindings: timer: sifive,clint: add comaptibles for T-Head's C9xx
dt-bindings: timer: mediatek,mtk-timer: add MT8365
clocksource/drivers/riscv: Get rid of clocksource_arch_init() callback
clocksource/drivers/sh_cmt: Mark driver as non-removable
clocksource/drivers/timer-microchip-pit64b: Drop obsolete dependency on COMPILE_TEST
clocksource/drivers/riscv: Increase the clock source rating
clocksource/drivers/timer-riscv: Set CLOCK_EVT_FEAT_C3STOP based on DT
dt-bindings: timer: Add bindings for the RISC-V timer device
RISC-V: time: initialize hrtimer based broadcast clock event device
dt-bindings: timer: rk-timer: Add rktimer for rv1126
time/debug: Fix memory leak with using debugfs_lookup()
clocksource: Enable TSC watchdog checking of HPET and PMTMR only when requested
posix-timers: Use atomic64_try_cmpxchg() in __update_gt_cputime()
clocksource: Verify HPET and PMTMR when TSC unverified
...
- Improve the scalability of the CFS bandwidth unthrottling logic
with large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with
the generic scheduler code. Add __cpuidle methods as noinstr to
objtool's noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS,
to query previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period,
to improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- ... Misc other cleanups, fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmPzbJwRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iIvA//ZcEaB8Z6ChLRQjM+bsaudKJu3pdLQbPK
iYbP8Da+LsAfxbEfYuGV3m+jIp0LlBOtsI/EezxQrXV+V7FvNyAX9Y00eEu/zlj8
7Jn3LMy/DBYTwH7LwVdcU0MyIVI8ZPc6WNnkx0LOtGZn8n+qfHPSDzcP3CW+a5AV
UvllPYpYyEmsX0Eby7CF4Ue8mSmbViw/xR3rNr8ZSve0c25XzKabw8O9kE3jiHxP
d/zERJoAYeDyYUEuZqhfn5dTlB4an4IjNEkAfRE5SQ09RA8Gkxsa5Ar8gob9e9M1
eQsdd4/bdhnrkM8L5qDZczqmgCTZ2bukQrxkBXhRDhLgoFxwAn77b+2ZjmIW3Lae
AyGqRcDSg1q2oxaYm5ZiuO/t26aDOZu9vPHyHRDGt95EGbZlrp+GgeePyfCigJYz
UmPdZAAcHdSymnnnlcvdG37WVvaVkpgWZzd8LbtBi23QR+Zc4WQ2IlgnUS5WKNNf
VOBcAcP6E1IslDotZDQCc2dPFFQoQQEssVooyUc5oMytm7BsvxXLOeHG+Ncu/8uc
H+U8Qn8jnqTxJbC5hkWQIJlhVKCq2FJrHxxySYTKROfUNcDgCmxboFeAcXTCIU1K
T0S+sdoTS/CvtLklRkG0j6B8N4N98mOd9cFwUV3tX+/gMLMep3hCQs5L76JagvC5
skkQXoONNaM=
=l1nN
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve the scalability of the CFS bandwidth unthrottling logic with
large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with the
generic scheduler code. Add __cpuidle methods as noinstr to objtool's
noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query
previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period, to
improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- Misc other cleanups, fixes
* tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
sched/rt: pick_next_rt_entity(): check list_entry
sched/deadline: Add more reschedule cases to prio_changed_dl()
sched/fair: sanitize vruntime of entity being placed
sched/fair: Remove capacity inversion detection
sched/fair: unlink misfit task from cpu overutilized
objtool: mem*() are not uaccess safe
cpuidle: Fix poll_idle() noinstr annotation
sched/clock: Make local_clock() noinstr
sched/clock/x86: Mark sched_clock() noinstr
x86/pvclock: Improve atomic update of last_value in pvclock_clocksource_read()
x86/atomics: Always inline arch_atomic64*()
cpuidle: tracing, preempt: Squash _rcuidle tracing
cpuidle: tracing: Warn about !rcu_is_watching()
cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG
cpuidle: drivers: firmware: psci: Dont instrument suspend code
KVM: selftests: Fix build of rseq test
exit: Detect and fix irq disabled state in oops
cpuidle, arm64: Fix the ARM64 cpuidle logic
cpuidle: mvebu: Fix duplicate flags assignment
sched/fair: Limit sched slice duration
...
syzbot reported a RCU stall which is caused by setting up an alarmtimer
with a very small interval and ignoring the signal. The reproducer arms the
alarm timer with a relative expiry of 8ns and an interval of 9ns. Not a
problem per se, but that's an issue when the signal is ignored because then
the timer is immediately rearmed because there is no way to delay that
rearming to the signal delivery path. See posix_timer_fn() and commit
58229a1899 ("posix-timers: Prevent softirq starvation by small intervals
and SIG_IGN") for details.
The reproducer does not set SIG_IGN explicitely, but it sets up the timers
signal with SIGCONT. That has the same effect as explicitely setting
SIG_IGN for a signal as SIGCONT is ignored if there is no handler set and
the task is not ptraced.
The log clearly shows that:
[pid 5102] --- SIGCONT {si_signo=SIGCONT, si_code=SI_TIMER, si_timerid=0, si_overrun=316014, si_int=0, si_ptr=NULL} ---
It works because the tasks are traced and therefore the signal is queued so
the tracer can see it, which delays the restart of the timer to the signal
delivery path. But then the tracer is killed:
[pid 5087] kill(-5102, SIGKILL <unfinished ...>
...
./strace-static-x86_64: Process 5107 detached
and after it's gone the stall can be observed:
syzkaller login: [ 79.439102][ C0] hrtimer: interrupt took 68471 ns
[ 184.460538][ C1] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
...
[ 184.658237][ C1] rcu: Stack dump where RCU GP kthread last ran:
[ 184.664574][ C1] Sending NMI from CPU 1 to CPUs 0:
[ 184.669821][ C0] NMI backtrace for cpu 0
[ 184.669831][ C0] CPU: 0 PID: 5108 Comm: syz-executor192 Not tainted 6.2.0-rc6-next-20230203-syzkaller #0
...
[ 184.670036][ C0] Call Trace:
[ 184.670041][ C0] <IRQ>
[ 184.670045][ C0] alarmtimer_fired+0x327/0x670
posix_timer_fn() prevents that by checking whether the interval for
timers which have the signal ignored is smaller than a jiffie and
artifically delay it by shifting the next expiry out by a jiffie. That's
accurate vs. the overrun accounting, but slightly inaccurate
vs. timer_gettimer(2).
The comment in that function says what needs to be done and there was a fix
available for the regular userspace induced SIG_IGN mechanism, but that did
not work due to the implicit ignore for SIGCONT and similar signals. This
needs to be worked on, but for now the only available workaround is to do
exactly what posix_timer_fn() does:
Increase the interval of self-rearming timers, which have their signal
ignored, to at least a jiffie.
Interestingly this has been fixed before via commit ff86bf0c65
("alarmtimer: Rate limit periodic intervals") already, but that fix got
lost in a later rework.
Reported-by: syzbot+b9564ba6e8e00694511b@syzkaller.appspotmail.com
Fixes: f2c45807d3 ("alarmtimer: Switch over to generic set/get/rearm routine")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87k00q1no2.ffs@tglx
This pull request contains the following:
o Improvements to clocksource-watchdog console messages.
o Loosening of the clocksource-watchdog skew criteria to match
those of NTP (500 parts per million, relaxed from 400 parts
per million). If it is good enough for NTP, it is good enough
for the clocksource watchdog.
o Suspend clocksource-watchdog checking temporarily when high
memory latencies are detected. This avoids the false-positive
clock-skew events that have been seen on production systems
running memory-intensive workloads.
o On systems where the TSC is deemed trustworthy, use it as the
watchdog timesource, but only when specifically requested using
the tsc=watchdog kernel boot parameter. This permits clock-skew
events to be detected, but avoids forcing workloads to use the
slow HPET and ACPI PM timers. These last two timers are slow
enough to cause systems to be needlessly marked bad on the one
hand, and real skew does sometimes happen on production systems
running production workloads on the other. And sometimes it is
the fault of the TSC, or at least of the firmware that told the
kernel to program the TSC with the wrong frequency.
o Add a tsc=revalidate kernel boot parameter to allow the kernel
to diagnose cases where the TSC hardware works fine, but was told
by firmware to tick at the wrong frequency. Such cases are rare,
but they really have happened on production systems.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmPhnhkTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jClDD/9gTo62MakVQz2wzBRBcWunzX4BAfy2
2ORqZYqq8cJ4ccFVWtSq7gZ+0bxiT+J4jaVyJpmUPzaiCSfNUT+GLjWyLGzF9Xq+
xLWpFJOhFhKYjYN2m1ottuQ81V7aTlorC8AJt/o+oCJFGUCb/heg/UrmoZ6DweHw
H7uXS9yenKdKgYoMENW+8IVsy16sT4D5Fe8XAD/2J6vBBUbgBzKWhi8XSgSHB/Xw
GCP4UfXVGl5QRG9Xu4ZgrFV1t4azxtmdBghFm7/Kep/j6ttSY78yoS43AbI57bhD
fWB5mfAQvO+Zo5/9rLjcDzeZCp/PSdARD41aycPMiei08K278tIN9T/fmfSoG6rV
lVRdFxTHrQcqc9d+g+mGASQBezCF8pxonm9HYLBpNjyfYHnKV70SPXywO4oqAJ1I
7dCm+uv3Y8KaJdVnPUWOHJjvQLx9NWK5/pXBYjsYnLR+69EVmGDgPZ+/ulQxkWBj
DtrQgs+sHQ8gngNpAilxuu/lrUXzrC8N4mtxXKBFQoCPYQMFBkr9S+aAEHIgZT9H
1dWwR1QxeR5uxt7U+3DmTyJ1XKfYjDyyScesILlLMLbdKgZtTS5wGaK4QdJ3QW2z
z4zqPDccWDDZKZy9W4QBnFBx6Rn49C8xThy7f6Loc+2cKAT10hrEmRJsn79AOCDc
6hV0S2U9a6ypQg==
=OWY2
-----END PGP SIGNATURE-----
Merge tag 'clocksource.2023.02.06b' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into timers/core
Pull clocksource watchdog changes from Paul McKenney:
o Improvements to clocksource-watchdog console messages.
o Loosening of the clocksource-watchdog skew criteria to match
those of NTP (500 parts per million, relaxed from 400 parts
per million). If it is good enough for NTP, it is good enough
for the clocksource watchdog.
o Suspend clocksource-watchdog checking temporarily when high
memory latencies are detected. This avoids the false-positive
clock-skew events that have been seen on production systems
running memory-intensive workloads.
o On systems where the TSC is deemed trustworthy, use it as the
watchdog timesource, but only when specifically requested using
the tsc=watchdog kernel boot parameter. This permits clock-skew
events to be detected, but avoids forcing workloads to use the
slow HPET and ACPI PM timers. These last two timers are slow
enough to cause systems to be needlessly marked bad on the one
hand, and real skew does sometimes happen on production systems
running production workloads on the other. And sometimes it is
the fault of the TSC, or at least of the firmware that told the
kernel to program the TSC with the wrong frequency.
o Add a tsc=revalidate kernel boot parameter to allow the kernel
to diagnose cases where the TSC hardware works fine, but was told
by firmware to tick at the wrong frequency. Such cases are rare,
but they really have happened on production systems.
Link: https://lore.kernel.org/r/20230210193640.GA3325193@paulmck-ThinkPad-P17-Gen-1
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230202151214.2306822-1-gregkh@linuxfoundation.org
Use atomic64_try_cmpxchg() instead of atomic64_cmpxchg() in
__update_gt_cputime(). The x86 CMPXCHG instruction returns success in ZF
flag, so this change saves a compare after cmpxchg() (and related move
instruction in front of cmpxchg()).
Also, atomic64_try_cmpxchg() implicitly assigns old *ptr value to "old"
when cmpxchg() fails. There is no need to re-read the value in the loop.
No functional change intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230116165337.5810-1-ubizjak@gmail.com
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmPW7E8eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGf7MIAI0JnHN9WvtEukSZ
E6j6+cEGWxsvD6q0g3GPolaKOCw7hlv0pWcFJFcUAt0jebspMdxV2oUGJ8RYW7Lg
nCcHvEVswGKLAQtQSWw52qotW6fUfMPsNYYB5l31sm1sKH4Cgss0W7l2HxO/1LvG
TSeNHX53vNAZ8pVnFYEWCSXC9bzrmU/VALF2EV00cdICmfvjlgkELGXoLKJJWzUp
s63fBHYGGURSgwIWOKStoO6HNo0j/F/wcSMx8leY8qDUtVKHj4v24EvSgxUSDBER
ch3LiSQ6qf4sw/z7pqruKFthKOrlNmcc0phjiES0xwwGiNhLv0z3rAhc4OM2cgYh
SDc/Y/c=
=zpaD
-----END PGP SIGNATURE-----
Merge tag 'v6.2-rc6' into sched/core, to pick up fixes
Pick up fixes before merging another batch of cpuidle updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While in theory the timer can be triggered before expires + delta, for the
cases of RT tasks they really have no business giving any lenience for
extra slack time, so override any passed value by the user and always use
zero for schedule_hrtimeout_range() calls. Furthermore, this is similar to
what the nanosleep(2) family already does with current->timer_slack_ns.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230123173206.6764-3-dave@stgolabs.net
Bugs have been reported on 8 sockets x86 machines in which the TSC was
wrongly disabled when the system is under heavy workload.
[ 818.380354] clocksource: timekeeping watchdog on CPU336: hpet wd-wd read-back delay of 1203520ns
[ 818.436160] clocksource: wd-tsc-wd read-back delay of 181880ns, clock-skew test skipped!
[ 819.402962] clocksource: timekeeping watchdog on CPU338: hpet wd-wd read-back delay of 324000ns
[ 819.448036] clocksource: wd-tsc-wd read-back delay of 337240ns, clock-skew test skipped!
[ 819.880863] clocksource: timekeeping watchdog on CPU339: hpet read-back delay of 150280ns, attempt 3, marking unstable
[ 819.936243] tsc: Marking TSC unstable due to clocksource watchdog
[ 820.068173] TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.
[ 820.092382] sched_clock: Marking unstable (818769414384, 1195404998)
[ 820.643627] clocksource: Checking clocksource tsc synchronization from CPU 267 to CPUs 0,4,25,70,126,430,557,564.
[ 821.067990] clocksource: Switched to clocksource hpet
This can be reproduced by running memory intensive 'stream' tests,
or some of the stress-ng subcases such as 'ioport'.
The reason for these issues is the when system is under heavy load, the
read latency of the clocksources can be very high. Even lightweight TSC
reads can show high latencies, and latencies are much worse for external
clocksources such as HPET or the APIC PM timer. These latencies can
result in false-positive clocksource-unstable determinations.
These issues were initially reported by a customer running on a production
system, and this problem was reproduced on several generations of Xeon
servers, especially when running the stress-ng test. These Xeon servers
were not production systems, but they did have the latest steppings
and firmware.
Given that the clocksource watchdog is a continual diagnostic check with
frequency of twice a second, there is no need to rush it when the system
is under heavy load. Therefore, when high clocksource read latencies
are detected, suspend the watchdog timer for 5 minutes.
Signed-off-by: Feng Tang <feng.tang@intel.com>
Acked-by: Waiman Long <longman@redhat.com>
Cc: John Stultz <jstultz@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
No callers left that have already disabled RCU.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195540.927904612@infradead.org
The whole disable-RCU, enable-IRQS dance is very intricate since
changing IRQ state is traced, which depends on RCU.
Add two helpers for the cpuidle case that mirror the entry code:
ct_cpuidle_enter()
ct_cpuidle_exit()
And fix all the cases where the enter/exit dance was buggy.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195540.130014793@infradead.org
The nanosleep syscalls use the restart_block mechanism, with a quirk:
The `type` and `rmtp`/`compat_rmtp` fields are set up unconditionally on
syscall entry, while the rest of the restart_block is only set up in the
unlikely case that the syscall is actually interrupted by a signal (or
pseudo-signal) that doesn't have a signal handler.
If the restart_block was set up by a previous syscall (futex(...,
FUTEX_WAIT, ...) or poll()) and hasn't been invalidated somehow since then,
this will clobber some of the union fields used by futex_wait_restart() and
do_restart_poll().
If userspace afterwards wrongly calls the restart_syscall syscall,
futex_wait_restart()/do_restart_poll() will read struct fields that have
been clobbered.
This doesn't actually lead to anything particularly interesting because
none of the union fields contain trusted kernel data, and
futex(..., FUTEX_WAIT, ...) and poll() aren't syscalls where it makes much
sense to apply seccomp filters to their arguments.
So the current consequences are just of the "if userspace does bad stuff,
it can damage itself, and that's not a problem" flavor.
But still, it seems like a hazard for future developers, so invalidate the
restart_block when partly setting it up in the nanosleep syscalls.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230105134403.754986-1-jannh@google.com
When clocksource_watchdog() detects excessive clocksource skew compared
to the watchdog clocksource, it marks the clocksource under test as
unstable and prints several lines worth of message. But that message
is unclear to anyone unfamiliar with the code:
clocksource: timekeeping watchdog on CPU2: Marking clocksource 'wdtest-ktime' as unstable because the skew is too large:
clocksource: 'kvm-clock' wd_nsec: 400744390 wd_now: 612625c2c wd_last: 5fa7f7c66 mask: ffffffffffffffff
clocksource: 'wdtest-ktime' cs_nsec: 600744034 cs_now: 173081397a292d4f cs_last: 17308139565a8ced mask: ffffffffffffffff
clocksource: 'kvm-clock' (not 'wdtest-ktime') is current clocksource.
Therefore, add the following line near the end of that message:
Clocksource 'wdtest-ktime' skewed 199999644 ns (199 ms) over watchdog 'kvm-clock' interval of 400744390 ns (400 ms)
This new line clearly indicates the amount of skew between the two
clocksources, along with the duration of the time interval over which
the skew occurred, both in nanoseconds and milliseconds.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: John Stultz <jstultz@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Feng Tang <feng.tang@intel.com>
When cs_watchdog_read() is unable to get a qualifying clocksource read
within the limit set by max_cswd_read_retries, it prints a message
and marks the clocksource under test as unstable. But that message is
unclear to anyone unfamiliar with the code:
clocksource: timekeeping watchdog on CPU13: wd-tsc-wd read-back delay 1000614ns, attempt 3, marking unstable
Therefore, add some context so that the message appears as follows:
clocksource: timekeeping watchdog on CPU13: wd-tsc-wd excessive read-back delay of 1000614ns vs. limit of 125000ns, wd-wd read-back delay only 27ns, attempt 3, marking tsc unstable
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: John Stultz <jstultz@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Feng Tang <feng.tang@intel.com>
Currently, MAX_SKEW_USEC is set to 100 microseconds, which has worked
reasonably well. However, NTP is willing to tolerate 500 microseconds
of skew per second, and a clocksource that is good enough for NTP should
be good enough for the clocksource watchdog. The watchdog's skew is
controlled by MAX_SKEW_USEC and the CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
Kconfig option. However, these values are doubled before being associated
with a clocksource's ->uncertainty_margin, and the ->uncertainty_margin
values of the pair of clocksource's being compared are summed before
checking against the skew.
Therefore, set both MAX_SKEW_USEC and the default for the
CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option to 125 microseconds of
skew per second, resulting in 500 microseconds of skew per second in
the clocksource watchdog's skew comparison.
Suggested-by Rik van Riel <riel@surriel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Some "TSC fall back to HPET" messages appear on systems having more than
2 NUMA nodes:
clocksource: timekeeping watchdog on CPU168: hpet read-back delay of 4296200ns, attempt 4, marking unstable
The "hpet" here is misleading the clocksource watchdog is really
doing repeated reads of "hpet" in order to check for unrelated delays.
Therefore, print the name of the clocksource under test, prefixed by
"wd-" and suffixed by "-wd", for example, "wd-tsc-wd".
Signed-off-by: Yunying Sun <yunying.sun@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Clean up kernel-doc complaints about function names and non-kernel-doc
comments in kernel/time/. Fixes these warnings:
kernel/time/time.c:479: warning: expecting prototype for set_normalized_timespec(). Prototype was for set_normalized_timespec64() instead
kernel/time/time.c:553: warning: expecting prototype for msecs_to_jiffies(). Prototype was for __msecs_to_jiffies() instead
kernel/time/timekeeping.c:1595: warning: contents before sections
kernel/time/timekeeping.c:1705: warning: This comment starts with '/**', but isn't a kernel-doc comment.
* We have three kinds of time sources to use for sleep time
kernel/time/timekeeping.c:1726: warning: This comment starts with '/**', but isn't a kernel-doc comment.
* 1) can be determined whether to use or not only when doing
kernel/time/tick-oneshot.c:21: warning: missing initial short description on line:
* tick_program_event
kernel/time/tick-oneshot.c:107: warning: expecting prototype for tick_check_oneshot_mode(). Prototype was for tick_oneshot_mode_active() instead
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230103032849.12723-1-rdunlap@infradead.org
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmOU+U8ACgkQSfxwEqXe
A67NnQ//Y5DltmvibyPd7r1TFT2gUYv+Rx3sUV9ZE1NYptd/SWhhcL8c5FZ70Fuw
bSKCa1uiWjOxosjXT1kGrWq3de7q7oUpAPSOGxgxzoaNURIt58N/ajItCX/4Au8I
RlGAScHy5e5t41/26a498kB6qJ441fBEqCYKQpPLINMBAhe8TQ+NVp0rlpUwNHFX
WrUGg4oKWxdBIW3HkDirQjJWDkkAiklRTifQh/Al4b6QDbOnRUGGCeckNOhixsvS
waHWTld+Td8jRrA4b82tUb2uVZ2/b8dEvj/A8CuTv4yC0lywoyMgBWmJAGOC+UmT
ZVNdGW02Jc2T+Iap8ZdsEmeLHNqbli4+IcbY5xNlov+tHJ2oz41H9TZoYKbudlr6
/ReAUPSn7i50PhbQlEruj3eg+M2gjOeh8OF8UKwwRK8PghvyWQ1ScW0l3kUhPIhI
PdIG6j4+D2mJc1FIj2rTVB+Bg933x6S+qx4zDxGlNp62AARUFYf6EgyD6aXFQVuX
RxcKb6cjRuFkzFiKc8zkqg5edZH+IJcPNuIBmABqTGBOxbZWURXzIQvK/iULqZa4
CdGAFIs6FuOh8pFHLI3R4YoHBopbHup/xKDEeAO9KZGyeVIuOSERDxxo5f/ITzcq
APvT77DFOEuyvanr8RMqqh0yUjzcddXqw9+ieufsAyDwjD9DTuE=
=QRhK
-----END PGP SIGNATURE-----
Merge tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
- Replace prandom_u32_max() and various open-coded variants of it,
there is now a new family of functions that uses fast rejection
sampling to choose properly uniformly random numbers within an
interval:
get_random_u32_below(ceil) - [0, ceil)
get_random_u32_above(floor) - (floor, U32_MAX]
get_random_u32_inclusive(floor, ceil) - [floor, ceil]
Coccinelle was used to convert all current users of
prandom_u32_max(), as well as many open-coded patterns, resulting in
improvements throughout the tree.
I'll have a "late" 6.1-rc1 pull for you that removes the now unused
prandom_u32_max() function, just in case any other trees add a new
use case of it that needs to converted. According to linux-next,
there may be two trivial cases of prandom_u32_max() reintroductions
that are fixable with a 's/.../.../'. So I'll have for you a final
conversion patch doing that alongside the removal patch during the
second week.
This is a treewide change that touches many files throughout.
- More consistent use of get_random_canary().
- Updates to comments, documentation, tests, headers, and
simplification in configuration.
- The arch_get_random*_early() abstraction was only used by arm64 and
wasn't entirely useful, so this has been replaced by code that works
in all relevant contexts.
- The kernel will use and manage random seeds in non-volatile EFI
variables, refreshing a variable with a fresh seed when the RNG is
initialized. The RNG GUID namespace is then hidden from efivarfs to
prevent accidental leakage.
These changes are split into random.c infrastructure code used in the
EFI subsystem, in this pull request, and related support inside of
EFISTUB, in Ard's EFI tree. These are co-dependent for full
functionality, but the order of merging doesn't matter.
- Part of the infrastructure added for the EFI support is also used for
an improvement to the way vsprintf initializes its siphash key,
replacing an sleep loop wart.
- The hardware RNG framework now always calls its correct random.c
input function, add_hwgenerator_randomness(), rather than sometimes
going through helpers better suited for other cases.
- The add_latent_entropy() function has long been called from the fork
handler, but is a no-op when the latent entropy gcc plugin isn't
used, which is fine for the purposes of latent entropy.
But it was missing out on the cycle counter that was also being mixed
in beside the latent entropy variable. So now, if the latent entropy
gcc plugin isn't enabled, add_latent_entropy() will expand to a call
to add_device_randomness(NULL, 0), which adds a cycle counter,
without the absent latent entropy variable.
- The RNG is now reseeded from a delayed worker, rather than on demand
when used. Always running from a worker allows it to make use of the
CPU RNG on platforms like S390x, whose instructions are too slow to
do so from interrupts. It also has the effect of adding in new inputs
more frequently with more regularity, amounting to a long term
transcript of random values. Plus, it helps a bit with the upcoming
vDSO implementation (which isn't yet ready for 6.2).
- The jitter entropy algorithm now tries to execute on many different
CPUs, round-robining, in hopes of hitting even more memory latencies
and other unpredictable effects. It also will mix in a cycle counter
when the entropy timer fires, in addition to being mixed in from the
main loop, to account more explicitly for fluctuations in that timer
firing. And the state it touches is now kept within the same cache
line, so that it's assured that the different execution contexts will
cause latencies.
* tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (23 commits)
random: include <linux/once.h> in the right header
random: align entropy_timer_state to cache line
random: mix in cycle counter when jitter timer fires
random: spread out jitter callback to different CPUs
random: remove extraneous period and add a missing one in comments
efi: random: refresh non-volatile random seed when RNG is initialized
vsprintf: initialize siphash key using notifier
random: add back async readiness notifier
random: reseed in delayed work rather than on-demand
random: always mix cycle counter in add_latent_entropy()
hw_random: use add_hwgenerator_randomness() for early entropy
random: modernize documentation comment on get_random_bytes()
random: adjust comment to account for removed function
random: remove early archrandom abstraction
random: use random.trust_{bootloader,cpu} command line option only
stackprotector: actually use get_random_canary()
stackprotector: move get_random_canary() into stackprotector.h
treewide: use get_random_u32_inclusive() when possible
treewide: use get_random_u32_{above,below}() instead of manual loop
treewide: use get_random_u32_below() instead of deprecated function
...
Since the introduction of clockevents, i.e., commit d316c57ff6
("clockevents: add core functionality"), there has been a mismatch between
the function and the kernel-doc comment for clockevent_delta2ns().
Hence, ./scripts/kernel-doc -none kernel/time/clockevents.c warns about it.
Adjust the kernel-doc comment for clockevent_delta2ns() for make W=1
happiness.
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20221102091048.15068-1-lukas.bulwahn@gmail.com
find_timens_vvar_page() is not architecture-specific, as can be seen from
how all five per-architecture versions of it are the same.
(arm64, powerpc and riscv are exactly the same; x86 and s390 have two
characters difference inside a comment, less blank lines, and mark the
!CONFIG_TIME_NS version as inline.)
Refactor the five copies into a central copy in kernel/time/namespace.c.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20221130115320.2918447-1-jannh@google.com
Tearing down timers which have circular dependencies to other
functionality, e.g. workqueues, where the timer can schedule work and work
can arm timers, is not trivial.
In those cases it is desired to shutdown the timer in a way which prevents
rearming of the timer. The mechanism to do so is to set timer->function to
NULL and use this as an indicator for the timer arming functions to ignore
the (re)arm request.
Expose new interfaces for this: timer_shutdown_sync() and timer_shutdown().
timer_shutdown_sync() has the same functionality as timer_delete_sync()
plus the NULL-ification of the timer function.
timer_shutdown() has the same functionality as timer_delete() plus the
NULL-ification of the timer function.
In both cases the rearming of the timer is prevented by silently discarding
rearm attempts due to timer->function being NULL.
Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/20221123201625.314230270@linutronix.de
Tearing down timers which have circular dependencies to other
functionality, e.g. workqueues, where the timer can schedule work and work
can arm timers, is not trivial.
In those cases it is desired to shutdown the timer in a way which prevents
rearming of the timer. The mechanism to do so is to set timer->function to
NULL and use this as an indicator for the timer arming functions to ignore
the (re)arm request.
Add a shutdown argument to the relevant internal functions which makes the
actual deactivation code set timer->function to NULL which in turn prevents
rearming of the timer.
Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/20221123201625.253883224@linutronix.de
Tearing down timers which have circular dependencies to other
functionality, e.g. workqueues, where the timer can schedule work and work
can arm timers, is not trivial.
In those cases it is desired to shutdown the timer in a way which prevents
rearming of the timer. The mechanism to do so is to set timer->function to
NULL and use this as an indicator for the timer arming functions to ignore
the (re)arm request.
Split the inner workings of try_do_del_timer_sync(), del_timer_sync() and
del_timer() into helper functions to prepare for implementing the shutdown
functionality.
No functional change.
Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/20221123201625.195147423@linutronix.de
Tearing down timers which have circular dependencies to other
functionality, e.g. workqueues, where the timer can schedule work and work
can arm timers, is not trivial.
In those cases it is desired to shutdown the timer in a way which prevents
rearming of the timer. The mechanism to do so is to set timer->function to
NULL and use this as an indicator for the timer arming functions to ignore
the (re)arm request.
In preparation for that replace the warnings in the relevant code paths
with checks for timer->function == NULL. If the pointer is NULL, then
discard the rearm request silently.
Add debug_assert_init() instead of the WARN_ON_ONCE(!timer->function)
checks so that debug objects can warn about non-initialized timers.
The warning of debug objects does not warn if timer->function == NULL. It
warns when timer was not initialized using timer_setup[_on_stack]() or via
DEFINE_TIMER(). If developers fail to enable debug objects and then waste
lots of time to figure out why their non-initialized timer is not firing,
they deserve it. Same for initializing a timer with a NULL function.
Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/87wn7kdann.ffs@tglx
The timer related functions do not have a strict timer_ prefixed namespace
which is really annoying.
Rename del_timer() to timer_delete() and provide del_timer()
as a wrapper. Document that del_timer() is not for new code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201625.015535022@linutronix.de
The timer related functions do not have a strict timer_ prefixed namespace
which is really annoying.
Rename del_timer_sync() to timer_delete_sync() and provide del_timer_sync()
as a wrapper. Document that del_timer_sync() is not for new code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201624.954785441@linutronix.de
del_timer_sync() is assumed to be pointless on uniprocessor systems and can
be mapped to del_timer() because in theory del_timer() can never be invoked
while the timer callback function is executed.
This is not entirely true because del_timer() can be invoked from interrupt
context and therefore hit in the middle of a running timer callback.
Contrary to that del_timer_sync() is not allowed to be invoked from
interrupt context unless the affected timer is marked with TIMER_IRQSAFE.
del_timer_sync() has proper checks in place to detect such a situation.
Give up on the UP optimization and make del_timer_sync() unconditionally
available.
Co-developed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/20221123201624.888306160@linutronix.de
The kernel-doc of timer related functions is partially uncomprehensible
word salad. Rewrite it to make it useful.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201624.828703870@linutronix.de
The timer code still has a few BUG_ON()s left which are crashing the kernel
in situations where it still can recover or simply refuse to take an
action.
Remove the one in the hotplug callback which checks for the CPU being
offline. If that happens then the whole hotplug machinery will explode in
colourful ways.
Replace the rest with WARN_ON_ONCE() and conditional returns where
appropriate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201624.769128888@linutronix.de
del_singleshot_timer_sync() used to be an optimization for deleting timers
which are not rearmed from the timer callback function.
This optimization turned out to be broken and got mapped to
del_timer_sync() about 17 years ago.
Get rid of the undocumented indirection and use del_timer_sync() directly.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20221123201624.706987932@linutronix.de
This is a simple mechanical transformation done by:
@@
expression E;
@@
- prandom_u32_max
+ get_random_u32_below
(E)
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Reviewed-by: SeongJae Park <sj@kernel.org> # for damon
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Replace the obsolete and ambiguous macro in_irq() with new
macro in_hardirq().
Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20221012012629.334966-1-ye.xingchen@zte.com.cn
Rather than incurring a division or requesting too many random bytes for
the given range, use the prandom_u32_max() function, which only takes
the minimum required bytes from the RNG and avoids divisions. This was
done mechanically with this coccinelle script:
@basic@
expression E;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u64;
@@
(
- ((T)get_random_u32() % (E))
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ((E) - 1))
+ prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2)
|
- ((u64)(E) * get_random_u32() >> 32)
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ~PAGE_MASK)
+ prandom_u32_max(PAGE_SIZE)
)
@multi_line@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
identifier RAND;
expression E;
@@
- RAND = get_random_u32();
... when != RAND
- RAND %= (E);
+ RAND = prandom_u32_max(E);
// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@
((T)get_random_u32()@p & (LITERAL))
// Add one to the literal.
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@
value = None
if literal.startswith('0x'):
value = int(literal, 16)
elif literal[0] in '123456789':
value = int(literal, 10)
if value is None:
print("I don't know how to handle %s" % (literal))
cocci.include_match(False)
elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1:
print("Skipping 0x%x for cleanup elsewhere" % (value))
cocci.include_match(False)
elif value & (value + 1) != 0:
print("Skipping 0x%x because it's not a power of two minus one" % (value))
cocci.include_match(False)
elif literal.startswith('0x'):
coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1))
else:
coccinelle.RESULT = cocci.make_expr("%d" % (value + 1))
// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
expression add_one.RESULT;
identifier FUNC;
@@
- (FUNC()@p & (LITERAL))
+ prandom_u32_max(RESULT)
@collapse_ret@
type T;
identifier VAR;
expression E;
@@
{
- T VAR;
- VAR = (E);
- return VAR;
+ return E;
}
@drop_var@
type T;
identifier VAR;
@@
{
- T VAR;
... when != VAR
}
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap
Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
- Debuggability:
- Change most occurances of BUG_ON() to WARN_ON_ONCE()
- Reorganize & fix TASK_ state comparisons, turn it into a bitmap
- Update/fix misc scheduler debugging facilities
- Load-balancing & regular scheduling:
- Improve the behavior of the scheduler in presence of lot of
SCHED_IDLE tasks - in particular they should not impact other
scheduling classes.
- Optimize task load tracking, cleanups & fixes
- Clean up & simplify misc load-balancing code
- Freezer:
- Rewrite the core freezer to behave better wrt thawing and be simpler
in general, by replacing PF_FROZEN with TASK_FROZEN & fixing/adjusting
all the fallout.
- Deadline scheduler:
- Fix the DL capacity-aware code
- Factor out dl_task_is_earliest_deadline() & replenish_dl_new_period()
- Relax/optimize locking in task_non_contending()
- Cleanups:
- Factor out the update_current_exec_runtime() helper
- Various cleanups, simplifications
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmM/01cRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1geZA/+PB4KC1T9aVxzaTHI36R03YgJYZmIdtxw
wTf02MixePmz+gQCbepJbempGOh5ST28aOcI0xhdYOql5B63MaUBBMlB0HvGUyDG
IU3zETqLMRtAbnSTdQFv8m++ECUtZYp8/x1FCel4WO7ya4ETkRu1NRfCoUepEhpZ
aVAlae9LH3NBaF9t7s0PT2lTjf3pIzMFRkddJ0ywJhbFR3VnWat05fAK+J6fGY8+
LS54coefNlJD4oDh5TY8uniL1j5SmWmmwbk9Cdj7bLU5P3dFSS0/+5FJNHJPVGDE
srGT7wstRUcDrN0CnZo48VIUBiApJCCDqTfJYi9wNYd0NAHvwY6MIJJgEIY8mKsI
L/qH26H81Wt+ezSZ/5JIlGlZ/LIeNaa6OO/fbWEYABBQogvvx3nxsRNUYKSQzumH
CnSBasBjLnjWyLlK4qARM9cI7NFSEK6NUigrEx/7h8JFu/8T4DlSy6LsF1HUyKgq
4+FJLAqG6cL0tcwB/fHYd0oRESN8dStnQhGxSojgufwLc7dlFULvCYF5JM/dX+/V
IKwbOfIOeOn6ViMtSOXAEGdII+IQ2/ZFPwr+8Z5JC7NzvTVL6xlu/3JXkLZR3L7o
yaXTSaz06h1vil7Z+GRf7RHc+wUeGkEpXh5vnarGZKXivhFdWsBdROIJANK+xR0i
TeSLCxQxXlU=
=KjMD
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Debuggability:
- Change most occurances of BUG_ON() to WARN_ON_ONCE()
- Reorganize & fix TASK_ state comparisons, turn it into a bitmap
- Update/fix misc scheduler debugging facilities
Load-balancing & regular scheduling:
- Improve the behavior of the scheduler in presence of lot of
SCHED_IDLE tasks - in particular they should not impact other
scheduling classes.
- Optimize task load tracking, cleanups & fixes
- Clean up & simplify misc load-balancing code
Freezer:
- Rewrite the core freezer to behave better wrt thawing and be
simpler in general, by replacing PF_FROZEN with TASK_FROZEN &
fixing/adjusting all the fallout.
Deadline scheduler:
- Fix the DL capacity-aware code
- Factor out dl_task_is_earliest_deadline() &
replenish_dl_new_period()
- Relax/optimize locking in task_non_contending()
Cleanups:
- Factor out the update_current_exec_runtime() helper
- Various cleanups, simplifications"
* tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
sched: Fix more TASK_state comparisons
sched: Fix TASK_state comparisons
sched/fair: Move call to list_last_entry() in detach_tasks
sched/fair: Cleanup loop_max and loop_break
sched/fair: Make sure to try to detach at least one movable task
sched: Show PF_flag holes
freezer,sched: Rewrite core freezer logic
sched: Widen TAKS_state literals
sched/wait: Add wait_event_state()
sched/completion: Add wait_for_completion_state()
sched: Add TASK_ANY for wait_task_inactive()
sched: Change wait_task_inactive()s match_state
freezer,umh: Clean up freezer/initrd interaction
freezer: Have {,un}lock_system_sleep() save/restore flags
sched: Rename task_running() to task_on_cpu()
sched/fair: Cleanup for SIS_PROP
sched/fair: Default to false in test_idle_cores()
sched/fair: Remove useless check in select_idle_core()
sched/fair: Avoid double search on same cpu
sched/fair: Remove redundant check in select_idle_smt()
...
Rewrite the core freezer to behave better wrt thawing and be simpler
in general.
By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is
ensured frozen tasks stay frozen until thawed and don't randomly wake
up early, as is currently possible.
As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up
two PF_flags (yay!).
Specifically; the current scheme works a little like:
freezer_do_not_count();
schedule();
freezer_count();
And either the task is blocked, or it lands in try_to_freezer()
through freezer_count(). Now, when it is blocked, the freezer
considers it frozen and continues.
However, on thawing, once pm_freezing is cleared, freezer_count()
stops working, and any random/spurious wakeup will let a task run
before its time.
That is, thawing tries to thaw things in explicit order; kernel
threads and workqueues before doing bringing SMP back before userspace
etc.. However due to the above mentioned races it is entirely possible
for userspace tasks to thaw (by accident) before SMP is back.
This can be a fatal problem in asymmetric ISA architectures (eg ARMv9)
where the userspace task requires a special CPU to run.
As said; replace this with a special task state TASK_FROZEN and add
the following state transitions:
TASK_FREEZABLE -> TASK_FROZEN
__TASK_STOPPED -> TASK_FROZEN
__TASK_TRACED -> TASK_FROZEN
The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL
(IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state
is already required to deal with spurious wakeups and the freezer
causes one such when thawing the task (since the original state is
lost).
The special __TASK_{STOPPED,TRACED} states *can* be restored since
their canonical state is in ->jobctl.
With this, frozen tasks need an explicit TASK_FROZEN wakeup and are
free of undue (early / spurious) wakeups.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
In ns_to_kernel_old_timeval() definition, the function argument is defined
with const identifier in kernel/time/time.c, but the prototype in
include/linux/time32.h looks different.
- The function is defined in kernel/time/time.c as below:
struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
- The function is decalared in include/linux/time32.h as below:
extern struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec);
Because the variable of arithmethic types isn't modified in the calling scope,
there's no need to mark arguments as const, which was already mentioned during
review (Link[1) of the original patch.
Likewise remove the "const" keyword in both definition and declaration of
ns_to_timespec64() as requested by Arnd (Link[2]).
Fixes: a84d116916 ("y2038: Introduce struct __kernel_old_timeval")
Signed-off-by: Youngmin Nam <youngmin.nam@samsung.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/all/20220712094715.2918823-1-youngmin.nam@samsung.com
Link[1]: https://lore.kernel.org/all/20180310081123.thin6wphgk7tongy@gmail.com/
Link[2]: https://lore.kernel.org/all/CAK8P3a3nknJgEDESGdJH91jMj6R_xydFqWASd8r5BbesdvMBgA@mail.gmail.com/
do_clock_gettime() is used only in posix-stubs.c, so make it static. It avoids
a compiler warning too:
time/posix-stubs.c:73:5: warning: no previous prototype for ‘do_clock_gettime’ [-Wmissing-prototypes]
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220719085620.30567-1-jslaby@suse.cz
Core
----
- Refactor the forward memory allocation to better cope with memory
pressure with many open sockets, moving from a per socket cache to
a per-CPU one
- Replace rwlocks with RCU for better fairness in ping, raw sockets
and IP multicast router.
- Network-side support for IO uring zero-copy send.
- A few skb drop reason improvements, including codegen the source file
with string mapping instead of using macro magic.
- Rename reference tracking helpers to a more consistent
netdev_* schema.
- Adapt u64_stats_t type to address load/store tearing issues.
- Refine debug helper usage to reduce the log noise caused by bots.
BPF
---
- Improve socket map performance, avoiding skb cloning on read
operation.
- Add support for 64 bits enum, to match types exposed by kernel.
- Introduce support for sleepable uprobes program.
- Introduce support for enum textual representation in libbpf.
- New helpers to implement synproxy with eBPF/XDP.
- Improve loop performances, inlining indirect calls when
possible.
- Removed all the deprecated libbpf APIs.
- Implement new eBPF-based LSM flavor.
- Add type match support, which allow accurate queries to the
eBPF used types.
- A few TCP congetsion control framework usability improvements.
- Add new infrastructure to manipulate CT entries via eBPF programs.
- Allow for livepatch (KLP) and BPF trampolines to attach to the same
kernel function.
Protocols
---------
- Introduce per network namespace lookup tables for unix sockets,
increasing scalability and reducing contention.
- Preparation work for Wi-Fi 7 Multi-Link Operation (MLO) support.
- Add support to forciby close TIME_WAIT TCP sockets via user-space
tools.
- Significant performance improvement for the TLS 1.3 receive path,
both for zero-copy and not-zero-copy.
- Support for changing the initial MTPCP subflow priority/backup
status
- Introduce virtually contingus buffers for sockets over RDMA,
to cope better with memory pressure.
- Extend CAN ethtool support with timestamping capabilities
- Refactor CAN build infrastructure to allow building only the needed
features.
Driver API
----------
- Remove devlink mutex to allow parallel commands on multiple links.
- Add support for pause stats in distributed switch.
- Implement devlink helpers to query and flash line cards.
- New helper for phy mode to register conversion.
New hardware / drivers
----------------------
- Ethernet DSA driver for the rockchip mt7531 on BPI-R2 Pro.
- Ethernet DSA driver for the Renesas RZ/N1 A5PSW switch.
- Ethernet DSA driver for the Microchip LAN937x switch.
- Ethernet PHY driver for the Aquantia AQR113C EPHY.
- CAN driver for the OBD-II ELM327 interface.
- CAN driver for RZ/N1 SJA1000 CAN controller.
- Bluetooth: Infineon CYW55572 Wi-Fi plus Bluetooth combo device.
Drivers
-------
- Intel Ethernet NICs:
- i40e: add support for vlan pruning
- i40e: add support for XDP framented packets
- ice: improved vlan offload support
- ice: add support for PPPoE offload
- Mellanox Ethernet (mlx5)
- refactor packet steering offload for performance and scalability
- extend support for TC offload
- refactor devlink code to clean-up the locking schema
- support stacked vlans for bridge offloads
- use TLS objects pool to improve connection rate
- Netronome Ethernet NICs (nfp):
- extend support for IPv6 fields mangling offload
- add support for vepa mode in HW bridge
- better support for virtio data path acceleration (VDPA)
- enable TSO by default
- Microsoft vNIC driver (mana)
- add support for XDP redirect
- Others Ethernet drivers:
- bonding: add per-port priority support
- microchip lan743x: extend phy support
- Fungible funeth: support UDP segmentation offload and XDP xmit
- Solarflare EF100: add support for virtual function representors
- MediaTek SoC: add XDP support
- Mellanox Ethernet/IB switch (mlxsw):
- dropped support for unreleased H/W (XM router).
- improved stats accuracy
- unified bridge model coversion improving scalability
(parts 1-6)
- support for PTP in Spectrum-2 asics
- Broadcom PHYs
- add PTP support for BCM54210E
- add support for the BCM53128 internal PHY
- Marvell Ethernet switches (prestera):
- implement support for multicast forwarding offload
- Embedded Ethernet switches:
- refactor OcteonTx MAC filter for better scalability
- improve TC H/W offload for the Felix driver
- refactor the Microchip ksz8 and ksz9477 drivers to share
the probe code (parts 1, 2), add support for phylink
mac configuration
- Other WiFi:
- Microchip wilc1000: diable WEP support and enable WPA3
- Atheros ath10k: encapsulation offload support
Old code removal:
- Neterion vxge ethernet driver: this is untouched since more than
10 years.
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmLqN+oSHHBhYmVuaUBy
ZWRoYXQuY29tAAoJECkkeY3MjxOkB9kQAI9VqW0c3SfiTJnkVBEIovZ6Tnh5stD2
UYFkh1BdchLsYxi7W4XMpVPSzRztiTP87mIx5c/KvIzj+QNeWL1XWRJSPdI9HhTD
pTAA/tM2OG7bqrbyQiKDNfpQdNl7+kk1RwnYd+f9RFl1QVuIJaYhmjVwrsN5xF/+
jUsotpROarM2dGFWiFwJbKhP2zMDT+6qEEahM8pEPggKhv8wRLYjany2cZVEe4e0
WGUpbINAS8gEKm0Ob922WaDfDrcK/N1Z0jNz/kMaENkK18Vvc7F6bCO0DzAawKX9
QZMMwm6mHp3EThflJAMAzCGIYiIcwLhykgdyj8rrjPhFrWbMD2Sdsbo21HOXU/8j
u4aAhVl+d+h7emmbgBoJ8sycVJ7BQlXz7lX20sTgADv9xI4/dPhQ17CMRuwX6fXX
JSrn6P6e1LTV5CEg6vrlSPnKPY6uhFn/cPw47FxCjRwJ9phVnp+8uZWQmf9Pz3yf
Ok/tcj+juFbsmuOshHy2cbRkuNZNS0oRWlSTBo5795ZwOLSakMonR3L+ev2aOvzz
DVrFp2Y/iIVwMSFdCbouYdYnhArPRhOAtCmZc2afY8aBN7aaMgrdTy3+mzUoHy3I
FG3K+VuKpfi0vY4zn6ZoLZDIpyXIoJJ93RcSGltD32t3Dp1RaQMVEI4s45k05PVm
1nYpXKHA8qML
=hxEG
-----END PGP SIGNATURE-----
Merge tag 'net-next-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking changes from Paolo Abeni:
"Core:
- Refactor the forward memory allocation to better cope with memory
pressure with many open sockets, moving from a per socket cache to
a per-CPU one
- Replace rwlocks with RCU for better fairness in ping, raw sockets
and IP multicast router.
- Network-side support for IO uring zero-copy send.
- A few skb drop reason improvements, including codegen the source
file with string mapping instead of using macro magic.
- Rename reference tracking helpers to a more consistent netdev_*
schema.
- Adapt u64_stats_t type to address load/store tearing issues.
- Refine debug helper usage to reduce the log noise caused by bots.
BPF:
- Improve socket map performance, avoiding skb cloning on read
operation.
- Add support for 64 bits enum, to match types exposed by kernel.
- Introduce support for sleepable uprobes program.
- Introduce support for enum textual representation in libbpf.
- New helpers to implement synproxy with eBPF/XDP.
- Improve loop performances, inlining indirect calls when possible.
- Removed all the deprecated libbpf APIs.
- Implement new eBPF-based LSM flavor.
- Add type match support, which allow accurate queries to the eBPF
used types.
- A few TCP congetsion control framework usability improvements.
- Add new infrastructure to manipulate CT entries via eBPF programs.
- Allow for livepatch (KLP) and BPF trampolines to attach to the same
kernel function.
Protocols:
- Introduce per network namespace lookup tables for unix sockets,
increasing scalability and reducing contention.
- Preparation work for Wi-Fi 7 Multi-Link Operation (MLO) support.
- Add support to forciby close TIME_WAIT TCP sockets via user-space
tools.
- Significant performance improvement for the TLS 1.3 receive path,
both for zero-copy and not-zero-copy.
- Support for changing the initial MTPCP subflow priority/backup
status
- Introduce virtually contingus buffers for sockets over RDMA, to
cope better with memory pressure.
- Extend CAN ethtool support with timestamping capabilities
- Refactor CAN build infrastructure to allow building only the needed
features.
Driver API:
- Remove devlink mutex to allow parallel commands on multiple links.
- Add support for pause stats in distributed switch.
- Implement devlink helpers to query and flash line cards.
- New helper for phy mode to register conversion.
New hardware / drivers:
- Ethernet DSA driver for the rockchip mt7531 on BPI-R2 Pro.
- Ethernet DSA driver for the Renesas RZ/N1 A5PSW switch.
- Ethernet DSA driver for the Microchip LAN937x switch.
- Ethernet PHY driver for the Aquantia AQR113C EPHY.
- CAN driver for the OBD-II ELM327 interface.
- CAN driver for RZ/N1 SJA1000 CAN controller.
- Bluetooth: Infineon CYW55572 Wi-Fi plus Bluetooth combo device.
Drivers:
- Intel Ethernet NICs:
- i40e: add support for vlan pruning
- i40e: add support for XDP framented packets
- ice: improved vlan offload support
- ice: add support for PPPoE offload
- Mellanox Ethernet (mlx5)
- refactor packet steering offload for performance and scalability
- extend support for TC offload
- refactor devlink code to clean-up the locking schema
- support stacked vlans for bridge offloads
- use TLS objects pool to improve connection rate
- Netronome Ethernet NICs (nfp):
- extend support for IPv6 fields mangling offload
- add support for vepa mode in HW bridge
- better support for virtio data path acceleration (VDPA)
- enable TSO by default
- Microsoft vNIC driver (mana)
- add support for XDP redirect
- Others Ethernet drivers:
- bonding: add per-port priority support
- microchip lan743x: extend phy support
- Fungible funeth: support UDP segmentation offload and XDP xmit
- Solarflare EF100: add support for virtual function representors
- MediaTek SoC: add XDP support
- Mellanox Ethernet/IB switch (mlxsw):
- dropped support for unreleased H/W (XM router).
- improved stats accuracy
- unified bridge model coversion improving scalability (parts 1-6)
- support for PTP in Spectrum-2 asics
- Broadcom PHYs
- add PTP support for BCM54210E
- add support for the BCM53128 internal PHY
- Marvell Ethernet switches (prestera):
- implement support for multicast forwarding offload
- Embedded Ethernet switches:
- refactor OcteonTx MAC filter for better scalability
- improve TC H/W offload for the Felix driver
- refactor the Microchip ksz8 and ksz9477 drivers to share the
probe code (parts 1, 2), add support for phylink mac
configuration
- Other WiFi:
- Microchip wilc1000: diable WEP support and enable WPA3
- Atheros ath10k: encapsulation offload support
Old code removal:
- Neterion vxge ethernet driver: this is untouched since more than 10 years"
* tag 'net-next-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1890 commits)
doc: sfp-phylink: Fix a broken reference
wireguard: selftests: support UML
wireguard: allowedips: don't corrupt stack when detecting overflow
wireguard: selftests: update config fragments
wireguard: ratelimiter: use hrtimer in selftest
net/mlx5e: xsk: Discard unaligned XSK frames on striding RQ
net: usb: ax88179_178a: Bind only to vendor-specific interface
selftests: net: fix IOAM test skip return code
net: usb: make USB_RTL8153_ECM non user configurable
net: marvell: prestera: remove reduntant code
octeontx2-pf: Reduce minimum mtu size to 60
net: devlink: Fix missing mutex_unlock() call
net/tls: Remove redundant workqueue flush before destroy
net: txgbe: Fix an error handling path in txgbe_probe()
net: dsa: Fix spelling mistakes and cleanup code
Documentation: devlink: add add devlink-selftests to the table of contents
dccp: put dccp_qpolicy_full() and dccp_qpolicy_push() in the same lock
net: ionic: fix error check for vlan flags in ionic_set_nic_features()
net: ice: fix error NETIF_F_HW_VLAN_CTAG_FILTER check in ice_vsi_sync_fltr()
nfp: flower: add support for tunnel offload without key ID
...
This pull request contains the following branches:
doc.2022.06.21a: Documentation updates.
fixes.2022.07.19a: Miscellaneous fixes.
nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to
be offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS
and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel
boot parameter prevents offloaded callbacks from interfering
with real-time workloads and with energy-efficiency mechanisms.
poll.2022.07.21a: Polled grace-period updates, perhaps most notably
making these APIs account for both normal and expedited grace
periods.
rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing
the CPU overhead of RCU tasks trace grace periods by more than
a factor of two on a system with 15,000 tasks. The reduction
is expected to increase with the number of tasks, so it seems
reasonable to hypothesize that a system with 150,000 tasks might
see a 20-fold reduction in CPU overhead.
torture.2022.06.21a: Torture-test updates.
ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into
context tracking, thus reducing the overhead of transitioning to
kernel mode from either idle or nohz_full userspace execution
for kernels that track context independently of RCU. This is
expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m
g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq
k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt
0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL
kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5
7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0
Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc
JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL
PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc
egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y
ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r
vX60+QNxvUBLwA==
=vUNm
-----END PGP SIGNATURE-----
Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes
- Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be
offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS and
Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot
parameter prevents offloaded callbacks from interfering with
real-time workloads and with energy-efficiency mechanisms
- Polled grace-period updates, perhaps most notably making these APIs
account for both normal and expedited grace periods
- Tasks RCU updates, perhaps most notably reducing the CPU overhead of
RCU tasks trace grace periods by more than a factor of two on a
system with 15,000 tasks.
The reduction is expected to increase with the number of tasks, so it
seems reasonable to hypothesize that a system with 150,000 tasks
might see a 20-fold reduction in CPU overhead
- Torture-test updates
- Updates that merge RCU's dyntick-idle tracking into context tracking,
thus reducing the overhead of transitioning to kernel mode from
either idle or nohz_full userspace execution for kernels that track
context independently of RCU.
This is expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y
* tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits)
rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings
rcu: Diagnose extended sync_rcu_do_polled_gp() loops
rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings
rcutorture: Test polled expedited grace-period primitives
rcu: Add polled expedited grace-period primitives
rcutorture: Verify that polled GP API sees synchronous grace periods
rcu: Make Tiny RCU grace periods visible to polled APIs
rcu: Make polled grace-period API account for expedited grace periods
rcu: Switch polled grace-period APIs to ->gp_seq_polled
rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty
rcu/nocb: Add option to opt rcuo kthreads out of RT priority
rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread()
rcu/nocb: Add an option to offload all CPUs on boot
rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call
rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order
rcu/nocb: Add/del rdp to iterate from rcuog itself
rcu/tree: Add comment to describe GP-done condition in fqs loop
rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs()
rcu/kvfree: Remove useless monitor_todo flag
rcu: Cleanup RCU urgency state for offline CPU
...
Using msleep() is problematic because it's compared against
ratelimiter.c's ktime_get_coarse_boottime_ns(), which means on systems
with slow jiffies (such as UML's forced HZ=100), the result is
inaccurate. So switch to using schedule_hrtimeout().
However, hrtimer gives us access only to the traditional posix timers,
and none of the _COARSE variants. So now, rather than being too
imprecise like jiffies, it's too precise.
One solution would be to give it a large "range" value, but this will
still fire early on a loaded system. A better solution is to align the
timeout to the actual coarse timer, and then round up to the nearest
tick, plus change.
So add the timeout to the current coarse time, and then
schedule_hrtimer() until the absolute computed time.
This should hopefully reduce flakes in CI as well. Note that we keep the
retry loop in case the entire function is running behind, because the
test could still be scheduled out, by either the kernel or by the
hypervisor's kernel, in which case restarting the test and hoping to not
be scheduled out still helps.
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The rng's random_init() function contributes the real time to the rng at
boot time, so that events can at least start in relation to something
particular in the real world. But this clock might not yet be set that
point in boot, so nothing is contributed. In addition, the relation
between minor clock changes from, say, NTP, and the cycle counter is
potentially useful entropic data.
This commit addresses this by mixing in a time stamp on calls to
settimeofday and adjtimex. No entropy is credited in doing so, so it
doesn't make initialization faster, but it is still useful input to
have.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
As Chris explains, the comment above exit_itimers() is not correct,
we can race with proc_timers_seq_ops. Change exit_itimers() to clear
signal->posix_timers with ->siglock held.
Cc: <stable@vger.kernel.org>
Reported-by: chris@accessvector.net
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The RCU dynticks counter is going to be merged into the context tracking
subsystem. Start with moving the idle extended quiescent states
entrypoints to context tracking. For now those are dumb redirections to
existing RCU calls.
[ paulmck: Apply kernel test robot feedback. ]
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Context tracking is going to be used not only to track user transitions
but also idle/IRQs/NMIs. The user tracking part will then become a
separate feature. Prepare Kconfig for that.
[ frederic: Apply Max Filippov feedback. ]
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
context_tracking_cpu_set() is called in order to tell a CPU to track
user/kernel transitions. Since context tracking is going to expand in
to also track transitions from/to idle/IRQ/NMIs, the scope
of this function name becomes too broad and needs to be made more
specific. Also shorten the prefix to align with the new namespace.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it had been broken for a decade.
Commit 28438794ab ("modpost: fix section mismatch check for exported
init/exit sections") fixed it so modpost started to warn it again, then
this showed up:
MODPOST vmlinux.symvers
WARNING: modpost: vmlinux.o(___ksymtab_gpl+tick_nohz_full_setup+0x0): Section mismatch in reference from the variable __ksymtab_tick_nohz_full_setup to the function .init.text:tick_nohz_full_setup()
The symbol tick_nohz_full_setup is exported and annotated __init
Fix this by removing the __init annotation of tick_nohz_full_setup or drop the export.
Drop the export because tick_nohz_full_setup() is only called from the
built-in code in kernel/sched/isolation.c.
Fixes: ae9e557b5b ("time: Export tick start/stop functions for rcutorture")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
of Peter Zijlstra was encountering with ptrace in his freezer rewrite
I identified some cleanups to ptrace_stop that make sense on their own
and move make resolving the other problems much simpler.
The biggest issue is the habbit of the ptrace code to change task->__state
from the tracer to suppress TASK_WAKEKILL from waking up the tracee. No
other code in the kernel does that and it is straight forward to update
signal_wake_up and friends to make that unnecessary.
Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
on the fact that all stopped states except the special stop states can
tolerate spurious wake up and recover their state.
The state of stopped and traced tasked is changed to be stored in
task->jobctl as well as in task->__state. This makes it possible for
the freezer to recover tasks in these special states, as well as
serving as a general cleanup. With a little more work in that
direction I believe TASK_STOPPED can learn to tolerate spurious wake
ups and become an ordinary stop state.
The TASK_TRACED state has to remain a special state as the registers for
a process are only reliably available when the process is stopped in
the scheduler. Fundamentally ptrace needs acess to the saved
register values of a task.
There are bunch of semi-random ptrace related cleanups that were found
while looking at these issues.
One cleanup that deserves to be called out is from commit 57b6de08b5
("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This
makes a change that is technically user space visible, in the handling
of what happens to a tracee when a tracer dies unexpectedly.
According to our testing and our understanding of userspace nothing
cares that spurious SIGTRAPs can be generated in that case.
The entire discussion can be found at:
https://lkml.kernel.org/r/87a6bv6dl6.fsf_-_@email.froward.int.ebiederm.org
Eric W. Biederman (11):
signal: Rename send_signal send_signal_locked
signal: Replace __group_send_sig_info with send_signal_locked
ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
ptrace: Remove arch_ptrace_attach
signal: Use lockdep_assert_held instead of assert_spin_locked
ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
ptrace: Document that wait_task_inactive can't fail
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
ptrace: Don't change __state
ptrace: Always take siglock in ptrace_resume
Peter Zijlstra (1):
sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
arch/ia64/include/asm/ptrace.h | 4 --
arch/ia64/kernel/ptrace.c | 57 ----------------
arch/um/include/asm/thread_info.h | 2 +
arch/um/kernel/exec.c | 2 +-
arch/um/kernel/process.c | 2 +-
arch/um/kernel/ptrace.c | 8 +--
arch/um/kernel/signal.c | 4 +-
arch/x86/kernel/step.c | 3 +-
arch/xtensa/kernel/ptrace.c | 4 +-
arch/xtensa/kernel/signal.c | 4 +-
drivers/tty/tty_jobctrl.c | 4 +-
include/linux/ptrace.h | 7 --
include/linux/sched.h | 10 ++-
include/linux/sched/jobctl.h | 8 +++
include/linux/sched/signal.h | 20 ++++--
include/linux/signal.h | 3 +-
kernel/ptrace.c | 87 ++++++++---------------
kernel/sched/core.c | 5 +-
kernel/signal.c | 140 +++++++++++++++++---------------------
kernel/time/posix-cpu-timers.c | 6 +-
20 files changed, 140 insertions(+), 240 deletions(-)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmKaXaYACgkQC/v6Eiaj
j0CgoA/+JncSQ6PY2D5Jh1apvHzmnRsFXzr3DRvtv/CVx4oIebOXRQFyVDeD5tRn
TmMgB29HpBlHRDLojlmlZRGAld1HR/aPEW9j8W1D3Sy/ZFO5L8lQitv9aDHO9Ntw
4lZvlhS1M0KhATudVVBqSPixiG6CnV5SsGmixqdOyg7xcXSY6G1l2nB7Zk9I3Tat
ZlmhuZ6R5Z5qsm4MEq0vUSrnsHiGxYrpk6uQOaVz8Wkv8ZFmbutt6XgxF0tsyZNn
mHSmWSiZzIgBjTlaibEmxi8urYJTPj3vGBeJQVYHblFwLFi6+Oy7bDxQbWjQvaZh
DsgWPScfBF4Jm0+8hhCiSYpvPp8XnZuklb4LNCeok/VFr+KfSmpJTIhn00kagQ1u
vxQDqLws8YLW4qsfGydfx9uUIFCbQE/V2VDYk5J3Re3gkUNDOOR1A56hPniKv6VB
2aqGO2Fl0RdBbUa3JF+XI5Pwq5y1WrqR93EUvj+5+u5W9rZL/8WLBHBMEz6gbmfD
DhwFE0y8TG2WRlWJVEDRId+5zo3di/YvasH0vJZ5HbrxhS2RE/yIGAd+kKGx/lZO
qWDJC7IHvFJ7Mw5KugacyF0SHeNdloyBM7KZW6HeXmgKn9IMJBpmwib92uUkRZJx
D8j/bHHqD/zsgQ39nO+c4M0MmhO/DsPLG/dnGKrRCu7v1tmEnkY=
=ZUuO
-----END PGP SIGNATURE-----
Merge tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull ptrace_stop cleanups from Eric Biederman:
"While looking at the ptrace problems with PREEMPT_RT and the problems
Peter Zijlstra was encountering with ptrace in his freezer rewrite I
identified some cleanups to ptrace_stop that make sense on their own
and move make resolving the other problems much simpler.
The biggest issue is the habit of the ptrace code to change
task->__state from the tracer to suppress TASK_WAKEKILL from waking up
the tracee. No other code in the kernel does that and it is straight
forward to update signal_wake_up and friends to make that unnecessary.
Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
on the fact that all stopped states except the special stop states can
tolerate spurious wake up and recover their state.
The state of stopped and traced tasked is changed to be stored in
task->jobctl as well as in task->__state. This makes it possible for
the freezer to recover tasks in these special states, as well as
serving as a general cleanup. With a little more work in that
direction I believe TASK_STOPPED can learn to tolerate spurious wake
ups and become an ordinary stop state.
The TASK_TRACED state has to remain a special state as the registers
for a process are only reliably available when the process is stopped
in the scheduler. Fundamentally ptrace needs acess to the saved
register values of a task.
There are bunch of semi-random ptrace related cleanups that were found
while looking at these issues.
One cleanup that deserves to be called out is from commit 57b6de08b5
("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This
makes a change that is technically user space visible, in the handling
of what happens to a tracee when a tracer dies unexpectedly. According
to our testing and our understanding of userspace nothing cares that
spurious SIGTRAPs can be generated in that case"
* tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
ptrace: Always take siglock in ptrace_resume
ptrace: Don't change __state
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
ptrace: Document that wait_task_inactive can't fail
ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
signal: Use lockdep_assert_held instead of assert_spin_locked
ptrace: Remove arch_ptrace_attach
ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
signal: Replace __group_send_sig_info with send_signal_locked
signal: Rename send_signal send_signal_locked
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmKKpM8ACgkQSfxwEqXe
A6726w/+OJimGd4arvpSmdn+vxepSyDLgKfwM0x5zprRVd16xg8CjJr4eMonTesq
YvtJRqpetb53MB+sMhutlvQqQzrjtf2MBkgPwF4I2gUrk7vLD45Q+AGdGhi/rUwz
wHGA7xg1FHLHia2M/9idSqi8QlZmUP4u4l5ZnMyTUHiwvRD6XOrWKfqvUSawNzyh
hCWlTUxDrjizsW5YpsJX/MkRadSC8loJEk5ByZebow6nRPfurJvqfrcOMgHyNrbY
pOZ/CGPxcetMqotL2TuuJt5wKmenqYhIWGAp3YM2SWWgU2ueBZekW8AYeMfgUcvh
LWV93RpSuAnE5wsdjIULvjFnEDJBf8ihfMnMrd9G5QjQu44tuKWfY2MghLSpYzaR
V6UFbRmhrqhqiStHQXOvk1oqxtpbHlc9zzJLmvPmDJcbvzXQ9Opk5GVXAmdtnHnj
M/ty3wGWxucY6mHqT8MkCShSSslbgEtc1pEIWHdrUgnaiSVoCVBEO+9LqLbjvOTm
XA/6YtoiCE5FasK51pir1zVb2GORQn0v8HnuAOsusD/iPAlRQ/G5jZkaXbwRQI6j
atYL1svqvSKn5POnzqAlMUXfMUr19K5xqJdp7i6qmlO1Vq6Z+tWbCQgD1JV+Wjkb
CMyvXomFCFu4aYKGRE2SBRnWLRghG3kYHqEQ15yTPMQerxbUDNg=
=SUr3
-----END PGP SIGNATURE-----
Merge tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
"These updates continue to refine the work began in 5.17 and 5.18 of
modernizing the RNG's crypto and streamlining and documenting its
code.
New for 5.19, the updates aim to improve entropy collection methods
and make some initial decisions regarding the "premature next" problem
and our threat model. The cloc utility now reports that random.c is
931 lines of code and 466 lines of comments, not that basic metrics
like that mean all that much, but at the very least it tells you that
this is very much a manageable driver now.
Here's a summary of the various updates:
- The random_get_entropy() function now always returns something at
least minimally useful. This is the primary entropy source in most
collectors, which in the best case expands to something like RDTSC,
but prior to this change, in the worst case it would just return 0,
contributing nothing. For 5.19, additional architectures are wired
up, and architectures that are entirely missing a cycle counter now
have a generic fallback path, which uses the highest resolution
clock available from the timekeeping subsystem.
Some of those clocks can actually be quite good, despite the CPU
not having a cycle counter of its own, and going off-core for a
stamp is generally thought to increase jitter, something positive
from the perspective of entropy gathering. Done very early on in
the development cycle, this has been sitting in next getting some
testing for a while now and has relevant acks from the archs, so it
should be pretty well tested and fine, but is nonetheless the thing
I'll be keeping my eye on most closely.
- Of particular note with the random_get_entropy() improvements is
MIPS, which, on CPUs that lack the c0 count register, will now
combine the high-speed but short-cycle c0 random register with the
lower-speed but long-cycle generic fallback path.
- With random_get_entropy() now always returning something useful,
the interrupt handler now collects entropy in a consistent
construction.
- Rather than comparing two samples of random_get_entropy() for the
jitter dance, the algorithm now tests many samples, and uses the
amount of differing ones to determine whether or not jitter entropy
is usable and how laborious it must be. The problem with comparing
only two samples was that if the cycle counter was extremely slow,
but just so happened to be on the cusp of a change, the slowness
wouldn't be detected. Taking many samples fixes that to some
degree.
This, combined with the other improvements to random_get_entropy(),
should make future unification of /dev/random and /dev/urandom
maybe more possible. At the very least, were we to attempt it again
today (we're not), it wouldn't break any of Guenter's test rigs
that broke when we tried it with 5.18. So, not today, but perhaps
down the road, that's something we can revisit.
- We attempt to reseed the RNG immediately upon waking up from system
suspend or hibernation, making use of the various timestamps about
suspend time and such available, as well as the usual inputs such
as RDRAND when available.
- Batched randomness now falls back to ordinary randomness before the
RNG is initialized. This provides more consistent guarantees to the
types of random numbers being returned by the various accessors.
- The "pre-init injection" code is now gone for good. I suspect you
in particular will be happy to read that, as I recall you
expressing your distaste for it a few months ago. Instead, to avoid
a "premature first" issue, while still allowing for maximal amount
of entropy availability during system boot, the first 128 bits of
estimated entropy are used immediately as it arrives, with the next
128 bits being buffered. And, as before, after the RNG has been
fully initialized, it winds up reseeding anyway a few seconds later
in most cases. This resulted in a pretty big simplification of the
initialization code and let us remove various ad-hoc mechanisms
like the ugly crng_pre_init_inject().
- The RNG no longer pretends to handle the "premature next" security
model, something that various academics and other RNG designs have
tried to care about in the past. After an interesting mailing list
thread, these issues are thought to be a) mainly academic and not
practical at all, and b) actively harming the real security of the
RNG by delaying new entropy additions after a potential compromise,
making a potentially bad situation even worse. As well, in the
first place, our RNG never even properly handled the premature next
issue, so removing an incomplete solution to a fake problem was
particularly nice.
This allowed for numerous other simplifications in the code, which
is a lot cleaner as a consequence. If you didn't see it before,
https://lore.kernel.org/lkml/YmlMGx6+uigkGiZ0@zx2c4.com/ may be a
thread worth skimming through.
- While the interrupt handler received a separate code path years ago
that avoids locks by using per-cpu data structures and a faster
mixing algorithm, in order to reduce interrupt latency, input and
disk events that are triggered in hardirq handlers were still
hitting locks and more expensive algorithms. Those are now
redirected to use the faster per-cpu data structures.
- Rather than having the fake-crypto almost-siphash-based random32
implementation be used right and left, and in many places where
cryptographically secure randomness is desirable, the batched
entropy code is now fast enough to replace that.
- As usual, numerous code quality and documentation cleanups. For
example, the initialization state machine now uses enum symbolic
constants instead of just hard coding numbers everywhere.
- Since the RNG initializes once, and then is always initialized
thereafter, a pretty heavy amount of code used during that
initialization is never used again. It is now completely cordoned
off using static branches and it winds up in the .text.unlikely
section so that it doesn't reduce cache compactness after the RNG
is ready.
- A variety of functions meant for waiting on the RNG to be
initialized were only used by vsprintf, and in not a particularly
optimal way. Replacing that usage with a more ordinary setup made
it possible to remove those functions.
- A cleanup of how we warn userspace about the use of uninitialized
/dev/urandom and uninitialized get_random_bytes() usage.
Interestingly, with the change you merged for 5.18 that attempts to
use jitter (but does not block if it can't), the majority of users
should never see those warnings for /dev/urandom at all now, and
the one for in-kernel usage is mainly a debug thing.
- The file_operations struct for /dev/[u]random now implements
.read_iter and .write_iter instead of .read and .write, allowing it
to also implement .splice_read and .splice_write, which makes
splice(2) work again after it was broken here (and in many other
places in the tree) during the set_fs() removal. This was a bit of
a last minute arrival from Jens that hasn't had as much time to
bake, so I'll be keeping my eye on this as well, but it seems
fairly ordinary. Unfortunately, read_iter() is around 3% slower
than read() in my tests, which I'm not thrilled about. But Jens and
Al, spurred by this observation, seem to be making progress in
removing the bottlenecks on the iter paths in the VFS layer in
general, which should remove the performance gap for all drivers.
- Assorted other bug fixes, cleanups, and optimizations.
- A small SipHash cleanup"
* tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (49 commits)
random: check for signals after page of pool writes
random: wire up fops->splice_{read,write}_iter()
random: convert to using fops->write_iter()
random: convert to using fops->read_iter()
random: unify batched entropy implementations
random: move randomize_page() into mm where it belongs
random: remove mostly unused async readiness notifier
random: remove get_random_bytes_arch() and add rng_has_arch_random()
random: move initialization functions out of hot pages
random: make consistent use of buf and len
random: use proper return types on get_random_{int,long}_wait()
random: remove extern from functions in header
random: use static branch for crng_ready()
random: credit architectural init the exact amount
random: handle latent entropy and command line from random_init()
random: use proper jiffies comparison macro
random: remove ratelimiting for in-kernel unseeded randomness
random: move initialization out of reseeding hot path
random: avoid initializing twice in credit race
random: use symbolic constants for crng_init states
...
- Expose CLOCK_TAI to instrumentation to aid with TSN debugging.
- Ensure that the clockevent is stopped when there is no timer armed to
avoid pointless wakeups.
- Make the sched clock frequency handling and rounding consistent.
- Provide a better debugobject hint for delayed works. The timer callback
is always the same, which makes it difficult to identify the underlying
work. Use the work function as a hint instead.
- Move the timer specific sysctl code into the timer subsystem.
- The usual set of improvements and cleanups
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKLPHMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZBoEACIURtS8w9PFZ6q/2mFq0pTYi/uI/HQ
vqbB6gCbrjfL6QwInd7jxDc/UoqEOllG9pTaGdWx/0Gi9syDosEbeop7cvvt2xi+
pReoEN1kVI3JAVrQFIAuGw4EMuzYB8PfuZkm1PdozcCP9qkgDmtippVxe05sFQ+/
RPdA29vE3g63eXkSFBhEID23pQR8yKLbqVq6KcH87OipZedL+2fry3yB+/9sLuuU
/PFLbI6B9f43S2sfo6szzpFkpd6tJlBlu02IrB6gh4IxKrslmZb5onpvcf6iT+19
rFh5A15GFWoZUC8EjH1sBpATq3wA/jfGEOPWgy07N5SmobtJvWSM5yvT+gC3qXqm
C/bjyjqXzLKftG7KIXo/hWewtsjdovMbdfcMBsGiatytNBZfI1GR/4Pq60/qpTHZ
qJo35trOUcP6o1njphwONy3lisq78S7xaozpWO1hIMTcAqGgBkm/lOieGMM4hGnE
Ps0Im3ZsOXNGllulN+3h+UHstM5/y6f/vzBsw7pfIG66i6KqebAiNjbMfHCr22sX
7UavNCoFggUQgZVgUYX/AscdW4/Dwx6R5YUqj1EBqztknd70Ac4TqjaIz4Xa6ZER
z+eQSSt5XqqV2eKWA4FsQYmCIc+BvQ4apSA6+whz9vmsvCYtB7zzSfeh+xkgcl1/
Cc0N6G5+L9v0Gw==
=De28
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer and timekeeping updates from Thomas Gleixner:
- Expose CLOCK_TAI to instrumentation to aid with TSN debugging.
- Ensure that the clockevent is stopped when there is no timer armed to
avoid pointless wakeups.
- Make the sched clock frequency handling and rounding consistent.
- Provide a better debugobject hint for delayed works. The timer
callback is always the same, which makes it difficult to identify the
underlying work. Use the work function as a hint instead.
- Move the timer specific sysctl code into the timer subsystem.
- The usual set of improvements and cleanups
* tag 'timers-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timers: Provide a better debugobjects hint for delayed works
time/sched_clock: Fix formatting of frequency reporting code
time/sched_clock: Use Hz as the unit for clock rate reporting below 4kHz
time/sched_clock: Round the frequency reported to nearest rather than down
timekeeping: Consolidate fast timekeeper
timekeeping: Annotate ktime_get_boot_fast_ns() with data_race()
timers/nohz: Switch to ONESHOT_STOPPED in the low-res handler when the tick is stopped
timekeeping: Introduce fast accessor to clock tai
tracing/timer: Add missing argument documentation of trace points
clocksource: Replace cpumask_weight() with cpumask_empty()
timers: Move timer sysctl into the timer code
clockevents: Use dedicated list iterator variable
timers: Simplify calc_index()
timers: Initialize base::next_expiry_recalc in timers_prepare_cpu()
random32.c has two random number generators in it: one that is meant to
be used deterministically, with some predefined seed, and one that does
the same exact thing as random.c, except does it poorly. The first one
has some use cases. The second one no longer does and can be replaced
with calls to random.c's proper random number generator.
The relatively recent siphash-based bad random32.c code was added in
response to concerns that the prior random32.c was too deterministic.
Out of fears that random.c was (at the time) too slow, this code was
anonymously contributed. Then out of that emerged a kind of shadow
entropy gathering system, with its own tentacles throughout various net
code, added willy nilly.
Stop👏making👏bespoke👏random👏number👏generators👏.
Fortunately, recent advances in random.c mean that we can stop playing
with this sketchiness, and just use get_random_u32(), which is now fast
enough. In micro benchmarks using RDPMC, I'm seeing the same median
cycle count between the two functions, with the mean being _slightly_
higher due to batches refilling (which we can optimize further need be).
However, when doing *real* benchmarks of the net functions that actually
use these random numbers, the mean cycles actually *decreased* slightly
(with the median still staying the same), likely because the additional
prandom code means icache misses and complexity, whereas random.c is
generally already being used by something else nearby.
The biggest benefit of this is that there are many users of prandom who
probably should be using cryptographically secure random numbers. This
makes all of those accidental cases become secure by just flipping a
switch. Later on, we can do a tree-wide cleanup to remove the static
inline wrapper functions that this commit adds.
There are also some low-ish hanging fruits for making this even faster
in the future: a get_random_u16() function for use in the networking
stack will give a 2x performance boost there, using SIMD for ChaCha20
will let us compute 4 or 8 or 16 blocks of output in parallel, instead
of just one, giving us large buffers for cheap, and introducing a
get_random_*_bh() function that assumes irqs are already disabled will
shave off a few cycles for ordinary calls. These are things we can chip
away at down the road.
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
With debugobjects enabled the timer hint for freeing of active timers
embedded inside delayed works is always the same, i.e. the hint is
delayed_work_timer_fn, even though the function the delayed work is going
to run can be wildly different depending on what work was queued. Enabling
workqueue debugobjects doesn't help either because the delayed work isn't
considered active until it is actually queued to run on a workqueue. If the
work is freed while the timer is pending the work isn't considered active
so there is no information from workqueue debugobjects.
Special case delayed works in the timer debugobjects hint logic so that the
delayed work function is returned instead of the delayed_work_timer_fn.
This will help to understand which delayed work was pending that got
freed.
Apply the same treatment for kthread_delayed_work because it follows the
same pattern.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220511201951.42408-1-swboyd@chromium.org
The addition of random_get_entropy_fallback() provides access to
whichever time source has the highest frequency, which is useful for
gathering entropy on platforms without available cycle counters. It's
not necessarily as good as being able to quickly access a cycle counter
that the CPU has, but it's still something, even when it falls back to
being jiffies-based.
In the event that a given arch does not define get_cycles(), falling
back to the get_cycles() default implementation that returns 0 is really
not the best we can do. Instead, at least calling
random_get_entropy_fallback() would be preferable, because that always
needs to return _something_, even falling back to jiffies eventually.
It's not as though random_get_entropy_fallback() is super high precision
or guaranteed to be entropic, but basically anything that's not zero all
the time is better than returning zero all the time.
Finally, since random_get_entropy_fallback() is used during extremely
early boot when randomizing freelists in mm_init(), it can be called
before timekeeping has been initialized. In that case there really is
nothing we can do; jiffies hasn't even started ticking yet. So just give
up and return 0.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Theodore Ts'o <tytso@mit.edu>
The function __group_send_sig_info is just a light wrapper around
send_signal_locked with one parameter fixed to a constant value. As
the wrapper adds no real value update the code to directly call the
wrapped function.
Tested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20220505182645.497868-2-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Use flat rather than nested indentation for chained else/if clauses as
per coding-style.rst:
if (x == y) {
..
} else if (x > y) {
...
} else {
....
}
This also improves readability.
Signed-off-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/alpine.DEB.2.21.2204240148220.9383@angie.orcam.me.uk
The kernel uses kHz as the unit for clock rates reported between 1MHz
(inclusive) and 4MHz (exclusive), e.g.:
sched_clock: 64 bits at 1000kHz, resolution 1000ns, wraps every 2199023255500ns
This reduces the amount of data lost due to rounding, but hasn't been
replicated for the kHz range when support was added for proper reporting of
sub-kHz clock rates. Take the same approach for rates between 1kHz
(inclusive) and 4kHz (exclusive), which makes it consistent.
Signed-off-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/alpine.DEB.2.21.2204240106380.9383@angie.orcam.me.uk
The frequency reported for clock sources are rounded down, which gives
misleading figures, e.g.:
I/O ASIC clock frequency 24999480Hz
sched_clock: 32 bits at 24MHz, resolution 40ns, wraps every 85901132779ns
MIPS counter frequency 59998512Hz
sched_clock: 32 bits at 59MHz, resolution 16ns, wraps every 35792281591ns
Rounding to nearest is more adequate:
I/O ASIC clock frequency 24999664Hz
sched_clock: 32 bits at 25MHz, resolution 40ns, wraps every 85900499947ns
MIPS counter frequency 59999728Hz
sched_clock: 32 bits at 60MHz, resolution 16ns, wraps every 35791556599ns
Signed-off-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/alpine.DEB.2.21.2204240055590.9383@angie.orcam.me.uk
Accessing timekeeper::offset_boot in ktime_get_boot_fast_ns() is an
intended data race as the reader side cannot synchronize with a writer and
there is no space in struct tk_read_base of the NMI safe timekeeper.
Mark it so.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220415091920.956045162@linutronix.de
When tick_nohz_stop_tick() stops the tick and high resolution timers are
disabled, then the clock event device is not put into ONESHOT_STOPPED
mode. This can lead to spurious timer interrupts with some clock event
device drivers that don't shut down entirely after firing.
Eliminate these by putting the device into ONESHOT_STOPPED mode at points
where it is not being reprogrammed. When there are no timers active, then
tick_program_event() with KTIME_MAX can be used to stop the device. When
there is a timer active, the device can be stopped at the next tick (any
new timer added by timers will reprogram the tick).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220422141446.915024-1-npiggin@gmail.com
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmJYLboTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoW94D/wPA3Pf3Dk5MBILSSd9RFwHQK9z+X2l
Np60Cuh0aetlwNILGafJ6VG34zwjR4Z5eutAM1zy14ehRXmQSEoE5OG5ixLOg83o
8IPZRKwdG7C3WnLn+s0OdTEpgGaDTxHPOrJOXsgG9G5NwVzUEad+srePSxhDSnLn
LCKWaLnGWGC2ymbz/0TTZkhzkVyOEElY7SubF6qn8J4T9XPjdYUsZ/r1cNGBSfFD
uViQYZpjUpNFmalwNldpgIZidDBHvTnlaE610jZHQKEczs9mg2EpmAPyb/e5MKcs
tMmFcFQoNX3o0MAdRmRQD46fDAD0RKb9mP2LF+52/QqI6V8Pvk5OV/RXl/WGR/1B
KxZ6qQFXasoXujfaELAnRSRve+k2xrsyEY6yikg3G/JmrMgCSVgvfSr0CTFbbdnG
pAXC4eO94SqyCYdVU9DJZO7fhwREGF8P7qI01PYGF1B4GseQ8gaNuXCTBrkYsio2
60Nv7GFiajRjUOdPNvhnWAMvnLRpnItgV3yB7nXAt15io9AkdCXsqPq3x69cxYYU
X+CQZPG0l+tG/BERYdjAjr7/Ij0NCqteKz7UqHIF0747DLQHagms7dmk/UWsKRfU
bFyCKvLttAFYRU5lPEqjTIDfPJcqoePreqB1xRRmeerV4id26If59a9yMkFcUuF/
ZQAkAZGCc82YJA==
=mALw
-----END PGP SIGNATURE-----
Merge tag 'tai-for-tracing' into timers/core
Pull in the NMI safe TAI accessor which was provided for the tracing tree
to prepare for further changes in this area.
Introduce fast/NMI safe accessor to clock tai for tracing. The Linux kernel
tracing infrastructure has support for using different clocks to generate
timestamps for trace events. Especially in TSN networks it's useful to have TAI
as trace clock, because the application scheduling is done in accordance to the
network time, which is based on TAI. With a tai trace_clock in place, it becomes
very convenient to correlate network activity with Linux kernel application
traces.
Use the same implementation as ktime_get_boot_fast_ns() does by reading the
monotonic time and adding the TAI offset. The same limitations as for the fast
boot implementation apply. The TAI offset may change at run time e.g., by
setting the time or using adjtimex() with an offset. However, these kind of
offset changes are rare events. Nevertheless, the user has to be aware and deal
with it in post processing.
An alternative approach would be to use the same implementation as
ktime_get_real_fast_ns() does. However, this requires to add an additional u64
member to the tk_read_base struct. This struct together with a seqcount is
designed to fit into a single cache line on 64 bit architectures. Adding a new
member would violate this constraint.
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20220414091805.89667-2-kurt@linutronix.de
clocksource_verify_percpu() calls cpumask_weight() to check if any bit of a
given cpumask is set.
This can be done more efficiently with cpumask_empty() because
cpumask_empty() stops traversing the cpumask as soon as it finds first set
bit, while cpumask_weight() counts all bits unconditionally.
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220210224933.379149-24-yury.norov@gmail.com
Fixes the following W=1 kernel build warning:
kernel/time/tick-sched.c:1563: warning: This comment starts with '/**',
but isn't a kernel-doc comment.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220214084739.63228-1-jiapeng.chong@linux.alibaba.com
While running some testing on code that happened to allow the variable
tick_nohz_full_running to get set but with no "possible" NOHZ cores to
back up that setting, this warning triggered:
if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
WARN_ON(tick_nohz_full_running);
The console was overwhemled with an endless stream of one WARN per tick
per core and there was no way to even see what was going on w/o using a
serial console to capture it and then trace it back to this.
Change it to WARN_ON_ONCE().
Fixes: 08ae95f4fd ("nohz_full: Allow the boot CPU to be nohz_full")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211206145950.10927-3-paul.gortmaker@windriver.com
The level granularity round up of calc_index() does:
(x + (1 << n)) >> n
which is obviously equivalent to
(x >> n) + 1
but compilers can't figure that out despite the fact that the input range
is known to not cause an overflow. It's neither intuitive to read.
Just write out the obvious.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/87h778j46c.ffs@tglx
When base::next_expiry_recalc is not initialized to false during cpu
bringup in HOTPLUG_CPU and is accidently true and no timer is queued in the
meantime, the loop through the wheel to find __next_timer_interrupt() might
be done for nothing.
Therefore initialize base::next_expiry_recalc to false in
timers_prepare_cpu().
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220405191732.7438-2-anna-maria@linutronix.de
When the timer base is empty, base::next_expiry is set to base::clk +
NEXT_TIMER_MAX_DELTA and base::next_expiry_recalc is false. When no timer
is queued until jiffies reaches base::next_expiry value, the warning for
not finding any expired timer and base::next_expiry_recalc is false in
__run_timers() triggers.
To prevent triggering the warning in this valid scenario
base::timers_pending needs to be added to the warning condition.
Fixes: 31cd0e119d ("timers: Recalculate next timer interrupt only when necessary")
Reported-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220405191732.7438-3-anna-maria@linutronix.de
This set of changes removes tracehook.h, moves modification of all of
the ptrace fields inside of siglock to remove races, adds a missing
permission check to ptrace.c
The removal of tracehook.h is quite significant as it has been a major
source of confusion in recent years. Much of that confusion was
around task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled
making the semantics clearer).
For people who don't know tracehook.h is a vestiage of an attempt to
implement uprobes like functionality that was never fully merged, and
was later superseeded by uprobes when uprobes was merged. For many
years now we have been removing what tracehook functionaly a little
bit at a time. To the point where now anything left in tracehook.h is
some weird strange thing that is difficult to understand.
Eric W. Biederman (15):
ptrace: Move ptrace_report_syscall into ptrace.h
ptrace/arm: Rename tracehook_report_syscall report_syscall
ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h
ptrace: Remove arch_syscall_{enter,exit}_tracehook
ptrace: Remove tracehook_signal_handler
task_work: Remove unnecessary include from posix_timers.h
task_work: Introduce task_work_pending
task_work: Call tracehook_notify_signal from get_signal on all architectures
task_work: Decouple TIF_NOTIFY_SIGNAL and task_work
signal: Move set_notify_signal and clear_notify_signal into sched/signal.h
resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume
resume_user_mode: Move to resume_user_mode.h
tracehook: Remove tracehook.h
ptrace: Move setting/clearing ptrace_message into ptrace_stop
ptrace: Return the signal to continue with from ptrace_stop
Jann Horn (1):
ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE
Yang Li (1):
ptrace: Remove duplicated include in ptrace.c
MAINTAINERS | 1 -
arch/Kconfig | 5 +-
arch/alpha/kernel/ptrace.c | 5 +-
arch/alpha/kernel/signal.c | 4 +-
arch/arc/kernel/ptrace.c | 5 +-
arch/arc/kernel/signal.c | 4 +-
arch/arm/kernel/ptrace.c | 12 +-
arch/arm/kernel/signal.c | 4 +-
arch/arm64/kernel/ptrace.c | 14 +--
arch/arm64/kernel/signal.c | 4 +-
arch/csky/kernel/ptrace.c | 5 +-
arch/csky/kernel/signal.c | 4 +-
arch/h8300/kernel/ptrace.c | 5 +-
arch/h8300/kernel/signal.c | 4 +-
arch/hexagon/kernel/process.c | 4 +-
arch/hexagon/kernel/signal.c | 1 -
arch/hexagon/kernel/traps.c | 6 +-
arch/ia64/kernel/process.c | 4 +-
arch/ia64/kernel/ptrace.c | 6 +-
arch/ia64/kernel/signal.c | 1 -
arch/m68k/kernel/ptrace.c | 5 +-
arch/m68k/kernel/signal.c | 4 +-
arch/microblaze/kernel/ptrace.c | 5 +-
arch/microblaze/kernel/signal.c | 4 +-
arch/mips/kernel/ptrace.c | 5 +-
arch/mips/kernel/signal.c | 4 +-
arch/nds32/include/asm/syscall.h | 2 +-
arch/nds32/kernel/ptrace.c | 5 +-
arch/nds32/kernel/signal.c | 4 +-
arch/nios2/kernel/ptrace.c | 5 +-
arch/nios2/kernel/signal.c | 4 +-
arch/openrisc/kernel/ptrace.c | 5 +-
arch/openrisc/kernel/signal.c | 4 +-
arch/parisc/kernel/ptrace.c | 7 +-
arch/parisc/kernel/signal.c | 4 +-
arch/powerpc/kernel/ptrace/ptrace.c | 8 +-
arch/powerpc/kernel/signal.c | 4 +-
arch/riscv/kernel/ptrace.c | 5 +-
arch/riscv/kernel/signal.c | 4 +-
arch/s390/include/asm/entry-common.h | 1 -
arch/s390/kernel/ptrace.c | 1 -
arch/s390/kernel/signal.c | 5 +-
arch/sh/kernel/ptrace_32.c | 5 +-
arch/sh/kernel/signal_32.c | 4 +-
arch/sparc/kernel/ptrace_32.c | 5 +-
arch/sparc/kernel/ptrace_64.c | 5 +-
arch/sparc/kernel/signal32.c | 1 -
arch/sparc/kernel/signal_32.c | 4 +-
arch/sparc/kernel/signal_64.c | 4 +-
arch/um/kernel/process.c | 4 +-
arch/um/kernel/ptrace.c | 5 +-
arch/x86/kernel/ptrace.c | 1 -
arch/x86/kernel/signal.c | 5 +-
arch/x86/mm/tlb.c | 1 +
arch/xtensa/kernel/ptrace.c | 5 +-
arch/xtensa/kernel/signal.c | 4 +-
block/blk-cgroup.c | 2 +-
fs/coredump.c | 1 -
fs/exec.c | 1 -
fs/io-wq.c | 6 +-
fs/io_uring.c | 11 +-
fs/proc/array.c | 1 -
fs/proc/base.c | 1 -
include/asm-generic/syscall.h | 2 +-
include/linux/entry-common.h | 47 +-------
include/linux/entry-kvm.h | 2 +-
include/linux/posix-timers.h | 1 -
include/linux/ptrace.h | 81 ++++++++++++-
include/linux/resume_user_mode.h | 64 ++++++++++
include/linux/sched/signal.h | 17 +++
include/linux/task_work.h | 5 +
include/linux/tracehook.h | 226 -----------------------------------
include/uapi/linux/ptrace.h | 2 +-
kernel/entry/common.c | 19 +--
kernel/entry/kvm.c | 9 +-
kernel/exit.c | 3 +-
kernel/livepatch/transition.c | 1 -
kernel/ptrace.c | 47 +++++---
kernel/seccomp.c | 1 -
kernel/signal.c | 62 +++++-----
kernel/task_work.c | 4 +-
kernel/time/posix-cpu-timers.c | 1 +
mm/memcontrol.c | 2 +-
security/apparmor/domain.c | 1 -
security/selinux/hooks.c | 1 -
85 files changed, 372 insertions(+), 495 deletions(-)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmJCQkoACgkQC/v6Eiaj
j0DCWQ/5AZVFU+hX32obUNCLackHTwgcCtSOs3JNBmNA/zL/htPiYYG0ghkvtlDR
Dw5J5DnxC6P7PVAdAqrpvx2uX2FebHYU0bRlyLx8LYUEP5dhyNicxX9jA882Z+vw
Ud0Ue9EojwGWS76dC9YoKUj3slThMATbhA2r4GVEoof8fSNJaBxQIqath44t0FwU
DinWa+tIOvZANGBZr6CUUINNIgqBIZCH/R4h6ArBhMlJpuQ5Ufk2kAaiWFwZCkX4
0LuuAwbKsCKkF8eap5I2KrIg/7zZVgxAg9O3cHOzzm8OPbKzRnNnQClcDe8perqp
S6e/f3MgpE+eavd1EiLxevZ660cJChnmikXVVh8ZYYoefaMKGqBaBSsB38bNcLjY
3+f2dB+TNBFRnZs1aCujK3tWBT9QyjZDKtCBfzxDNWBpXGLhHH6j6lA5Lj+Cef5K
/HNHFb+FuqedlFZh5m1Y+piFQ70hTgCa2u8b+FSOubI2hW9Zd+WzINV0ANaZ2LvZ
4YGtcyDNk1q1+c87lxP9xMRl/xi6rNg+B9T2MCo4IUnHgpSVP6VEB3osgUmrrrN0
eQlUI154G/AaDlqXLgmn1xhRmlPGfmenkxpok1AuzxvNJsfLKnpEwQSc13g3oiZr
disZQxNY0kBO2Nv3G323Z6PLinhbiIIFez6cJzK5v0YJ2WtO3pY=
=uEro
-----END PGP SIGNATURE-----
Merge tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull ptrace cleanups from Eric Biederman:
"This set of changes removes tracehook.h, moves modification of all of
the ptrace fields inside of siglock to remove races, adds a missing
permission check to ptrace.c
The removal of tracehook.h is quite significant as it has been a major
source of confusion in recent years. Much of that confusion was around
task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled making the
semantics clearer).
For people who don't know tracehook.h is a vestiage of an attempt to
implement uprobes like functionality that was never fully merged, and
was later superseeded by uprobes when uprobes was merged. For many
years now we have been removing what tracehook functionaly a little
bit at a time. To the point where anything left in tracehook.h was
some weird strange thing that was difficult to understand"
* tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
ptrace: Remove duplicated include in ptrace.c
ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE
ptrace: Return the signal to continue with from ptrace_stop
ptrace: Move setting/clearing ptrace_message into ptrace_stop
tracehook: Remove tracehook.h
resume_user_mode: Move to resume_user_mode.h
resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume
signal: Move set_notify_signal and clear_notify_signal into sched/signal.h
task_work: Decouple TIF_NOTIFY_SIGNAL and task_work
task_work: Call tracehook_notify_signal from get_signal on all architectures
task_work: Introduce task_work_pending
task_work: Remove unnecessary include from posix_timers.h
ptrace: Remove tracehook_signal_handler
ptrace: Remove arch_syscall_{enter,exit}_tracehook
ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h
ptrace/arm: Rename tracehook_report_syscall report_syscall
ptrace: Move ptrace_report_syscall into ptrace.h
The tasklist_lock popped up as a scalability bottleneck on some testing
workloads. The readlocks in do_prlimit and set/getpriority are not
necessary in all cases.
Based on a cycles profile, it looked like ~87% of the time was spent in
the kernel, ~42% of which was just trying to get *some* spinlock
(queued_spin_lock_slowpath, not necessarily the tasklist_lock).
The big offenders (with rough percentages in cycles of the overall trace):
- do_wait 11%
- setpriority 8% (this patchset)
- kill 8%
- do_exit 5%
- clone 3%
- prlimit64 2% (this patchset)
- getrlimit 1% (this patchset)
I can't easily test this patchset on the original workload for various
reasons. Instead, I used the microbenchmark below to at least verify
there was some improvement. This patchset had a 28% speedup (12% from
baseline to set/getprio, then another 14% for prlimit).
One interesting thing is that my libc's getrlimit() was calling
prlimit64, so hoisting the read_lock(tasklist_lock) into sys_prlimit64
had no effect - it essentially optimized the older syscalls only. I
didn't do that in this patchset, but figured I'd mention it since it was
an option from the previous patch's discussion.
v3: https://lkml.kernel.org/r/20220106172041.522167-1-brho@google.com
v2: https://lore.kernel.org/lkml/20220105212828.197013-1-brho@google.com/
- update_rlimit_cpu on the group_leader instead of for_each_thread.
- update_rlimit_cpu still returns 0 or -ESRCH, even though we don't care
about the error here. it felt safer that way in case someone uses
that function again.
v1: https://lore.kernel.org/lkml/20211213220401.1039578-1-brho@google.com/
int main(int argc, char **argv)
{
pid_t child;
struct rlimit rlim[1];
fork(); fork(); fork(); fork(); fork(); fork();
for (int i = 0; i < 5000; i++) {
child = fork();
if (child < 0)
exit(1);
if (child > 0) {
usleep(1000);
kill(child, SIGTERM);
waitpid(child, NULL, 0);
} else {
for (;;) {
setpriority(PRIO_PROCESS, 0,
getpriority(PRIO_PROCESS, 0));
getrlimit(RLIMIT_CPU, rlim);
}
}
}
return 0;
}
Barret Rhoden (3):
setpriority: only grab the tasklist_lock for PRIO_PGRP
prlimit: make do_prlimit() static
prlimit: do not grab the tasklist_lock
include/linux/posix-timers.h | 2 +-
include/linux/resource.h | 2 -
kernel/sys.c | 127 +++++++++++++++++----------------
kernel/time/posix-cpu-timers.c | 12 +++-
4 files changed, 76 insertions(+), 67 deletions(-)
I have dropped the first change in this series as an almost identical
change was merged as commit 7f8ca0edfe ("kernel/sys.c: only take
tasklist_lock for get/setpriority(PRIO_PGRP)").
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmI7eCAACgkQC/v6Eiaj
j0CN8w/+MEol1+sB/mDKgDgqbNE0sIXHTjQF37KPrsqB51aas9LSX7E7CBzvxF3M
Y0MSk0VzSt4oGpmrNQOAEueeMeaMucPxI5JejGHEhtdHFBMqYXKpWuhqewIHx1pc
lUcYpDeUOOBjwLO/VT5hfAKzIEMUl6tEDfzexl9IvpVwd661nVjDe+z12mDplJTi
tjO8ZiSHkjkLE3cAYaTCajsaqpj7NLuIYB1d4CbbpU3vO5LYoffj/vtQ1e+7UxMB
jhgaP/ylo0Ab8udYJ0PFIDmmQG/6s7csc3I1wtMgf8mqv88z4xspXNZBwYvf2hxa
lBpSo+zD8Q88XipC+w63iBUa7YElLaai9xpLInO/Ir42G03/H/8TS9me1OLG+1Cz
vloOid6CqH7KkNQ842txXeyj3xjW1DGR7U0QOrSxFQuWc6WZ2Q/l8KIZsuXuyt9G
EwTjtoQvr1R+FNMtT/4g5WZ8sTYooIaHFvFQ745T6FzBp8mCVjINg4SUbVV3Wvck
JRMxuHSFFBXj8IIJi9Bv6UE/j5APwa209KthvFCQayniNZU3XPKVa/bDWVoBk+SK
Hch3M//QdAjKYmRf5gmDaBbRyqzaeiFjvX1MSnkbFryBX4/yIoEfo0/QsDRzSrJV
vSSSU79h/XDI080gILOzNX4HiI4cpNcpOIB63Pmajyr6MxhrMqE=
=VVGP
-----END PGP SIGNATURE-----
Merge tag 'prlimit-tasklist_lock-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull tasklist_lock optimizations from Eric Biederman:
"prlimit and getpriority tasklist_lock optimizations
The tasklist_lock popped up as a scalability bottleneck on some
testing workloads. The readlocks in do_prlimit and set/getpriority are
not necessary in all cases.
Based on a cycles profile, it looked like ~87% of the time was spent
in the kernel, ~42% of which was just trying to get *some* spinlock
(queued_spin_lock_slowpath, not necessarily the tasklist_lock).
The big offenders (with rough percentages in cycles of the overall
trace):
- do_wait 11%
- setpriority 8% (done previously in commit 7f8ca0edfe)
- kill 8%
- do_exit 5%
- clone 3%
- prlimit64 2% (this patchset)
- getrlimit 1% (this patchset)
I can't easily test this patchset on the original workload for various
reasons. Instead, I used the microbenchmark below to at least verify
there was some improvement. This patchset had a 28% speedup (12% from
baseline to set/getprio, then another 14% for prlimit).
This series used to do the setpriority case, but an almost identical
change was merged as commit 7f8ca0edfe ("kernel/sys.c: only take
tasklist_lock for get/setpriority(PRIO_PGRP)") so that has been
dropped from here.
One interesting thing is that my libc's getrlimit() was calling
prlimit64, so hoisting the read_lock(tasklist_lock) into sys_prlimit64
had no effect - it essentially optimized the older syscalls only. I
didn't do that in this patchset, but figured I'd mention it since it
was an option from the previous patch's discussion"
micobenchmark.c:
---------------
int main(int argc, char **argv)
{
pid_t child;
struct rlimit rlim[1];
fork(); fork(); fork(); fork(); fork(); fork();
for (int i = 0; i < 5000; i++) {
child = fork();
if (child < 0)
exit(1);
if (child > 0) {
usleep(1000);
kill(child, SIGTERM);
waitpid(child, NULL, 0);
} else {
for (;;) {
setpriority(PRIO_PROCESS, 0,
getpriority(PRIO_PROCESS, 0));
getrlimit(RLIMIT_CPU, rlim);
}
}
}
return 0;
}
Link: https://lore.kernel.org/lkml/20211213220401.1039578-1-brho@google.com/ [v1]
Link: https://lore.kernel.org/lkml/20220105212828.197013-1-brho@google.com/ [v2]
Link: https://lore.kernel.org/lkml/20220106172041.522167-1-brho@google.com/ [v3]
* tag 'prlimit-tasklist_lock-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
prlimit: do not grab the tasklist_lock
prlimit: make do_prlimit() static
Break a header file circular dependency by removing the unnecessary
include of task_work.h from posix_timers.h.
sched.h -> posix-timers.h
posix-timers.h -> task_work.h
task_work.h -> sched.h
Add missing includes of task_work.h to:
arch/x86/mm/tlb.c
kernel/time/posix-cpu-timers.c
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20220309162454.123006-6-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Unnecessarily grabbing the tasklist_lock can be a scalability bottleneck
for workloads that also must grab the tasklist_lock for waiting,
killing, and cloning.
The tasklist_lock was grabbed to protect tsk->sighand from disappearing
(becoming NULL). tsk->signal was already protected by holding a
reference to tsk.
update_rlimit_cpu() assumed tsk->sighand != NULL. With this commit, it
attempts to lock_task_sighand(). However, this means that
update_rlimit_cpu() can fail. This only happens when a task is exiting.
Note that during exec, sighand may *change*, but it will not be NULL.
Prior to this commit, the do_prlimit() ensured that update_rlimit_cpu()
would not fail by read locking the tasklist_lock and checking tsk->sighand
!= NULL.
If update_rlimit_cpu() fails, there may be other tasks that are not
exiting that share tsk->signal. However, the group_leader is the last
task to be released, so if we cannot update_rlimit_cpu(group_leader),
then the entire process is exiting.
The only other caller of update_rlimit_cpu() is
selinux_bprm_committing_creds(). It has tsk == current, so
update_rlimit_cpu() cannot fail (current->sighand cannot disappear
until current exits).
This change resulted in a 14% speedup on a microbenchmark where parents
kill and wait on their children, and children getpriority, setpriority,
and getrlimit.
Signed-off-by: Barret Rhoden <brho@google.com>
Link: https://lkml.kernel.org/r/20220106172041.522167-4-brho@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
RCU_SOFTIRQ used to be special in that it could be raised on purpose
within the idle path to prevent from stopping the tick. Some code still
prevents from unnecessary warnings related to this specific behaviour
while entering in dynticks-idle mode.
However the nohz layout has changed quite a bit in ten years, and the
removal of CONFIG_RCU_FAST_NO_HZ has been the final straw to this
safe-conduct. Now the RCU_SOFTIRQ vector is expected to be raised from
sane places.
A remaining corner case is admitted though when the vector is invoked
in fragile hotplug path.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
With the removal of CONFIG_RCU_FAST_NO_HZ, the parameters in
rcu_needs_cpu() are not necessary anymore. Simply remove them.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
On some rare cases, the timekeeper CPU may be delaying its jiffies
update duty for a while. Known causes include:
* The timekeeper is waiting on stop_machine in a MULTI_STOP_DISABLE_IRQ
or MULTI_STOP_RUN state. Disabled interrupts prevent from timekeeping
updates while waiting for the target CPU to complete its
stop_machine() callback.
* The timekeeper vcpu has VMEXIT'ed for a long while due to some overload
on the host.
Detect and fix these situations with emergency timekeeping catchups.
Original-patch-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
A watchdog maximum skew of 100us may still be too small for
some systems or archs. It may also be too small when some kernel
debug config options are enabled. So add a new Kconfig option
CLOCKSOURCE_WATCHDOG_MAX_SKEW_US to allow kernel builders to have more
control on the threshold for marking clocksource as unstable.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQHJBAABCgAzFiEEi8GdvG6xMhdgpu/4sUSA/TofvsgFAmHi+xgVHHl1cnkubm9y
b3ZAZ21haWwuY29tAAoJELFEgP06H77IxdoMAMf3E+L51Ys/4iAiyJQNVoT3aIBC
A8ZVOB9he1OA3o3wBNIRKmICHk+ovnfCWcXTr9fG/Ade2wJz88NAsGPQ1Phywb+s
iGlpySllFN72RT9ZqtJhLEzgoHHOL0CzTW07TN9GJy4gQA2h2G9CTP+OmsQdnVqE
m9Fn3PSlJ5lhzePlKfnln8rGZFgrriJakfEFPC79n/7an4+2Hvkb5rWigo7KQc4Z
9YNqYUcHWZFUgq80adxEb9LlbMXdD+Z/8fCjOrAatuwVkD4RDt6iKD0mFGjHXGL7
MZ9KRS8AfZXawmetk3jjtsV+/QkeS+Deuu7k0FoO0Th2QV7BGSDhsLXAS5By/MOC
nfSyHhnXHzCsBMyVNrJHmNhEZoN29+tRwI84JX9lWcf/OLANcCofnP6f2UIX7tZY
CAZAgVELp+0YQXdybrfzTQ8BT3TinjS/aZtCrYijRendI1GwUXcyl69vdOKqAHuk
5jy8k/xHyp+ZWu6v+PyAAAEGowY++qhL0fmszA==
=RKW4
-----END PGP SIGNATURE-----
Merge tag 'bitmap-5.17-rc1' of git://github.com/norov/linux
Pull bitmap updates from Yury Norov:
- introduce for_each_set_bitrange()
- use find_first_*_bit() instead of find_next_*_bit() where possible
- unify for_each_bit() macros
* tag 'bitmap-5.17-rc1' of git://github.com/norov/linux:
vsprintf: rework bitmap_list_string
lib: bitmap: add performance test for bitmap_print_to_pagebuf
bitmap: unify find_bit operations
mm/percpu: micro-optimize pcpu_is_populated()
Replace for_each_*_bit_from() with for_each_*_bit() where appropriate
find: micro-optimize for_each_{set,clear}_bit()
include/linux: move for_each_bit() macros from bitops.h to find.h
cpumask: replace cpumask_next_* with cpumask_first_* where appropriate
tools: sync tools/bitmap with mother linux
all: replace find_next{,_zero}_bit with find_first{,_zero}_bit where appropriate
cpumask: use find_first_and_bit()
lib: add find_first_and_bit()
arch: remove GENERIC_FIND_FIRST_BIT entirely
include: move find.h from asm_generic to linux
bitops: move find_bit_*_le functions from le.h to find.h
bitops: protect find_first_{,zero}_bit properly
cpumask_first() is a more effective analogue of 'next' version if n == -1
(which means start == 0). This patch replaces 'next' with 'first' where
things look trivial.
There's no cpumask_first_zero() function, so create it.
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Tested-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Core:
- Make the clocksource watchdog more robust by better validation checks
of the measurement.
Drivers:
- New drivers for MStar and SSD20xd SOCs
- The usual cleanups and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmHf+n0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoQ2lD/9WCp+fGTmOt5zb8dOyuyLFjDljStPZ
zNi4d4Iu3gcBIRcjACtbSI2rAPK5gQyM38c9nlmtFv3zihfmz5bQkMTQ1N7O84Nu
c1iEuTW69l/ZvykSJWApsGIY8zgA41efoLYzhg/dCpQGE2fINiRDyU5ZxbJXmwMW
ipjBCf3F9/WLWoTgvl3cTayd/l+7fnpeM6w9MfujHLyCXCwz484KW/7UIMkTCcxF
b7Y3bTLxP4a/iT/ltFDqvLUjUuJWdmCh6gihcEL+9PD/h6KmQnND+p9KB7tbMRy/
DUOBTCi5gY66RQeGRJPVe+Cx/Wi+8vCiyfXUuSoQGqE39HVYOUzMwWOjOncjLad4
fXSzzCIKRwsB3qKw+2GnDeEx1hIw1/K88V2tA+OgQjdWIginOClzy0jb0dkBRbo5
H1U6mPxb+CTKAl1hXAkfDDCenLTiiGBFbvJUydiJYMcFEZYM166e/jA53xIKHNAz
WEphVRAPA269uIxYBXJU7pA6M5bYqbHhhmrxyWOBbhhZGGj3x685PA1wioeNayMp
SMA7s7kZaOBDuTtjRY/dFDkd/27HKWDkxjZCbbslRRKKO0Zz7qixzspV5LETnABO
NzR5TcNimCyvfKEzSG1PFmzx9P/cnspyLvWj560xL0Z9x1MnsHtiUpibJ8a/Gb45
riPKWGedog8BgQ==
=7vCU
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2022-01-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Updates for the time(r) subsystem:
Core:
- Make the clocksource watchdog more robust by better validation
checks of the measurement.
Drivers:
- New drivers for MStar and SSD20xd SOCs
- The usual cleanups and improvements all over the place"
* tag 'timers-core-2022-01-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
dt-bindings: timer: Add Mstar MSC313e timer devicetree bindings documentation
clocksource/drivers/msc313e: Add support for ssd20xd-based platforms
clocksource/drivers: Add MStar MSC313e timer support
clocksource/drivers/pistachio: Fix -Wunused-but-set-variable warning
clocksource/drivers/timer-imx-sysctr: Set cpumask to cpu_possible_mask
clocksource/drivers/imx-sysctr: Mark two variable with __ro_after_init
clocksource/drivers/renesas,ostm: Make RENESAS_OSTM symbol visible
clocksource/drivers/renesas-ostm: Add RZ/G2L OSTM support
dt-bindings: timer: renesas: ostm: Document Renesas RZ/G2L OSTM
clocksource/drivers/exynos_mct: Fix silly typo resulting in checkpatch warning
clocksource: Reduce the default clocksource_watchdog() retries to 2
clocksource: Avoid accidental unstable marking of clocksources
dt-bindings: timer: tpm-timer: Add imx8ulp compatible string
reset: Add of_reset_control_get_optional_exclusive()
clocksource/drivers/exynos_mct: Refactor resources allocation
dt-bindings: timer: remove rockchip,rk3066-timer compatible string from rockchip,rk-timer.yaml
dt-bindings: timer: cadence_ttc: Add power-domains
Pull clocksource watchdog updates from Paul McKenney:
- Avoid accidental unstable marking of clocksources by rejecting
clocksource measurements where the source of the skew is the delay
reading reference clocksource itself. This change avoids many of the
current false positives caused by epic cache-thrashing workloads.
- Reduce the default clocksource_watchdog() retries to 2, thus offsetting
the increased overhead due to #1 above rereading the reference
clocksource.
Link: https://lore.kernel.org/lkml/20220105001723.GA536708@paulmck-ThinkPad-P17-Gen-1
Even after commit e1d7ba8735 ("time: Always make sure wall_to_monotonic
isn't positive") it is still possible to make wall_to_monotonic positive
by running the following code:
int main(void)
{
struct timespec time;
clock_gettime(CLOCK_MONOTONIC, &time);
time.tv_nsec = 0;
clock_settime(CLOCK_REALTIME, &time);
return 0;
}
The reason is that the second parameter of timespec64_compare(), ts_delta,
may be unnormalized because the delta is calculated with an open coded
substraction which causes the comparison of tv_sec to yield the wrong
result:
wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 }
ts_delta = { .tv_sec = -9, .tv_nsec = -900000000 }
That makes timespec64_compare() claim that wall_to_monotonic < ts_delta,
but actually the result should be wall_to_monotonic > ts_delta.
After normalization, the result of timespec64_compare() is correct because
the tv_sec comparison is not longer misleading:
wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 }
ts_delta = { .tv_sec = -10, .tv_nsec = 100000000 }
Use timespec64_sub() to ensure that ts_delta is normalized, which fixes the
issue.
Fixes: e1d7ba8735 ("time: Always make sure wall_to_monotonic isn't positive")
Signed-off-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211213135727.1656662-1-liaoyu15@huawei.com
Patch series "mm/damon: Fix fake /proc/loadavg reports", v3.
This patchset fixes DAMON's fake load report issue. The first patch
makes yet another variant of usleep_range() for this fix, and the second
patch fixes the issue of DAMON by making it using the newly introduced
function.
This patch (of 2):
Some kernel threads such as DAMON could need to repeatedly sleep in
micro seconds level. Because usleep_range() sleeps in uninterruptible
state, however, such threads would make /proc/loadavg reports fake load.
To help such cases, this commit implements a variant of usleep_range()
called usleep_idle_range(). It is same to usleep_range() but sets the
state of the current task as TASK_IDLE while sleeping.
Link: https://lkml.kernel.org/r/20211126145015.15862-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211126145015.15862-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Cc: John Stultz <john.stultz@linaro.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When at least one CPU runs in nohz_full mode, a dedicated timekeeper CPU
is guaranteed to stay online and to never stop its tick.
Meanwhile on some rare case, the dedicated timekeeper may be running
with interrupts disabled for a while, such as in stop_machine.
If jiffies stop being updated, a nohz_full CPU may end up endlessly
programming the next tick in the past, taking the last jiffies update
monotonic timestamp as a stale base, resulting in an tick storm.
Here is a scenario where it matters:
0) CPU 0 is the timekeeper and CPU 1 a nohz_full CPU.
1) A stop machine callback is queued to execute somewhere.
2) CPU 0 reaches MULTI_STOP_DISABLE_IRQ while CPU 1 is still in
MULTI_STOP_PREPARE. Hence CPU 0 can't do its timekeeping duty. CPU 1
can still take IRQs.
3) CPU 1 receives an IRQ which queues a timer callback one jiffy forward.
4) On IRQ exit, CPU 1 schedules the tick one jiffy forward, taking
last_jiffies_update as a base. But last_jiffies_update hasn't been
updated for 2 jiffies since the timekeeper has interrupts disabled.
5) clockevents_program_event(), which relies on ktime_get(), observes
that the expiration is in the past and therefore programs the min
delta event on the clock.
6) The tick fires immediately, goto 3)
7) Tick storm, the nohz_full CPU is drown and takes ages to reach
MULTI_STOP_DISABLE_IRQ, which is the only way out of this situation.
Solve this with unconditionally updating jiffies if the value is stale
on nohz_full IRQ entry. IRQs and other disturbances are expected to be
rare enough on nohz_full for the unconditional call to ktime_get() to
actually matter.
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20211026141055.57358-2-frederic@kernel.org
With the previous patch, there is an extra watchdog read in each retry.
Now the total number of clocksource reads is increased to 4 per iteration.
In order to avoid increasing the clock skew check overhead, the default
maximum number of retries is reduced from 3 to 2 to maintain the same 12
clocksource reads in the worst case.
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Since commit db3a34e174 ("clocksource: Retry clock read if long delays
detected") and commit 2e27e793e2 ("clocksource: Reduce clocksource-skew
threshold"), it is found that tsc clocksource fallback to hpet can
sometimes happen on both Intel and AMD systems especially when they are
running stressful benchmarking workloads. Of the 23 systems tested with
a v5.14 kernel, 10 of them have switched to hpet clock source during
the test run.
The result of falling back to hpet is a drastic reduction of performance
when running benchmarks. For example, the fio performance tests can
drop up to 70% whereas the iperf3 performance can drop up to 80%.
4 hpet fallbacks happened during bootup. They were:
[ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable
[ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable
[ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable
[ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable
Other fallbacks happen when the systems were running stressful
benchmarks. For example:
[ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable
[46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable
Commit 2e27e793e2 ("clocksource: Reduce clocksource-skew threshold"),
changed the skew margin from 100us to 50us. I think this is too small
and can easily be exceeded when running some stressful workloads on a
thermally stressed system. So it is switched back to 100us.
Even a maximum skew margin of 100us may be too small in for some systems
when booting up especially if those systems are under thermal stress. To
eliminate the case that the large skew is due to the system being too
busy slowing down the reading of both the watchdog and the clocksource,
an extra consecutive read of watchdog clock is being done to check this.
The consecutive watchdog read delay is compared against
WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that
the system is just too busy. A warning will be printed to the console
and the clock skew check is skipped for this round.
Fixes: db3a34e174 ("clocksource: Retry clock read if long delays detected")
Fixes: 2e27e793e2 ("clocksource: Reduce clocksource-skew threshold")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
copy_process currently copies task_struct.posix_cputimers_work as-is. If a
timer interrupt arrives while handling clone and before dup_task_struct
completes then the child task will have:
1. posix_cputimers_work.scheduled = true
2. posix_cputimers_work.work queued.
copy_process clears task_struct.task_works, so (2) will have no effect and
posix_cpu_timers_work will never run (not to mention it doesn't make sense
for two tasks to share a common linked list).
Since posix_cpu_timers_work never runs, posix_cputimers_work.scheduled is
never cleared. Since scheduled is set, future timer interrupts will skip
scheduling work, with the ultimate result that the task will never receive
timer expirations.
Together, the complete flow is:
1. Task 1 calls clone(), enters kernel.
2. Timer interrupt fires, schedules task work on Task 1.
2a. task_struct.posix_cputimers_work.scheduled = true
2b. task_struct.posix_cputimers_work.work added to
task_struct.task_works.
3. dup_task_struct() copies Task 1 to Task 2.
4. copy_process() clears task_struct.task_works for Task 2.
5. Future timer interrupts on Task 2 see
task_struct.posix_cputimers_work.scheduled = true and skip scheduling
work.
Fix this by explicitly clearing contents of task_struct.posix_cputimers_work
in copy_process(). This was never meant to be shared or inherited across
tasks in the first place.
Fixes: 1fb497dd00 ("posix-cpu-timers: Provide mechanisms to defer timer handling to task_work")
Reported-by: Rhys Hiltner <rhys@justin.tv>
Signed-off-by: Michael Pratt <mpratt@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20211101210615.716522-1-mpratt@google.com
Resetting/stopping an itimer eventually leads to it being reprogrammed
with an actual "0" value. As a result the itimer expires on the next
tick, triggering an unexpected signal.
To fix this, make sure that
struct signal_struct::it[CPUCLOCK_PROF/VIRT]::expires is set to 0 when
setitimer() passes a 0 it_value, indicating that the timer must stop.
Fixes: 406dd42bd1 ("posix-cpu-timers: Force next expiration recalc after itimer reset")
Reported-by: Victor Stinner <vstinner@redhat.com>
Reported-by: Chris Hixon <linux-kernel-bugs@hixontech.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210913145332.232023-1-frederic@kernel.org
Merge misc updates from Andrew Morton:
"173 patches.
Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
oom-kill, migration, ksm, percpu, vmstat, and madvise)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
mm/madvise: add MADV_WILLNEED to process_madvise()
mm/vmstat: remove unneeded return value
mm/vmstat: simplify the array size calculation
mm/vmstat: correct some wrong comments
mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
selftests: vm: add COW time test for KSM pages
selftests: vm: add KSM merging time test
mm: KSM: fix data type
selftests: vm: add KSM merging across nodes test
selftests: vm: add KSM zero page merging test
selftests: vm: add KSM unmerge test
selftests: vm: add KSM merge test
mm/migrate: correct kernel-doc notation
mm: wire up syscall process_mrelease
mm: introduce process_mrelease system call
memblock: make memblock_find_in_range method private
mm/mempolicy.c: use in_task() in mempolicy_slab_node()
mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
mm/mempolicy: advertise new MPOL_PREFERRED_MANY
mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
...
A program may create multiple interval timers using timer_create(). For
each timer the kernel preallocates a "queued real-time signal",
Consequently, the number of timers is limited by the RLIMIT_SIGPENDING
resource limit. The allocated object is quite small, ~250 bytes, but even
the default signal limits allow to consume up to 100 megabytes per user.
It makes sense to account for them to limit the host's memory consumption
from inside the memcg-limited container.
Link: https://lkml.kernel.org/r/57795560-025c-267c-6b1a-dea852d95530@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Serge Hallyn <serge@hallyn.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yutian Yang <nglaive@gmail.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Container admin can create new namespaces and force kernel to allocate up
to several pages of memory for the namespaces and its associated
structures.
Net and uts namespaces have enabled accounting for such allocations. It
makes sense to account for rest ones to restrict the host's memory
consumption from inside the memcg-limited container.
Link: https://lkml.kernel.org/r/5525bcbf-533e-da27-79b7-158686c64e13@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yutian Yang <nglaive@gmail.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The clocksource watchdog test sets a local JIFFIES_SHIFT macro and assumes
that HZ is >= 100. For smaller HZ values this shift value is too large and
causes undefined behaviour.
Move the HZ-based definitions of JIFFIES_SHIFT from kernel/time/jiffies.c
to kernel/time/tick-internal.h so the clocksource watchdog test can utilize
them, which makes it work correctly with all HZ values.
[ tglx: Resolved conflicts and massaged changelog ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20210812000133.GA402890@paulmck-ThinkPad-P17-Gen-1/
Since the recent consoliation of reprogramming functions,
hrtimer_force_reprogram() is affected by a check whether the new expiry
time is past the current expiry time.
This breaks the NOHZ logic as that relies on the fact that the tick hrtimer
is moved into the future. That means cpu_base->expires_next becomes stale
and subsequent reprogramming attempts fail as well until the situation is
cleaned up by an hrtimer interrupts.
For some yet unknown reason this leads to a complete stall, so for now
partially revert the offending commit to a known working state. The root
cause for the stall is still investigated and will be fixed in a subsequent
commit.
Fixes: b14bca97c9 ("hrtimer: Consolidate reprogramming code")
Reported-by: Mike Galbraith <efault@gmx.de>
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mike Galbraith <efault@gmx.de>
Link: https://lore.kernel.org/r/8735recskh.ffs@tglx
clock_was_set() can be invoked from preemptible context. Use raw_cpu_ptr()
to check whether high resolution mode is active or not. It does not matter
whether the task migrates after acquiring the pointer.
Fixes: e71a4153b7 ("hrtimer: Force clock_was_set() handling for the HIGHRES=n, NOHZ=y case")
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/875ywacsmb.ffs@tglx
By unconditionally updating the offsets there are more indicators
whether the SMP function calls on clock_was_set() can be avoided:
- When the offset update already happened on the remote CPU then the
remote update attempt will yield the same seqeuence number and no
IPI is required.
- When the remote CPU is currently handling hrtimer_interrupt(). In
that case the remote CPU will reevaluate the timer bases before
reprogramming anyway, so nothing to do.
- After updating it can be checked whether the first expiring timer in
the affected clock bases moves before the first expiring (softirq)
timer of the CPU. If that's not the case then sending the IPI is not
required.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.887322464@linutronix.de
Setting of clocks triggers an unconditional SMP function call on all online
CPUs to reprogram the clock event device.
However, only some clocks have their offsets updated and therefore
potentially require a reprogram. That's CLOCK_REALTIME and CLOCK_TAI and in
the case of resume (delayed sleep time injection) also CLOCK_BOOTTIME.
Instead of sending an IPI unconditionally, check each per CPU hrtimer base
whether it has active timers in the affected clock bases which are
indicated by the caller in the @bases argument of clock_was_set().
If that's not the case, skip the IPI and update the offsets remotely which
ensures that any subsequently armed timers on the affected clocks are
evaluated with the correct offsets.
[ tglx: Adopted to the new bases argument, removed the softirq_active
check, added comment, fixed up stale comment ]
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.787536542@linutronix.de
clock_was_set() unconditionaly invokes retrigger_next_event() on all online
CPUs. This was necessary because that mechanism was also used for resume
from suspend to idle which is not longer the case.
The bases arguments allows the callers of clock_was_set() to hand in a mask
which tells clock_was_set() which of the hrtimer clock bases are affected
by the clock setting. This mask will be used in the next step to check
whether a CPU base has timers queued on a clock base affected by the event
and avoid the SMP function call if there are none.
Add a @bases argument, provide defines for the active bases masking and
fixup all callsites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.691083465@linutronix.de
do_adjtimex() might end up scheduling a delayed clock_was_set() via
timekeeping_advance() and then invoke clock_was_set() directly which is
pointless.
Make timekeeping_advance() return whether an invocation of clock_was_set()
is required and handle it at the call sites which allows do_adjtimex() to
issue a single direct call if required.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.580966888@linutronix.de
Resuming timekeeping is a clock-was-set event and uses the clock-was-set
notification mechanism. This is in the way of making the clock-was-set
update for hrtimers selective so unnecessary IPIs are avoided when a CPU
base does not have timers queued which are affected by the clock setting.
Distangle it by invoking hrtimer_resume() on each unfreezing CPU and invoke
the new timerfd_resume() function from timekeeping_resume() which is the
only place where this is needed.
Rename hrtimer_resume() to hrtimer_resume_local() to reflect the change.
With this the clock_was_set*() functions are not longer required to IPI all
CPUs unconditionally and can get some smarts to avoid them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.488853478@linutronix.de
When CONFIG_HIGH_RES_TIMERS is disabled, but NOHZ is enabled then
clock_was_set() is not doing anything. With HIGHRES=n the kernel relies on
the periodic tick to update the clock offsets, but when NOHZ is enabled and
active then CPUs which are in a deep idle sleep do not have a periodic tick
which means the expiry of timers affected by clock_was_set() can be
arbitrarily delayed up to the point where the CPUs are brought out of idle
again.
Make the clock_was_set() logic unconditionaly available so that idle CPUs
are kicked out of idle to handle the update.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.288697903@linutronix.de
If high resolution timers are disabled the timerfd notification about a
clock was set event is not happening for all cases which use
clock_was_set_delayed() because that's a NOP for HIGHRES=n, which is wrong.
Make clock_was_set_delayed() unconditially available to fix that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.196661266@linutronix.de
This code is mostly duplicated. The redudant store in the force reprogram
case does no harm and the in hrtimer interrupt condition cannot be true for
the force reprogram invocations.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.054424875@linutronix.de
If __hrtimer_start_range_ns() is invoked with an already armed hrtimer then
the timer has to be canceled first and then added back. If the timer is the
first expiring timer then on removal the clockevent device is reprogrammed
to the next expiring timer to avoid that the pending expiry fires needlessly.
If the new expiry time ends up to be the first expiry again then the clock
event device has to reprogrammed again.
Avoid this by checking whether the timer is the first to expire and in that
case, keep the timer on the current CPU and delay the reprogramming up to
the point where the timer has been enqueued again.
Reported-by: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135157.873137732@linutronix.de
There are several scenarios that can result in posix_cpu_timer_set()
not queueing the timer but still leaving the threadgroup cputime counter
running or keeping the tick dependency around for a random amount of time.
1) If timer_settime() is called with a 0 expiration on a timer that is
already disabled, the process wide cputime counter will be started
and won't ever get a chance to be stopped by stop_process_timer()
since no timer is actually armed to be processed.
The following snippet is enough to trigger the issue.
void trigger_process_counter(void)
{
timer_t id;
struct itimerspec val = { };
timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
timer_settime(id, TIMER_ABSTIME, &val, NULL);
timer_delete(id);
}
2) If timer_settime() is called with a 0 expiration on a timer that is
already armed, the timer is dequeued but not really disarmed. So the
process wide cputime counter and the tick dependency may still remain
a while around.
The following code snippet keeps this overhead around for one week after
the timer deletion:
void trigger_process_counter(void)
{
timer_t id;
struct itimerspec val = { };
val.it_value.tv_sec = 604800;
timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
timer_settime(id, 0, &val, NULL);
timer_delete(id);
}
3) If the timer was initially deactivated, this call to timer_settime()
with an early expiration may have started the process wide cputime
counter even though the timer hasn't been queued and armed because it
has fired early and inline within posix_cpu_timer_set() itself. As a
result the process wide cputime counter may never stop until a new
timer is ever armed in the future.
The following code snippet can reproduce this:
void trigger_process_counter(void)
{
timer_t id;
struct itimerspec val = { };
signal(SIGALRM, SIG_IGN);
timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
val.it_value.tv_nsec = 1;
timer_settime(id, TIMER_ABSTIME, &val, NULL);
}
4) If the timer was initially armed with a former expiration value
before this call to timer_settime() and the current call sets an
early deadline that has already expired, the timer fires inline
within posix_cpu_timer_set(). In this case it must have been dequeued
before firing inline with its new expiration value, yet it hasn't
been disarmed in this case. So the process wide cputime counter and
the tick dependency may still be around for a while even after the
timer fired.
The following code snippet can reproduce this:
void trigger_process_counter(void)
{
timer_t id;
struct itimerspec val = { };
signal(SIGALRM, SIG_IGN);
timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
val.it_value.tv_sec = 100;
timer_settime(id, TIMER_ABSTIME, &val, NULL);
val.it_value.tv_sec = 0;
val.it_value.tv_nsec = 1;
timer_settime(id, TIMER_ABSTIME, &val, NULL);
}
Fix all these issues with triggering the related base next expiration
recalculation on the next tick. This also implies to re-evaluate the need
to keep around the process wide cputime counter and the tick dependency, in
a similar fashion to disarm_timer().
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-7-frederic@kernel.org
Remove the ad-hoc timer base accessors and provide a consolidated one.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-6-frederic@kernel.org
The end of the function cannot be reached with an error in variable
ret. Unconfuse reviewers about that.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-5-frederic@kernel.org
When an itimer deactivates a previously armed expiration, it simply doesn't
do anything. As a result the process wide cputime counter keeps running and
the tick dependency stays set until it reaches the old ghost expiration
value.
This can be reproduced with the following snippet:
void trigger_process_counter(void)
{
struct itimerval n = {};
n.it_value.tv_sec = 100;
setitimer(ITIMER_VIRTUAL, &n, NULL);
n.it_value.tv_sec = 0;
setitimer(ITIMER_VIRTUAL, &n, NULL);
}
Fix this with resetting the relevant base expiration. This is similar to
disarming a timer.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-4-frederic@kernel.org
A timer deletion only dequeues the timer but it doesn't shutdown
the related costly process wide cputimer counter and the tick dependency.
The following code snippet keeps this overhead around for one week after
the timer deletion:
void trigger_process_counter(void)
{
timer_t id;
struct itimerspec val = { };
val.it_value.tv_sec = 604800;
timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
timer_settime(id, 0, &val, NULL);
timer_delete(id);
}
Make sure the next target's tick recalculates the nearest expiration and
clears the process wide counter and tick dependency if necessary.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-3-frederic@kernel.org
Starting the process wide cputime counter needs to be done in the same
sighand locking sequence than actually arming the related timer otherwise
this races against concurrent timers setting/expiring in the same
threadgroup.
Detecting that the cputime counter is started without holding the sighand
lock is a first step toward debugging such situations.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-2-frederic@kernel.org
The variable ret is being initialized with a value that is never read, it
is being updated later on. The assignment is redundant and can be removed.
Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210721120147.109570-1-colin.king@canonical.com
The functions get_online_cpus() and put_online_cpus() have been
deprecated during the CPU hotplug rework. They map directly to
cpus_read_lock() and cpus_read_unlock().
Replace deprecated CPU-hotplug functions with the official version.
The behavior remains unchanged.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210803141621.780504-35-bigeasy@linutronix.de
syzbot reported KCSAN data races vs. timer_base::timer_running being set to
NULL without holding base::lock in expire_timers().
This looks innocent and most reads are clearly not problematic, but
Frederic identified an issue which is:
int data = 0;
void timer_func(struct timer_list *t)
{
data = 1;
}
CPU 0 CPU 1
------------------------------ --------------------------
base = lock_timer_base(timer, &flags); raw_spin_unlock(&base->lock);
if (base->running_timer != timer) call_timer_fn(timer, fn, baseclk);
ret = detach_if_pending(timer, base, true); base->running_timer = NULL;
raw_spin_unlock_irqrestore(&base->lock, flags); raw_spin_lock(&base->lock);
x = data;
If the timer has previously executed on CPU 1 and then CPU 0 can observe
base->running_timer == NULL and returns, assuming the timer has completed,
but it's not guaranteed on all architectures. The comment for
del_timer_sync() makes that guarantee. Moving the assignment under
base->lock prevents this.
For non-RT kernel it's performance wise completely irrelevant whether the
store happens before or after taking the lock. For an RT kernel moving the
store under the lock requires an extra unlock/lock pair in the case that
there is a waiter for the timer, but that's not the end of the world.
Reported-by: syzbot+aa7c2385d46c5eba0b89@syzkaller.appspotmail.com
Reported-by: syzbot+abea4558531bae1ba9fe@syzkaller.appspotmail.com
Fixes: 030dcdd197 ("timers: Prepare support for PREEMPT_RT")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/87lfea7gw8.fsf@nanos.tec.linutronix.de
Cc: stable@vger.kernel.org
31cd0e119d ("timers: Recalculate next timer interrupt only when
necessary") subtly altered get_next_timer_interrupt()'s behaviour. The
function no longer consistently returns KTIME_MAX with no timers
pending.
In order to decide if there are any timers pending we check whether the
next expiry will happen NEXT_TIMER_MAX_DELTA jiffies from now.
Unfortunately, the next expiry time and the timer base clock are no
longer updated in unison. The former changes upon certain timer
operations (enqueue, expire, detach), whereas the latter keeps track of
jiffies as they move forward. Ultimately breaking the logic above.
A simplified example:
- Upon entering get_next_timer_interrupt() with:
jiffies = 1
base->clk = 0;
base->next_expiry = NEXT_TIMER_MAX_DELTA;
'base->next_expiry == base->clk + NEXT_TIMER_MAX_DELTA', the function
returns KTIME_MAX.
- 'base->clk' is updated to the jiffies value.
- The next time we enter get_next_timer_interrupt(), taking into account
no timer operations happened:
base->clk = 1;
base->next_expiry = NEXT_TIMER_MAX_DELTA;
'base->next_expiry != base->clk + NEXT_TIMER_MAX_DELTA', the function
returns a valid expire time, which is incorrect.
This ultimately might unnecessarily rearm sched's timer on nohz_full
setups, and add latency to the system[1].
So, introduce 'base->timers_pending'[2], update it every time
'base->next_expiry' changes, and use it in get_next_timer_interrupt().
[1] See tick_nohz_stop_tick().
[2] A quick pahole check on x86_64 and arm64 shows it doesn't make
'struct timer_base' any bigger.
Fixes: 31cd0e119d ("timers: Recalculate next timer interrupt only when necessary")
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Since the process wide cputime counter is started locklessly from
posix_cpu_timer_rearm(), it can be concurrently stopped by operations
on other timers from the same thread group, such as in the following
unlucky scenario:
CPU 0 CPU 1
----- -----
timer_settime(TIMER B)
posix_cpu_timer_rearm(TIMER A)
cpu_clock_sample_group()
(pct->timers_active already true)
handle_posix_cpu_timers()
check_process_timers()
stop_process_timers()
pct->timers_active = false
arm_timer(TIMER A)
tick -> run_posix_cpu_timers()
// sees !pct->timers_active, ignore
// our TIMER A
Fix this with simply locking process wide cputime counting start and
timer arm in the same block.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Fixes: 60f2ceaa81 ("posix-cpu-timers: Remove unnecessary locking around cpu_clock_sample_group")
Cc: stable@vger.kernel.org
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Pull RCU updates from Paul McKenney:
- Bitmap parsing support for "all" as an alias for all bits
- Documentation updates
- Miscellaneous fixes, including some that overlap into mm and lockdep
- kvfree_rcu() updates
- mem_dump_obj() updates, with acks from one of the slab-allocator
maintainers
- RCU NOCB CPU updates, including limited deoffloading
- SRCU updates
- Tasks-RCU updates
- Torture-test updates
* 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (78 commits)
tasks-rcu: Make show_rcu_tasks_gp_kthreads() be static inline
rcu-tasks: Make ksoftirqd provide RCU Tasks quiescent states
rcu: Add missing __releases() annotation
rcu: Remove obsolete rcu_read_unlock() deadlock commentary
rcu: Improve comments describing RCU read-side critical sections
rcu: Create an unrcu_pointer() to remove __rcu from a pointer
srcu: Early test SRCU polling start
rcu: Fix various typos in comments
rcu/nocb: Unify timers
rcu/nocb: Prepare for fine-grained deferred wakeup
rcu/nocb: Only cancel nocb timer if not polling
rcu/nocb: Delete bypass_timer upon nocb_gp wakeup
rcu/nocb: Cancel nocb_timer upon nocb_gp wakeup
rcu/nocb: Allow de-offloading rdp leader
rcu/nocb: Directly call __wake_nocb_gp() from bypass timer
rcu: Don't penalize priority boosting when there is nothing to boost
rcu: Point to documentation of ordering guarantees
rcu: Make rcu_gp_cleanup() be noinline for tracing
rcu: Restrict RCU_STRICT_GRACE_PERIOD to at most four CPUs
rcu: Make show_rcu_gp_kthreads() dump rcu_node structures blocking GP
...
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmDbLo4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZFyD/4icyCNaeV2R8fufdQGWjPwZfpc8JiQ
pqEKWlIGaImG3NgbL953/or8pDZe3LCk+p0hJOwYKtPP0LGjgZvPp6glOofAzvC8
sM5RCsJoDOI7mrc23JRXy8z78C/9tmth5UFw1RlXXuiE4hVr2Gc31YpoyvJLQWn0
XcrkSx2J3Cn7WFpjZCZkeC+Wr34+AVXhAY9t8S3WMn2bPj8Bw5vkxmnR2zbZ0PQI
KZcbYI6r/dJv8ov2AXfkD+EJIe5dzjdRVSX5UZYXWIQMB/vMkt8HinHPm+hFuHWn
Swz7ldBznFDTasoEUVMpn2mObjIuEs0jOYIxlXHYEgl1elRmBbgzQhMY5UGnAUnU
na4RHgZ0WOygwXcZIYYrl7aDuSvt4BvlVz17wNQ4P85QsOcGINSH3c0At0JdEeIg
WPJuBIq02A9bHXg+fvVtZMCvnyTYe7DRVL+J7eVopGIka8b07nUcP5UB+nRJGjxI
uOzdA2oFtucWRAxqtQh8FKVYR9vrIeSMfKhqaIQmzlBgbAzSo1OPX23O8gwkLSab
bzjPb5XOw23w20Oqh7SkTTIMR2m633IZBqnd5gPL4nUZTmB40EEYhwH6vfopeCS+
q4+1tzHmTkAvrnjhN9QTr2bGGGhPeehiYVdQ8QwvB10nF3Lca47hopSoJa5fKIeC
nWb2ZXUN1YwUMQ==
=5Hb8
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2021-06-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Time and clocksource/clockevent related updates:
Core changes:
- Infrastructure to support per CPU "broadcast" devices for per CPU
clockevent devices which stop in deep idle states. This allows us
to utilize the more efficient architected timer on certain ARM SoCs
for normal operation instead of permanentely using the slow to
access SoC specific clockevent device.
- Print the name of the broadcast/wakeup device in /proc/timer_list
- Make the clocksource watchdog more robust against delays between
reading the current active clocksource and the watchdog
clocksource. Such delays can be caused by NMIs, SMIs and vCPU
preemption.
Handle this by reading the watchdog clocksource twice, i.e. before
and after reading the current active clocksource. In case that the
two watchdog reads shows an excessive time delta, the read sequence
is repeated up to 3 times.
- Improve the debug output and add a test module for the watchdog
mechanism.
- Reimplementation of the venerable time64_to_tm() function with a
faster and significantly smaller version. Straight from the source,
i.e. the author of the related research paper contributed this!
Driver changes:
- No new drivers, not even new device tree bindings!
- Fixes, improvements and cleanups and all over the place"
* tag 'timers-core-2021-06-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits)
time/kunit: Add missing MODULE_LICENSE()
time: Improve performance of time64_to_tm()
clockevents: Use list_move() instead of list_del()/list_add()
clocksource: Print deviation in nanoseconds when a clocksource becomes unstable
clocksource: Provide kernel module to test clocksource watchdog
clocksource: Reduce clocksource-skew threshold
clocksource: Limit number of CPUs checked for clock synchronization
clocksource: Check per-CPU clock synchronization when marked unstable
clocksource: Retry clock read if long delays detected
clockevents: Add missing parameter documentation
clocksource/drivers/timer-ti-dm: Drop unnecessary restore
clocksource/arm_arch_timer: Improve Allwinner A64 timer workaround
clocksource/drivers/arm_global_timer: Remove duplicated argument in arm_global_timer
clocksource/drivers/arm_global_timer: Make symbol 'gt_clk_rate_change_nb' static
arm: zynq: don't disable CONFIG_ARM_GLOBAL_TIMER due to CONFIG_CPU_FREQ anymore
clocksource/drivers/arm_global_timer: Implement rate compensation whenever source clock changes
clocksource/drivers/ingenic: Rename unreasonable array names
clocksource/drivers/timer-ti-dm: Save and restore timer TIOCP_CFG
clocksource/drivers/mediatek: Ack and disable interrupts on suspend
clocksource/drivers/samsung_pwm: Constify source IO memory
...
- Micro-optimize tick_nohz_full_cpu()
- Optimize idle exit tick restarts to be less eager
- Optimize tick_nohz_dep_set_task() to only wake up
a single CPU. This reduces IPIs and interruptions
on nohz_full CPUs.
- Optimize tick_nohz_dep_set_signal() in a similar
fashion.
- Skip IPIs in tick_nohz_kick_task() when trying
to kick a non-running task.
- Micro-optimize tick_nohz_task_switch() IRQ flags
handling to reduce context switching costs.
- Misc cleanups and fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcycRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jItRAAn1/vI0+pWQWjyWQ+CL8AMNNWTbtBpC7W
ZUR+IEtEoYEufYXH9RgcweIgopBExVlC9CWzUX5o7AuVdN2YyzcBuQbza4vlYeIm
azcdIlKCwjdgODJBTgHNH7IR0QKF/Gq+fVCGX3Xc37BlyD389CQ33HXC7X2JZLB3
Mb5wxAJoZ2HQzGGJoz4JyA0rl6lY3jYzLMK7mqxkUqIqT45xLpgw5+imRM2J1ddV
d/73P4TwFY+E8KXSLctUfgmkmCzJYISGSlH49jX3CkwAktwTY17JjWjxT9Z5b2D8
6TTpsDoLtI4tXg0U2KsBxBoDHK/a4hAwo+GnE/RMT6ghqaX5IrANrgtTVPBN9dvh
qUGVAMHVDN3Ed7wwFvCm4tPUz/iXzBsP8xPl28WPHsyV9BE9tcrk2ynzSWy47Twd
z1GVZDNTwCfdvH62WS/HvbPdGl2hHH5/oe3HaF1ROLPHq8UzaxwKEX+A0rwLJrBp
ZU8Lnvu3rPVa5cHc4z1AE7sbX7OkTTNjxY/qQzDhNKwVwfkaPcBiok9VgEIEGS7A
n3U/yuQCn307sr7SlJ6z4yu3YCw3aEJ3pTxUprmNTh3+x4yF5ZaOimqPyvzBaUVM
Hm3LYrxHIScisFJio4FiC2dghZryM37RFonvqrCAOuA+afMU2GOFnaoDruXU27SE
tqxR6c/hw+4=
=18pN
-----END PGP SIGNATURE-----
Merge tag 'timers-nohz-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers/nohz updates from Ingo Molnar:
- Micro-optimize tick_nohz_full_cpu()
- Optimize idle exit tick restarts to be less eager
- Optimize tick_nohz_dep_set_task() to only wake up a single CPU.
This reduces IPIs and interruptions on nohz_full CPUs.
- Optimize tick_nohz_dep_set_signal() in a similar fashion.
- Skip IPIs in tick_nohz_kick_task() when trying to kick a
non-running task.
- Micro-optimize tick_nohz_task_switch() IRQ flags handling to
reduce context switching costs.
- Misc cleanups and fixes
* tag 'timers-nohz-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Add myself as context tracking maintainer
tick/nohz: Call tick_nohz_task_switch() with interrupts disabled
tick/nohz: Kick only _queued_ task whose tick dependency is updated
tick/nohz: Change signal tick dependency to wake up CPUs of member tasks
tick/nohz: Only wake up a single target cpu when kicking a task
tick/nohz: Update nohz_full Kconfig help
tick/nohz: Update idle_exittime on actual idle exit
tick/nohz: Remove superflous check for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
tick/nohz: Conditionally restart tick on idle exit
tick/nohz: Evaluate the CPU expression after the static key
The current implementation of time64_to_tm() contains unnecessary loops,
branches and look-up tables. The new one uses an arithmetic-based algorithm
appeared in [1] and is approximately 3x faster (YMMV).
The drawback is that the new code isn't intuitive and contains many 'magic
numbers' (not unusual for this type of algorithm). However, [1] justifies
all those numbers and, given this function's history, the code is unlikely
to need much maintenance, if any at all.
Add a KUnit test for it which checks every day in a 160,000 years interval
centered at 1970-01-01 against the expected result.
[1] Neri, Schneider, "Euclidean Affine Functions and Applications to
Calendar Algorithms". https://arxiv.org/abs/2102.06959
Signed-off-by: Cassio Neri <cassio.neri@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210622213616.313046-1-cassio.neri@gmail.com
Currently when an unstable clocksource is detected, the raw counters of
that clocksource and watchdog will be printed, which can only be understood
after some math calculation.
So print the delta in nanoseconds as well to make it easier for humans to
check the results.
[ paulmck: Fix typo. ]
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210527190124.440372-6-paulmck@kernel.org
When the clocksource watchdog marks a clock as unstable, this might
be due to that clock being unstable or it might be due to delays that
happen to occur between the reads of the two clocks. It would be good
to have a way of testing the clocksource watchdog's ability to
distinguish between these two causes of clock skew and instability.
Therefore, provide a new clocksource-wdtest module selected by a new
TEST_CLOCKSOURCE_WATCHDOG Kconfig option. This module has a single module
parameter named "holdoff" that provides the number of seconds of delay
before testing should start, which defaults to zero when built as a module
and to 10 seconds when built directly into the kernel. Very large systems
that boot slowly may need to increase the value of this module parameter.
This module uses hand-crafted clocksource structures to do its testing,
thus avoiding messing up timing for the rest of the kernel and for user
applications. This module first verifies that the ->uncertainty_margin
field of the clocksource structures are set sanely. It then tests the
delay-detection capability of the clocksource watchdog, increasing the
number of consecutive delays injected, first provoking console messages
complaining about the delays and finally forcing a clock-skew event.
Unexpected test results cause at least one WARN_ON_ONCE() console splat.
If there are no splats, the test has passed. Finally, it fuzzes the
value returned from a clocksource to test the clocksource watchdog's
ability to detect time skew.
This module checks the state of its clocksource after each test, and
uses WARN_ON_ONCE() to emit a console splat if there are any failures.
This should enable all types of test frameworks to detect any such
failures.
This facility is intended for diagnostic use only, and should be avoided
on production systems.
Reported-by: Chris Mason <clm@fb.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-5-paulmck@kernel.org
Currently, WATCHDOG_THRESHOLD is set to detect a 62.5-millisecond skew in
a 500-millisecond WATCHDOG_INTERVAL. This requires that clocks be skewed
by more than 12.5% in order to be marked unstable. Except that a clock
that is skewed by that much is probably destroying unsuspecting software
right and left. And given that there are now checks for false-positive
skews due to delays between reading the two clocks, it should be possible
to greatly decrease WATCHDOG_THRESHOLD, at least for fine-grained clocks
such as TSC.
Therefore, add a new uncertainty_margin field to the clocksource structure
that contains the maximum uncertainty in nanoseconds for the corresponding
clock. This field may be initialized manually, as it is for
clocksource_tsc_early and clocksource_jiffies, which is copied to
refined_jiffies. If the field is not initialized manually, it will be
computed at clock-registry time as the period of the clock in question
based on the scale and freq parameters to __clocksource_update_freq_scale()
function. If either of those two parameters are zero, the
tens-of-milliseconds WATCHDOG_THRESHOLD is used as a cowardly alternative
to dividing by zero. No matter how the uncertainty_margin field is
calculated, it is bounded below by twice WATCHDOG_MAX_SKEW, that is, by 100
microseconds.
Note that manually initialized uncertainty_margin fields are not adjusted,
but there is a WARN_ON_ONCE() that triggers if any such field is less than
twice WATCHDOG_MAX_SKEW. This WARN_ON_ONCE() is intended to discourage
production use of the one-nanosecond uncertainty_margin values that are
used to test the clock-skew code itself.
The actual clock-skew check uses the sum of the uncertainty_margin fields
of the two clocksource structures being compared. Integer overflow is
avoided because the largest computed value of the uncertainty_margin
fields is one billion (10^9), and double that value fits into an
unsigned int. However, if someone manually specifies (say) UINT_MAX,
they will get what they deserve.
Note that the refined_jiffies uncertainty_margin field is initialized to
TICK_NSEC, which means that skew checks involving this clocksource will
be sufficently forgiving. In a similar vein, the clocksource_tsc_early
uncertainty_margin field is initialized to 32*NSEC_PER_MSEC, which
replicates the current behavior and allows custom setting if needed
in order to address the rare skews detected for this clocksource in
current mainline.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-4-paulmck@kernel.org
Currently, if skew is detected on a clock marked CLOCK_SOURCE_VERIFY_PERCPU,
that clock is checked on all CPUs. This is thorough, but might not be
what you want on a system with a few tens of CPUs, let alone a few hundred
of them.
Therefore, by default check only up to eight randomly chosen CPUs. Also
provide a new clocksource.verify_n_cpus kernel boot parameter. A value of
-1 says to check all of the CPUs, and a non-negative value says to randomly
select that number of CPUs, without concern about selecting the same CPU
multiple times. However, make use of a cpumask so that a given CPU will be
checked at most once.
Suggested-by: Thomas Gleixner <tglx@linutronix.de> # For verify_n_cpus=1.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-3-paulmck@kernel.org
Some sorts of per-CPU clock sources have a history of going out of
synchronization with each other. However, this problem has purportedy been
solved in the past ten years. Except that it is all too possible that the
problem has instead simply been made less likely, which might mean that
some of the occasional "Marking clocksource 'tsc' as unstable" messages
might be due to desynchronization. How would anyone know?
Therefore apply CPU-to-CPU synchronization checking to newly unstable
clocksource that are marked with the new CLOCK_SOURCE_VERIFY_PERCPU flag.
Lists of desynchronized CPUs are printed, with the caveat that if it
is the reporting CPU that is itself desynchronized, it will appear that
all the other clocks are wrong. Just like in real life.
Reported-by: Chris Mason <clm@fb.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-2-paulmck@kernel.org
When the clocksource watchdog marks a clock as unstable, this might be due
to that clock being unstable or it might be due to delays that happen to
occur between the reads of the two clocks. Yes, interrupts are disabled
across those two reads, but there are no shortage of things that can delay
interrupts-disabled regions of code ranging from SMI handlers to vCPU
preemption. It would be good to have some indication as to why the clock
was marked unstable.
Therefore, re-read the watchdog clock on either side of the read from the
clock under test. If the watchdog clock shows an excessive time delta
between its pair of reads, the reads are retried.
The maximum number of retries is specified by a new kernel boot parameter
clocksource.max_cswd_read_retries, which defaults to three, that is, up to
four reads, one initial and up to three retries. If more than one retry
was required, a message is printed on the console (the occasional single
retry is expected behavior, especially in guest OSes). If the maximum
number of retries is exceeded, the clock under test will be marked
unstable. However, the probability of this happening due to various sorts
of delays is quite small. In addition, the reason (clock-read delays) for
the unstable marking will be apparent.
Reported-by: Chris Mason <clm@fb.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
There's an existing helper for setting TASK_RUNNING; must've gotten
lost last time we did this cleanup.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210611082838.409696194@infradead.org
With the introduction of per-cpu wakeup devices that can be used in
preference to the broadcast timer, print the name of such devices when
they are available.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210524221818.15850-6-will@kernel.org
When configuring the broadcast timer on entry to and exit from deep idle
states, prefer a per-CPU wakeup timer if one exists.
On entry to idle, stop the tick device and transfer the next event into
the oneshot wakeup device, which will serve as the wakeup from idle. To
avoid the overhead of additional hardware accesses on exit from idle,
leave the timer armed and treat the inevitable interrupt as a (possibly
spurious) tick event.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210524221818.15850-5-will@kernel.org
Some SoCs have two per-cpu timer implementations where the timer with the
higher rating stops in deep idle (i.e. suffers from CLOCK_EVT_FEAT_C3STOP)
but is otherwise preferable to the timer with the lower rating. In such a
design, selecting the higher rated devices relies on a global broadcast
timer and IPIs to wake up from deep idle states.
To avoid the reliance on a global broadcast timer and also to reduce the
overhead associated with the IPI wakeups, extend
tick_install_broadcast_device() to manage per-cpu wakeup timers separately
from the broadcast device.
For now, these timers remain unused.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210524221818.15850-4-will@kernel.org
In preparation for adding support for per-cpu wakeup timers, split
_tick_broadcast_oneshot_control() into a helper function which deals
only with the broadcast timer management across idle transitions.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210524221818.15850-3-will@kernel.org
tick-broadcast.o is only built if CONFIG_GENERIC_CLOCKEVENTS_BROADCAST=y
so remove the redundant #ifdef guards around the definition of
tick_receive_broadcast().
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210524221818.15850-2-will@kernel.org
Use the DEVICE_ATTR_[RO|WO] helpers instead of plain DEVICE_ATTR, which
makes the code a bit shorter and easier to read.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210523065825.19684-1-yuehaibing@huawei.com
Checking for and processing RCU-nocb deferred wakeup upon user/guest
entry is only relevant when nohz_full runs on the local CPU, otherwise
the periodic tick should take care of it.
Make sure we don't needlessly pollute these fast-paths as a -3%
performance regression on a will-it-scale.per_process_ops has been
reported so far.
Fixes: 47b8ff194c (entry: Explicitly flush pending rcuog wakeup before last rescheduling point)
Fixes: 4ae7dc97f7 (entry/kvm: Explicitly flush pending rcuog wakeup before last rescheduling point)
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210527113441.465489-1-frederic@kernel.org
Call tick_nohz_task_switch() slightly earlier after the context switch
to benefit from disabled IRQs. This way the function doesn't need to
disable them once more.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210512232924.150322-10-frederic@kernel.org
When the tick dependency of a task is updated, we want it to aknowledge
the new state and restart the tick if needed. If the task is not
running, we don't need to kick it because it will observe the new
dependency upon scheduling in. But if the task is running, we may need
to send an IPI to it so that it gets notified.
Unfortunately we don't have the means to check if a task is running
in a race free way. Checking p->on_cpu in a synchronized way against
p->tick_dep_mask would imply adding a full barrier between
prepare_task_switch() and tick_nohz_task_switch(), which we want to
avoid in this fast-path.
Therefore we blindly fire an IPI to the task's CPU.
Meanwhile we can check if the task is queued on the CPU rq because
p->on_rq is always set to TASK_ON_RQ_QUEUED _before_ schedule() and its
full barrier that precedes tick_nohz_task_switch(). And if the task is
queued on a nohz_full CPU, it also has fair chances to be running as the
isolation constraints prescribe running single tasks on full dynticks
CPUs.
So use this as a trick to check if we can spare an IPI toward a
non-running task.
NOTE: For the ordering to be correct, it is assumed that we never
deactivate a task while it is running, the only exception being the task
deactivating itself while scheduling out.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-9-frederic@kernel.org
Rather than waking up all nohz_full CPUs on the system, only wake up
the target CPUs of member threads of the signal.
Reduces interruptions to nohz_full CPUs.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-8-frederic@kernel.org
When adding a tick dependency to a task, its necessary to
wake up the CPU where the task resides to reevaluate tick
dependencies on that CPU.
However the current code wakes up all nohz_full CPUs, which
is unnecessary.
Switch to waking up a single CPU, by using ordering of writes
to task->cpu and task->tick_dep_mask.
[ mingo: Minor readability edit. ]
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-7-frederic@kernel.org
CONFIG_NO_HZ_FULL behaves just like CONFIG_NO_HZ_IDLE by default.
Reassure distros about it.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-6-frederic@kernel.org
The idle_exittime field of tick_sched is used to record the time when
the idle state was left. but currently the idle_exittime is updated in
the function tick_nohz_restart_sched_tick(), which is not always in idle
state when nohz_full is configured:
tick_irq_exit
tick_nohz_irq_exit
tick_nohz_full_update_tick
tick_nohz_restart_sched_tick
ts->idle_exittime = now;
It's thus overwritten by mistake on nohz_full tick restart. Move the
update to the appropriate idle exit path instead.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-5-frederic@kernel.org
The vtime_accounting_enabled_this_cpu() early check already makes what
follows as dead code in the case of CONFIG_VIRT_CPU_ACCOUNTING_NATIVE.
No need to keep the ifdeferry around.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-4-frederic@kernel.org
In nohz_full mode, switching from idle to a task will unconditionally
issue a tick restart. If the task is alone in the runqueue or is the
highest priority, the tick will fire once then eventually stop. But that
alone is still undesired noise.
Therefore, only restart the tick on idle exit when it's strictly
necessary.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-3-frederic@kernel.org
RTC drivers used to leave .set_alarm() NULL in order to signal the RTC
device doesn't support alarms. The drivers are now clearing the
RTC_FEATURE_ALARM bit for that purpose in order to keep the rtc_class_ops
structure const. So now, .set_alarm() is set unconditionally and this
possibly causes the alarmtimer code to select an RTC device that doesn't
support alarms.
Test RTC_FEATURE_ALARM instead of relying on ops->set_alarm to determine
whether alarms are available.
Fixes: 7ae41220ef ("rtc: introduce features bitfield")
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210511014516.563031-1-alexandre.belloni@bootlin.com
This reverts commit dcd42591eb.
The only user was RCU/nocb.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation,
zap under read lock, enable/disably dirty page logging under
read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing
the architecture-specific code
- Some selftests improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
+2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
=AXUi
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"This is a large update by KVM standards, including AMD PSP (Platform
Security Processor, aka "AMD Secure Technology") and ARM CoreSight
(debug and trace) changes.
ARM:
- CoreSight: Add support for ETE and TRBE
- Stage-2 isolation for the host kernel when running in protected
mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- AMD PSP driver changes
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation, zap under
read lock, enable/disably dirty page logging under read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing the
architecture-specific code
- a handful of "Get rid of oprofile leftovers" patches
- Some selftests improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
KVM: selftests: Speed up set_memory_region_test
selftests: kvm: Fix the check of return value
KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
KVM: SVM: Skip SEV cache flush if no ASIDs have been used
KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
KVM: SVM: Drop redundant svm_sev_enabled() helper
KVM: SVM: Move SEV VMCB tracking allocation to sev.c
KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
KVM: SVM: Unconditionally invoke sev_hardware_teardown()
KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
KVM: SVM: Move SEV module params/variables to sev.c
KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
KVM: SVM: Zero out the VMCB array used to track SEV ASID association
x86/sev: Drop redundant and potentially misleading 'sev_enabled'
KVM: x86: Move reverse CPUID helpers to separate header file
KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
...
- Add idle states table for IceLake-D to the intel_idle driver and
update IceLake-X C6 data in it (Artem Bityutskiy).
- Fix the C7 idle state on Tegra114 in the tegra cpuidle driver and
drop the unused do_idle() firmware call from it (Dmitry Osipenko).
- Fix cpuidle-qcom-spm Kconfig entry (He Ying).
- Fix handling of possible negative tick_nohz_get_next_hrtimer()
return values of in cpuidle governors (Rafael Wysocki).
- Add support for frequency-invariance to the ACPI CPPC cpufreq
driver and update the frequency-invariance engine (FIE) to use it
as needed (Viresh Kumar).
- Simplify the default delay_us setting in the ACPI CPPC cpufreq
driver (Tom Saeger).
- Clean up frequency-related computations in the intel_pstate
cpufreq driver (Rafael Wysocki).
- Fix TBG parent setting for load levels in the armada-37xx
cpufreq driver and drop the CPU PM clock .set_parent method for
armada-37xx (Marek Behún).
- Fix multiple issues in the armada-37xx cpufreq driver (Pali Rohár).
- Fix handling of dev_pm_opp_of_cpumask_add_table() return values
in cpufreq-dt to take the -EPROBE_DEFER one into acconut as
appropriate (Quanyang Wang).
- Fix format string in ia64-acpi-cpufreq (Sergei Trofimovich).
- Drop the unused for_each_policy() macro from cpufreq (Shaokun
Zhang).
- Simplify computations in the schedutil cpufreq governor to avoid
unnecessary overhead (Yue Hu).
- Fix typos in the s5pv210 cpufreq driver (Bhaskar Chowdhury).
- Fix cpufreq documentation links in Kconfig (Alexander Monakov).
- Fix PCI device power state handling in pci_enable_device_flags()
to avoid issuse in some cases when the device depends on an ACPI
power resource (Rafael Wysocki).
- Add missing documentation of pm_runtime_resume_and_get() (Alan
Stern).
- Add missing static inline stub for pm_runtime_has_no_callbacks()
to pm_runtime.h and drop the unused try_to_freeze_nowarn()
definition (YueHaibing).
- Drop duplicate struct device declaration from pm.h and fix a
structure type declaration in intel_rapl.h (Wan Jiabing).
- Use dev_set_name() instead of an open-coded equivalent of it in
the wakeup sources code and drop a redundant local variable
initialization from it (Andy Shevchenko, Colin Ian King).
- Use crc32 instead of md5 for e820 memory map integrity check
during resume from hibernation on x86 (Chris von Recklinghausen).
- Fix typos in comments in the system-wide and hibernation support
code (Lu Jialin).
- Modify the generic power domains (genpd) code to avoid resuming
devices in the "prepare" phase of system-wide suspend and
hibernation (Ulf Hansson).
- Add Hygon Fam18h RAPL support to the intel_rapl power capping
driver (Pu Wen).
- Add MAINTAINERS entry for the dynamic thermal power management
(DTPM) code (Daniel Lezcano).
- Add devm variants of operating performance points (OPP) API
functions and switch over some users of the OPP framework to
the new resource-managed API (Yangtao Li and Dmitry Osipenko).
- Update devfreq core:
* Register devfreq devices as cooling devices on demand (Daniel
Lezcano).
* Add missing unlock opeation in devfreq_add_device() (Lukasz
Luba).
* Use the next frequency as resume_freq instead of the previous
frequency when using the opp-suspend property (Dong Aisheng).
* Check get_dev_status in devfreq_update_stats() (Dong Aisheng).
* Fix set_freq path for the userspace governor in Kconfig (Dong
Aisheng).
* Remove invalid description of get_target_freq() (Dong Aisheng).
- Update devfreq drivers:
* imx8m-ddrc: Remove imx8m_ddrc_get_dev_status() and unneeded
of_match_ptr() (Dong Aisheng, Fabio Estevam).
* rk3399_dmc: dt-bindings: Add rockchip,pmu phandle and drop
references to undefined symbols (Enric Balletbo i Serra, Gaël
PORTAY).
* rk3399_dmc: Use dev_err_probe() to simplify the code (Krzysztof
Kozlowski).
* imx-bus: Remove unneeded of_match_ptr() (Fabio Estevam).
- Fix kernel-doc warnings in three places (Pierre-Louis Bossart).
- Fix typo in the pm-graph utility code (Ricardo Ribalda).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmCHAUISHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxAxMP/0tFjgxeaJ3chYaiqoPlk2QX/XdwqJvm
8OOu2qBMWbt2bubcIlAPpdlCNaERI4itF7E8za7t9alswdq7YPWGmNR9snCXUKhD
BzERuicZTeOcCk2P3DTgzLVc4EzF6wutA3lTdYYZIpf+LuuB+guG8zgMzScRHIsM
N3I83O+iLTA9ifIqN0/wH//a0ISvo6rSWtcbx+48d5bYvYixW7CsBmoxWHhGiYsw
4PJ4AzbdNJEhQp91SBYPIAmqwV88FZUPoYnRazXMxOSevMewhP9JuCHXAujC3gLV
l5d2TBaBV4EBYLD5tfCpJvHMXhv/yBpg6KRivjri+zEnY1TAqIlfR4vYiL7puVvQ
PdwjyvNFDNGyUSX/AAwYF6F4WCtIhw8hCahw6Dw2zcDz0plFdRZmWAiTdmIjECJK
8EvwJNlmdl27G1y+EBc6NnwzEFZQwiu9F5bUHUkmc3fF1M1aFTza8WDNDo30TC94
94c+uVBRL2fBePl4FfGZATfJbOMb8+vDIkroQxrIjQDT/7Ha3Mz75JZDRHItZo92
+4fES2eFdfZISCLIQMBY5TeXox3O8qsirC1k4qELwy71gPUE9CpP3FkxKIvyZLlv
+6fS9ttpUfyFBF7gqrEy+ziVk1Rm4oorLmWCtthz4xyerzj5+vtZQqKzcySk0GA5
hYkseZkedR6y
=t+SG
-----END PGP SIGNATURE-----
Merge tag 'pm-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These add some new hardware support (for example, IceLake-D idle
states in intel_idle), fix some issues (for example, the handling of
negative "sleep length" values in cpuidle governors), add new
functionality to the existing drivers (for example, scale-invariance
support in the ACPI CPPC cpufreq driver) and clean up code all over.
Specifics:
- Add idle states table for IceLake-D to the intel_idle driver and
update IceLake-X C6 data in it (Artem Bityutskiy).
- Fix the C7 idle state on Tegra114 in the tegra cpuidle driver and
drop the unused do_idle() firmware call from it (Dmitry Osipenko).
- Fix cpuidle-qcom-spm Kconfig entry (He Ying).
- Fix handling of possible negative tick_nohz_get_next_hrtimer()
return values of in cpuidle governors (Rafael Wysocki).
- Add support for frequency-invariance to the ACPI CPPC cpufreq
driver and update the frequency-invariance engine (FIE) to use it
as needed (Viresh Kumar).
- Simplify the default delay_us setting in the ACPI CPPC cpufreq
driver (Tom Saeger).
- Clean up frequency-related computations in the intel_pstate cpufreq
driver (Rafael Wysocki).
- Fix TBG parent setting for load levels in the armada-37xx cpufreq
driver and drop the CPU PM clock .set_parent method for armada-37xx
(Marek Behún).
- Fix multiple issues in the armada-37xx cpufreq driver (Pali Rohár).
- Fix handling of dev_pm_opp_of_cpumask_add_table() return values in
cpufreq-dt to take the -EPROBE_DEFER one into acconut as
appropriate (Quanyang Wang).
- Fix format string in ia64-acpi-cpufreq (Sergei Trofimovich).
- Drop the unused for_each_policy() macro from cpufreq (Shaokun
Zhang).
- Simplify computations in the schedutil cpufreq governor to avoid
unnecessary overhead (Yue Hu).
- Fix typos in the s5pv210 cpufreq driver (Bhaskar Chowdhury).
- Fix cpufreq documentation links in Kconfig (Alexander Monakov).
- Fix PCI device power state handling in pci_enable_device_flags() to
avoid issuse in some cases when the device depends on an ACPI power
resource (Rafael Wysocki).
- Add missing documentation of pm_runtime_resume_and_get() (Alan
Stern).
- Add missing static inline stub for pm_runtime_has_no_callbacks() to
pm_runtime.h and drop the unused try_to_freeze_nowarn() definition
(YueHaibing).
- Drop duplicate struct device declaration from pm.h and fix a
structure type declaration in intel_rapl.h (Wan Jiabing).
- Use dev_set_name() instead of an open-coded equivalent of it in the
wakeup sources code and drop a redundant local variable
initialization from it (Andy Shevchenko, Colin Ian King).
- Use crc32 instead of md5 for e820 memory map integrity check during
resume from hibernation on x86 (Chris von Recklinghausen).
- Fix typos in comments in the system-wide and hibernation support
code (Lu Jialin).
- Modify the generic power domains (genpd) code to avoid resuming
devices in the "prepare" phase of system-wide suspend and
hibernation (Ulf Hansson).
- Add Hygon Fam18h RAPL support to the intel_rapl power capping
driver (Pu Wen).
- Add MAINTAINERS entry for the dynamic thermal power management
(DTPM) code (Daniel Lezcano).
- Add devm variants of operating performance points (OPP) API
functions and switch over some users of the OPP framework to the
new resource-managed API (Yangtao Li and Dmitry Osipenko).
- Update devfreq core:
* Register devfreq devices as cooling devices on demand (Daniel
Lezcano).
* Add missing unlock opeation in devfreq_add_device() (Lukasz
Luba).
* Use the next frequency as resume_freq instead of the previous
frequency when using the opp-suspend property (Dong Aisheng).
* Check get_dev_status in devfreq_update_stats() (Dong Aisheng).
* Fix set_freq path for the userspace governor in Kconfig (Dong
Aisheng).
* Remove invalid description of get_target_freq() (Dong Aisheng).
- Update devfreq drivers:
* imx8m-ddrc: Remove imx8m_ddrc_get_dev_status() and unneeded
of_match_ptr() (Dong Aisheng, Fabio Estevam).
* rk3399_dmc: dt-bindings: Add rockchip,pmu phandle and drop
references to undefined symbols (Enric Balletbo i Serra, Gaël
PORTAY).
* rk3399_dmc: Use dev_err_probe() to simplify the code (Krzysztof
Kozlowski).
* imx-bus: Remove unneeded of_match_ptr() (Fabio Estevam).
- Fix kernel-doc warnings in three places (Pierre-Louis Bossart).
- Fix typo in the pm-graph utility code (Ricardo Ribalda)"
* tag 'pm-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (74 commits)
PM: wakeup: remove redundant assignment to variable retval
PM: hibernate: x86: Use crc32 instead of md5 for hibernation e820 integrity check
cpufreq: Kconfig: fix documentation links
PM: wakeup: use dev_set_name() directly
PM: runtime: Add documentation for pm_runtime_resume_and_get()
cpufreq: intel_pstate: Simplify intel_pstate_update_perf_limits()
cpufreq: armada-37xx: Fix module unloading
cpufreq: armada-37xx: Remove cur_frequency variable
cpufreq: armada-37xx: Fix determining base CPU frequency
cpufreq: armada-37xx: Fix driver cleanup when registration failed
clk: mvebu: armada-37xx-periph: Fix workaround for switching from L1 to L0
clk: mvebu: armada-37xx-periph: Fix switching CPU freq from 250 Mhz to 1 GHz
cpufreq: armada-37xx: Fix the AVS value for load L1
clk: mvebu: armada-37xx-periph: remove .set_parent method for CPU PM clock
cpufreq: armada-37xx: Fix setting TBG parent for load levels
cpuidle: Fix ARM_QCOM_SPM_CPUIDLE configuration
cpuidle: tegra: Remove do_idle firmware call
cpuidle: tegra: Fix C7 idling state on Tegra114
PM: sleep: fix typos in comments
cpufreq: Remove unused for_each_policy macro
...
Core changes:
- Allow runtime power management when the clocksource is changed.
- A correctness fix for clock_adjtime32() so that the return value
on success is not overwritten by the result of the copy to user.
- Allow late installment of broadcast clockevent devices which was
broken because nothing switched them over to oneshot mode. This went
unnoticed so far because clockevent devices used to be built in, but
now people started to make them modular.
- Debugfs related simplifications
- Small cleanups and improvements here and there
Driver changes:
- The usual set of device tree binding updates for a wide range
of drivers/devices.
- The usual updates and improvements for drivers all over the place but
nothing outstanding.
- No new clocksource/event drivers. They'll come back next time.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmCGieYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYobRJEACNCtecUXdyt/u+ViDgHwG1XOHSZUkG
zBO6E/uZ3G6ZUkr6FogAaY2eMMrSdSUyqbiNBSYBJki2ptMJWF5Li5VzqINmrBuD
VyjK3FEDV0bXW9EJOm4d+95pMyFQ/pYv9VPcByj7VW21t+IDE/4pLeZ8M8shNDHa
pmMnR/tgX4ZZtSrX2NqCUNoTrkycaz8d5NOuso5HjKvPkJ5BU2kSxULTGmvaeTil
8d+70AetApDgzAWpCnJFPlLlOHIPyhnMxS5edvsMIbMIkRLsnI+b3LsPZe+CqVZ0
zaP6KYvG+iqU8nKdz7OweV1fLgBD52GKgHlpTkhhYs3GW4XBEXDrsyoEyeIiZ22u
YUkTzFvZ4JG/+80UUaKpLDIGYWUj1h+xe/EtWS0s8lj108RsNLghd/0YjFMikspT
fYC2WpaXJDz3URbSV57OXGbwhg2zOYI5Supg6wNrmFfcld3k6CSitG4idDpIGjJE
8WIcZmeZSelDufskiY8RmsiTumqNOf5P33F71r9JRI6QU9RsyYb3fJN71AFKnLq2
31YEAShpzPYG5EGRinPymJRi3icdmcEQECz/pWUb6ua0s/HG1+HD9emLwHzvPdul
hcWRq19GaK1YBzOfV60+8cdxW8ZEOROvRVdYJO8FoYcnueUJmOSM+boqSkRtDw3o
RywO8BetxukPJg==
=F6Du
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"The time and timers updates contain:
Core changes:
- Allow runtime power management when the clocksource is changed.
- A correctness fix for clock_adjtime32() so that the return value on
success is not overwritten by the result of the copy to user.
- Allow late installment of broadcast clockevent devices which was
broken because nothing switched them over to oneshot mode. This
went unnoticed so far because clockevent devices used to be built
in, but now people started to make them modular.
- Debugfs related simplifications
- Small cleanups and improvements here and there
Driver changes:
- The usual set of device tree binding updates for a wide range of
drivers/devices.
- The usual updates and improvements for drivers all over the place
but nothing outstanding.
- No new clocksource/event drivers. They'll come back next time"
* tag 'timers-core-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
posix-timers: Preserve return value in clock_adjtime32()
tick/broadcast: Allow late registered device to enter oneshot mode
tick: Use tick_check_replacement() instead of open coding it
time/timecounter: Mark 1st argument of timecounter_cyc2time() as const
dt-bindings: timer: nuvoton,npcm7xx: Add wpcm450-timer
clocksource/drivers/arm_arch_timer: Add __ro_after_init and __init
clocksource/drivers/timer-ti-dm: Handle dra7 timer wrap errata i940
clocksource/drivers/timer-ti-dm: Prepare to handle dra7 timer wrap issue
clocksource/drivers/dw_apb_timer_of: Add handling for potential memory leak
clocksource/drivers/npcm: Add support for WPCM450
clocksource/drivers/sh_cmt: Don't use CMTOUT_IE with R-Car Gen2/3
clocksource/drivers/pistachio: Fix trivial typo
clocksource/drivers/ingenic_ost: Fix return value check in ingenic_ost_probe()
clocksource/drivers/timer-ti-dm: Add missing set_state_oneshot_stopped
clocksource/drivers/timer-ti-dm: Fix posted mode status check order
dt-bindings: timer: renesas,cmt: Document R8A77961
dt-bindings: timer: renesas,cmt: Add r8a779a0 CMT support
clocksource/drivers/ingenic-ost: Add support for the JZ4760B
clocksource/drivers/ingenic: Add support for the JZ4760
dt-bindings: timer: ingenic: Add compatible strings for JZ4760(B)
...
Core changes:
- Provide IRQF_NO_AUTOEN as a flag for request*_irq() so drivers can be
cleaned up which either use a seperate mechanism to prevent auto-enable
at request time or have a racy mechanism which disables the interrupt
right after request.
- Get rid of the last usage of irq_create_identity_mapping() and remove
the interface.
- An overhaul of tasklet_disable(). Most usage sites of tasklet_disable()
are in task context and usually in cleanup, teardown code pathes.
tasklet_disable() spinwaits for a tasklet which is currently executed.
That's not only a problem for PREEMPT_RT where this can lead to a live
lock when the disabling task preempts the softirq thread. It's also
problematic in context of virtualization when the vCPU which runs the
tasklet is scheduled out and the disabling code has to spin wait until
it's scheduled back in. Though there are a few code pathes which invoke
tasklet_disable() from non-sleepable context. For these a new disable
variant which still spinwaits is provided which allows to switch
tasklet_disable() to a sleep wait mechanism. For the atomic use cases
this does not solve the live lock issue on PREEMPT_RT. That is mitigated
by blocking on the RT specific softirq lock.
- The PREEMPT_RT specific implementation of softirq processing and
local_bh_disable/enable().
On RT enabled kernels soft interrupt processing happens always in task
context and all interrupt handlers, which are not explicitly marked to
be invoked in hard interrupt context are forced into task context as
well. This allows to protect against softirq processing with a per
CPU lock, which in turn allows to make BH disabled regions preemptible.
Most of the softirq handling code is still shared. The RT/non-RT
specific differences are addressed with a set of inline functions which
provide the context specific functionality. The local_bh_disable() /
local_bh_enable() mechanism are obviously seperate.
- The usual set of small improvements and cleanups
Driver changes:
- New drivers for Nuvoton WPCM450 and DT 79rc3243x interrupt controllers
- Extended functionality for MStar, STM32 and SC7280 irq chips
- Enhanced robustness for ARM GICv3/4.1 drivers
- The usual set of cleanups and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmCGh5wTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZ+/EACWBpQ/2ZHizEw1bzjaDzJrR8U228xu
wNi7nSP92Y07nJ3cCX7a6TJ53mqd0n3RT+DprlsOuqSN0D7Ktr/x44V/aZtm0d3N
GkFOlpeGCRnHusLaUTwk7a8289LuoQ7OhSxIB409n1I4nLI96ZK41D1tYonMYl6E
nxDiGADASfjaciBWbjwJO/mlwmiW/VRpSTxswx0wzakFfbIx9iKyKv1bCJQZ5JK+
lHmf0jxpDIs1EVK/ElJ9Ky6TMBlEmZyiX7n6rujtwJ1W+Jc/uL/y8pLJvGwooVmI
yHTYsLMqzviCbAMhJiB3h1qs3GbCGlM78prgJTnOd0+xEUOCcopCRQlsTXVBq8Nb
OS+HNkYmYXRfiSH6lINJsIok8Xis28bAw/qWz2Ho+8wLq0TI8crK38roD1fPndee
FNJRhsPPOBkscpIldJ0Cr0X5lclkJFiAhAxORPHoseKvQSm7gBMB7H99xeGRffTn
yB3XqeTJMvPNmAHNN4Brv6ey3OjwnEWBgwcnIM2LtbIlRtlmxTYuR+82OPOgEvzk
fSrjFFJqu0LEMLEOXS4pYN824PawjV//UAy4IaG8AodmUUCSGHgw1gTVa4sIf72t
tXY54HqWfRWRpujhVRgsZETqBUtZkL6yvpoe8f6H7P91W5tAfv3oj4ch9RkhUo+Z
b0/u9T0+Fpbg+w==
=id4G
-----END PGP SIGNATURE-----
Merge tag 'irq-core-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
"The usual updates from the irq departement:
Core changes:
- Provide IRQF_NO_AUTOEN as a flag for request*_irq() so drivers can
be cleaned up which either use a seperate mechanism to prevent
auto-enable at request time or have a racy mechanism which disables
the interrupt right after request.
- Get rid of the last usage of irq_create_identity_mapping() and
remove the interface.
- An overhaul of tasklet_disable().
Most usage sites of tasklet_disable() are in task context and
usually in cleanup, teardown code pathes. tasklet_disable()
spinwaits for a tasklet which is currently executed. That's not
only a problem for PREEMPT_RT where this can lead to a live lock
when the disabling task preempts the softirq thread. It's also
problematic in context of virtualization when the vCPU which runs
the tasklet is scheduled out and the disabling code has to spin
wait until it's scheduled back in.
There are a few code pathes which invoke tasklet_disable() from
non-sleepable context. For these a new disable variant which still
spinwaits is provided which allows to switch tasklet_disable() to a
sleep wait mechanism. For the atomic use cases this does not solve
the live lock issue on PREEMPT_RT. That is mitigated by blocking on
the RT specific softirq lock.
- The PREEMPT_RT specific implementation of softirq processing and
local_bh_disable/enable().
On RT enabled kernels soft interrupt processing happens always in
task context and all interrupt handlers, which are not explicitly
marked to be invoked in hard interrupt context are forced into task
context as well. This allows to protect against softirq processing
with a per CPU lock, which in turn allows to make BH disabled
regions preemptible.
Most of the softirq handling code is still shared. The RT/non-RT
specific differences are addressed with a set of inline functions
which provide the context specific functionality. The
local_bh_disable() / local_bh_enable() mechanism are obviously
seperate.
- The usual set of small improvements and cleanups
Driver changes:
- New drivers for Nuvoton WPCM450 and DT 79rc3243x interrupt
controllers
- Extended functionality for MStar, STM32 and SC7280 irq chips
- Enhanced robustness for ARM GICv3/4.1 drivers
- The usual set of cleanups and improvements all over the place"
* tag 'irq-core-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
irqchip/xilinx: Expose Kconfig option for Zynq/ZynqMP
irqchip/gic-v3: Do not enable irqs when handling spurious interrups
dt-bindings: interrupt-controller: Add IDT 79RC3243x Interrupt Controller
irqchip: Add support for IDT 79rc3243x interrupt controller
irqdomain: Drop references to recusive irqdomain setup
irqdomain: Get rid of irq_create_strict_mappings()
irqchip/jcore-aic: Kill use of irq_create_strict_mappings()
ARM: PXA: Kill use of irq_create_strict_mappings()
irqchip/gic-v4.1: Disable vSGI upon (GIC CPUIF < v4.1) detection
irqchip/tb10x: Use 'fallthrough' to eliminate a warning
genirq: Reduce irqdebug cacheline bouncing
kernel: Initialize cpumask before parsing
irqchip/wpcm450: Drop COMPILE_TEST
irqchip/irq-mst: Support polarity configuration
irqchip: Add driver for WPCM450 interrupt controller
dt-bindings: interrupt-controller: Add nuvoton, wpcm450-aic
dt-bindings: qcom,pdc: Add compatible for sc7280
irqchip/stm32: Add usart instances exti direct event support
irqchip/gic-v3: Fix OF_BAD_ADDR error handling
irqchip/sifive-plic: Mark two global variables __ro_after_init
...
New features:
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
- Alexandru is now a reviewer (not really a new feature...)
Fixes:
- Proper emulation of the GICR_TYPER register
- Handle the complete set of relocation in the nVHE EL2 object
- Get rid of the oprofile dependency in the PMU code (and of the
oprofile body parts at the same time)
- Debug and SPE fixes
- Fix vcpu reset
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmCCpuAPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD2G8QALWQYeBggKnNmAJfuihzZ2WariBmgcENs2R2
qNZ/Py6dIF+b69P68nmgrEV1x2Kp35cPJbBwXnnrS4FCB5tk0b8YMaj00QbiRIYV
UXbPxQTmYO1KbevpoEcw8NmR4bZJ/hRYPuzcQG7CCMKIZw0zj2cMcBofzQpTOAp/
CgItdcv7at3iwamQatfU9vUmC0nDdnjdIwSxTAJOYMVV1ENwtnYSNgZVo4XLTg7n
xR/5Qx27PKBJw7GyTRAIIxKAzNXG2tDL+GVIHe4AnRp3z3La8sr6PJf7nz9MCmco
ISgeY7EGQINzmm4LahpnV+2xwwxOWo8QotxRFGNuRTOBazfARyAbp97yJ6eXJUpa
j0qlg3xK9neyIIn9BQKkKx4sY9V45yqkuVDsK6odmqPq3EE01IMTRh1N/XQi+sTF
iGrlM3ZW4AjlT5zgtT9US/FRXeDKoYuqVCObJeXZdm3sJSwEqTAs0JScnc0YTsh7
m30CODnomfR2y5X6GoaubbQ0wcZ2I20K1qtIm+2F6yzD5P1/3Yi8HbXMxsSWyYWZ
1ldoSa+ZUQlzV9Ot0S3iJ4PkphLKmmO96VlxE2+B5gQG50PZkLzsr8bVyYOuJC8p
T83xT9xd07cy+FcGgF9veZL99Y6BLHMa6ZwFUolYNbzJxqrmqyR1aiJMEBIcX+aP
ACeKW1w5
=fpey
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 5.13
New features:
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
- Alexandru is now a reviewer (not really a new feature...)
Fixes:
- Proper emulation of the GICR_TYPER register
- Handle the complete set of relocation in the nVHE EL2 object
- Get rid of the oprofile dependency in the PMU code (and of the
oprofile body parts at the same time)
- Debug and SPE fixes
- Fix vcpu reset
The return value on success (>= 0) is overwritten by the return value of
put_old_timex32(). That works correct in the fault case, but is wrong for
the success case where put_old_timex32() returns 0.
Just check the return value of put_old_timex32() and return -EFAULT in case
it is not zero.
[ tglx: Massage changelog ]
Fixes: 3a4d44b616 ("ntp: Move adjtimex related compat syscalls to native counterparts")
Signed-off-by: Chen Jun <chenjun102@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Cochran <richardcochran@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210414030449.90692-1-chenjun102@huawei.com
The broadcast device is switched to oneshot mode when the system switches
to oneshot mode. If a broadcast clock event device is registered after the
system switched to oneshot mode, it will stay in periodic mode forever.
Ensure that a late registered device which is selected as broadcast device
is initialized in oneshot mode when the system already uses oneshot mode.
[ tglx: Massage changelog ]
Signed-off-by: Jindong Yue <jindong.yue@nxp.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210331083318.21794-1-jindong.yue@nxp.com
The function tick_check_replacement() is the combination of
tick_check_percpu() and tick_check_preferred(), but tick_check_new_device()
has the same logic open coded.
Use the helper to simplify the code.
[ tglx: Massage changelog ]
Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210326022328.3266-1-wangwensheng4@huawei.com
Make the tick_nohz_get_next_hrtimer() kerneldoc comment state clearly
that the function may return negative numbers.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
System time snapshots are not conveying information about the current
clocksource which was used, but callers like the PTP KVM guest
implementation have the requirement to evaluate the clocksource type to
select the appropriate mechanism.
Introduce a clocksource id field in struct clocksource which is by default
set to CSID_GENERIC (0). Clocksource implementations can set that field to
a value which allows to identify the clocksource.
Store the clocksource id of the current clocksource in the
system_time_snapshot so callers can evaluate which clocksource was used to
take the snapshot and act accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jianyong Wu <jianyong.wu@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201209060932.212364-5-jianyong.wu@arm.com
The struct clocksource callbacks enable() and disable() are described as a
way to allow clock sources to enter a power save mode. See commit
4614e6adaf ("clocksource: add enable() and disable() callbacks")
But using runtime PM from these callbacks triggers a cyclic lockdep warning when
switching clock source using change_clocksource().
# echo e60f0000.timer > /sys/devices/system/clocksource/clocksource0/current_clocksource
======================================================
WARNING: possible circular locking dependency detected
------------------------------------------------------
migration/0/11 is trying to acquire lock:
ffff0000403ed220 (&dev->power.lock){-...}-{2:2}, at: __pm_runtime_resume+0x40/0x74
but task is already holding lock:
ffff8000113c8f88 (tk_core.seq.seqcount){----}-{0:0}, at: multi_cpu_stop+0xa4/0x190
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (tk_core.seq.seqcount){----}-{0:0}:
ktime_get+0x28/0xa0
hrtimer_start_range_ns+0x210/0x2dc
generic_sched_clock_init+0x70/0x88
sched_clock_init+0x40/0x64
start_kernel+0x494/0x524
-> #1 (hrtimer_bases.lock){-.-.}-{2:2}:
hrtimer_start_range_ns+0x68/0x2dc
rpm_suspend+0x308/0x5dc
rpm_idle+0xc4/0x2a4
pm_runtime_work+0x98/0xc0
process_one_work+0x294/0x6f0
worker_thread+0x70/0x45c
kthread+0x154/0x160
ret_from_fork+0x10/0x20
-> #0 (&dev->power.lock){-...}-{2:2}:
_raw_spin_lock_irqsave+0x7c/0xc4
__pm_runtime_resume+0x40/0x74
sh_cmt_start+0x1c4/0x260
sh_cmt_clocksource_enable+0x28/0x50
change_clocksource+0x9c/0x160
multi_cpu_stop+0xa4/0x190
cpu_stopper_thread+0x90/0x154
smpboot_thread_fn+0x244/0x270
kthread+0x154/0x160
ret_from_fork+0x10/0x20
other info that might help us debug this:
Chain exists of:
&dev->power.lock --> hrtimer_bases.lock --> tk_core.seq.seqcount
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(tk_core.seq.seqcount);
lock(hrtimer_bases.lock);
lock(tk_core.seq.seqcount);
lock(&dev->power.lock);
*** DEADLOCK ***
2 locks held by migration/0/11:
#0: ffff8000113c9278 (timekeeper_lock){-.-.}-{2:2}, at: change_clocksource+0x2c/0x160
#1: ffff8000113c8f88 (tk_core.seq.seqcount){----}-{0:0}, at: multi_cpu_stop+0xa4/0x190
Rework change_clocksource() so it enables the new clocksource and disables
the old clocksource outside of the timekeeper_lock and seqcount write held
region. There is no requirement that these callbacks are invoked from the
lock held region.
Signed-off-by: Niklas Söderlund <niklas.soderlund+renesas@ragnatech.se>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Link: https://lore.kernel.org/r/20210211134318.323910-1-niklas.soderlund+renesas@ragnatech.se
There is no need to keep the dentry pointer around for the created
debugfs file, as it is only needed when removing it from the system.
When it is to be removed, ask debugfs itself for the pointer, to save on
storage and make things a bit simpler.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210216155020.1012407-1-gregkh@linuxfoundation.org
On RT a task which has soft interrupts disabled can block on a lock and
schedule out to idle while soft interrupts are pending. This triggers the
warning in the NOHZ idle code which complains about going idle with pending
soft interrupts. But as the task is blocked soft interrupt processing is
temporarily blocked as well which means that such a warning is a false
positive.
To prevent that check the per CPU state which indicates that a scheduled
out task has soft interrupts disabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210309085727.527563866@linutronix.de
Preparation for fixing get_nr_restart_syscall() on X86 for COMPAT.
Add a new helper which sets restart_block->fn and calls a dummy
arch_set_restart_data() helper.
Fixes: 609c19a385 ("x86/ptrace: Stop setting TS_COMPAT in ptrace code")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210201174641.GA17871@redhat.com
hrtimer_force_reprogram() and hrtimer_interrupt() invokes
__hrtimer_get_next_event() to find the earliest expiry time of hrtimer
bases. __hrtimer_get_next_event() does not update
cpu_base::[softirq_]_expires_next to preserve reprogramming logic. That
needs to be done at the callsites.
hrtimer_force_reprogram() updates cpu_base::softirq_expires_next only when
the first expiring timer is a softirq timer and the soft interrupt is not
activated. That's wrong because cpu_base::softirq_expires_next is left
stale when the first expiring timer of all bases is a timer which expires
in hard interrupt context. hrtimer_interrupt() does never update
cpu_base::softirq_expires_next which is wrong too.
That becomes a problem when clock_settime() sets CLOCK_REALTIME forward and
the first soft expiring timer is in the CLOCK_REALTIME_SOFT base. Setting
CLOCK_REALTIME forward moves the clock MONOTONIC based expiry time of that
timer before the stale cpu_base::softirq_expires_next.
cpu_base::softirq_expires_next is cached to make the check for raising the
soft interrupt fast. In the above case the soft interrupt won't be raised
until clock monotonic reaches the stale cpu_base::softirq_expires_next
value. That's incorrect, but what's worse it that if the softirq timer
becomes the first expiring timer of all clock bases after the hard expiry
timer has been handled the reprogramming of the clockevent from
hrtimer_interrupt() will result in an interrupt storm. That happens because
the reprogramming does not use cpu_base::softirq_expires_next, it uses
__hrtimer_get_next_event() which returns the actual expiry time. Once clock
MONOTONIC reaches cpu_base::softirq_expires_next the soft interrupt is
raised and the storm subsides.
Change the logic in hrtimer_force_reprogram() to evaluate the soft and hard
bases seperately, update softirq_expires_next and handle the case when a
soft expiring timer is the first of all bases by comparing the expiry times
and updating the required cpu base fields. Split this functionality into a
separate function to be able to use it in hrtimer_interrupt() as well
without copy paste.
Fixes: 5da7016046 ("hrtimer: Implement support for softirq based hrtimers")
Reported-by: Mikael Beckius <mikael.beckius@windriver.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mikael Beckius <mikael.beckius@windriver.com>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210223160240.27518-1-anna-maria@linutronix.de
- Documentation updates.
- Miscellaneous fixes.
- kfree_rcu() updates: Addition of mem_dump_obj() to provide allocator return
addresses to more easily locate bugs. This has a couple of RCU-related commits,
but is mostly MM. Was pulled in with akpm's agreement.
- Per-callback-batch tracking of numbers of callbacks,
which enables better debugging information and smarter
reactions to large numbers of callbacks.
- The first round of changes to allow CPUs to be runtime switched from and to
callback-offloaded state.
- CONFIG_PREEMPT_RT-related changes.
- RCU CPU stall warning updates.
- Addition of polling grace-period APIs for SRCU.
- Torture-test and torture-test scripting updates, including a "torture everything"
script that runs rcutorture, locktorture, scftorture, rcuscale, and refscale.
Plus does an allmodconfig build.
- nolibc fixes for the torture tests
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmAs9lgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j/axAAsqIvarDD6OLmgcOPCyWSvfG6LsIFgqI9
CY0JdQBtvFBTvE8Q2No5ktbLVmuYsBh0dGeFkv4HQZJyRlr7mjstVMNN4SeBDVIS
/+zZO1wlwzaXfKQopLctTK1O/UzFqIN2sqyzA3nLzGGj8DqgxXJyreJ10feK5XM+
6ttZPd1qm4hqtpA22ZEODbct5OFqZuvnK8VNqBb2YHabA1rasUXbIEJPBpsuv/W2
l9W5AGP4erdOFm3nHJxiCpvLJtgHy4njvw0HJp5f99Abj6OVeAzw5kFjvRB3n1Qd
ayKyTw8T/1mfmkjvYkGsMAqhEmqwXcryFX0dR/14/XPdXyjPhZlbkz+MfRKrn4NT
LBJPX+MlX9lVFWBNR9HMe2o/083+gorlwZt9wtyt0OBBGGgudYo4uKNdbyy6tB3Y
Gb98P2vtVSO24EsQce6M+ppHN4TgVBd6id82MQxNuFw+PQJdBiCY0JJfNQApbAry
cIKOchSSR2SkJHlAevNVaKAeiTnkAXd1jDBKtCnvCqOUyvtnhE3rQCqwS5xT2Cno
oQydpudwBKT7uO/GUyS0ESErjHuy9zhExNSYD0ydxlBCrGbzrrgPg57ntXHA1die
mtFyvc2tfT/AshWRNYiuCG+eaUG3qK7n7jN7Vc6/K5DR4GMb5tOhL9wPx2ljCRGu
Z8WDg0pJGz4=
=31yj
-----END PGP SIGNATURE-----
Merge tag 'core-rcu-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
"These are the latest RCU updates for v5.12:
- Documentation updates.
- Miscellaneous fixes.
- kfree_rcu() updates: Addition of mem_dump_obj() to provide
allocator return addresses to more easily locate bugs. This has a
couple of RCU-related commits, but is mostly MM. Was pulled in with
akpm's agreement.
- Per-callback-batch tracking of numbers of callbacks, which enables
better debugging information and smarter reactions to large numbers
of callbacks.
- The first round of changes to allow CPUs to be runtime switched
from and to callback-offloaded state.
- CONFIG_PREEMPT_RT-related changes.
- RCU CPU stall warning updates.
- Addition of polling grace-period APIs for SRCU.
- Torture-test and torture-test scripting updates, including a
"torture everything" script that runs rcutorture, locktorture,
scftorture, rcuscale, and refscale. Plus does an allmodconfig
build.
- nolibc fixes for the torture tests"
* tag 'core-rcu-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (130 commits)
percpu_ref: Dump mem_dump_obj() info upon reference-count underflow
rcu: Make call_rcu() print mem_dump_obj() info for double-freed callback
mm: Make mem_obj_dump() vmalloc() dumps include start and length
mm: Make mem_dump_obj() handle vmalloc() memory
mm: Make mem_dump_obj() handle NULL and zero-sized pointers
mm: Add mem_dump_obj() to print source of memory block
tools/rcutorture: Fix position of -lgcc in mkinitrd.sh
tools/nolibc: Fix position of -lgcc in the documented example
tools/nolibc: Emit detailed error for missing alternate syscall number definitions
tools/nolibc: Remove incorrect definitions of __ARCH_WANT_*
tools/nolibc: Get timeval, timespec and timezone from linux/time.h
tools/nolibc: Implement poll() based on ppoll()
tools/nolibc: Implement fork() based on clone()
tools/nolibc: Make getpgrp() fall back to getpgid(0)
tools/nolibc: Make dup2() rely on dup3() when available
tools/nolibc: Add the definition for dup()
rcutorture: Add rcutree.use_softirq=0 to RUDE01 and TASKS01
torture: Maintain torture-specific set of CPUs-online books
torture: Clean up after torture-test CPU hotplugging
rcutorture: Make object_debug also double call_rcu() heap object
...
- Instead of new drivers remove tango, sirf, u300 and atlas drivers
- Add suspend/resume support for microchip pit64b
- The usual fixes, improvements and cleanups here and there
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmAqjecTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodVTD/9UuKlOifRBNd4ECR+yF65MzLfjqNHU
j76E3Dzuf4QCbXTjmQAsadaqQ+w9l8Ie7OVT51XlmTczEBkJiV3FOGLVJeRun6R4
7OLF3VOYyBUtMoRdHzyXaYOTbsOK9gZitucDeLCQhvKhDCkVnKKFXNJR+TTkSYM3
xDBLwuI7uuHWHyh0+W+3SI1pTiEA4yMe5ZbqqoJbjGQapr3Eao+nyjd1aa3ERb2f
PtS7UVQ69QowRqq6DQyZk0yKit8J3HZnHfCPH/T6eXsxGnui36GiUnTGCMhLMZpD
Xvl/5cjqQuKjgt2093t8nGiumOGBOfrb8uvc/qMW777DzFe/VJtXrC/7pySVLAhK
oc9Swj0iX/WPARzlpyOk3lfpDMzv6qyjMNJIXcnav2lrknITp+TMORKWOADB03UV
sswlN7YFTrNe7d7uxEdybKkNX6bUwgOzo2m69A1IdSXwKPzYkZQmku6Y7GnzYErZ
aiJiZl858VB9g24ROKLt/uQTarzYCS0sjcdnDgO1KSR7zKHZ4iUpd3zucd3mlmUo
fGTMIbCqL/gzl4Zcl6njvzMVfJeMzOeDiQ41wCyYnOsXlIKmWNi1rONdGZcyDYvN
bOiGVUMKicEZwBlSZQQ1GdR9eGf8/Ix5cTlynZepN3dkHUDc7SU+OvQZdg4Yd/RY
BsquFDHnt4gl+A==
=xZQt
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2021-02-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Time and timer updates:
- Instead of new drivers remove tango, sirf, u300 and atlas drivers
- Add suspend/resume support for microchip pit64b
- The usual fixes, improvements and cleanups here and there"
* tag 'timers-core-2021-02-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timens: Delete no-op time_ns_init()
alarmtimer: Update kerneldoc
clocksource/drivers/timer-microchip-pit64b: Add clocksource suspend/resume
clocksource/drivers/prima: Remove sirf prima driver
clocksource/drivers/atlas: Remove sirf atlas driver
clocksource/drivers/tango: Remove tango driver
clocksource/drivers/u300: Remove the u300 driver
dt-bindings: timer: nuvoton: Clarify that interrupt of timer 0 should be specified
clocksource/drivers/davinci: Move pr_fmt() before the includes
clocksource/drivers/efm32: Drop unused timer code
Pull RCU updates from Paul E. McKenney:
- Documentation updates.
- Miscellaneous fixes.
- kfree_rcu() updates: Addition of mem_dump_obj() to provide allocator return
addresses to more easily locate bugs. This has a couple of RCU-related commits,
but is mostly MM. Was pulled in with akpm's agreement.
- Per-callback-batch tracking of numbers of callbacks,
which enables better debugging information and smarter
reactions to large numbers of callbacks.
- The first round of changes to allow CPUs to be runtime switched from and to
callback-offloaded state.
- CONFIG_PREEMPT_RT-related changes.
- RCU CPU stall warning updates.
- Addition of polling grace-period APIs for SRCU.
- Torture-test and torture-test scripting updates, including a "torture everything"
script that runs rcutorture, locktorture, scftorture, rcuscale, and refscale.
Plus does an allmodconfig build.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The bug fixed by commit e3fab2f3de ("ntp: Fix RTC synchronization on
32-bit platforms") revealed an underlying issue: RTC synchronization may
happen anytime, even while the system is partially suspended.
On systems where the RTC is connected to an I2C bus, the I2C bus controller
may already or still be suspended, triggering a WARNING during suspend or
resume from s2ram:
WARNING: CPU: 0 PID: 124 at drivers/i2c/i2c-core.h:54 __i2c_transfer+0x634/0x680
i2c i2c-6: Transfer while suspended
[...]
Workqueue: events_power_efficient sync_hw_clock
[...]
(__i2c_transfer)
(i2c_transfer)
(regmap_i2c_read)
...
(da9063_rtc_set_time)
(rtc_set_time)
(sync_hw_clock)
(process_one_work)
Fix this race condition by using the freezable instead of the normal
power-efficient workqueue.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20210125143039.1051912-1-geert+renesas@glider.be
Due to an integer overflow, RTC synchronization now happens every 2s
instead of the intended 11 minutes. Fix this by forcing 64-bit
arithmetic for the sync period calculation.
Annotate the other place which multiplies seconds for consistency as well.
Fixes: c9e6189fb0 ("ntp: Make the RTC synchronization more reliable")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210111103956.290378-1-geert+renesas@glider.be
This commit addresses a few code-style nits in callback-offloading
toggling, including one that predates this toggling.
Cc: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds a timer_curr_running() function that verifies that the
current code is running in the context of the specified timer's handler.
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
and fix a typo in the Kconfig help text.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl/oUUkRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gEnQ//Ud8SF9fOq2w7IVqYYQadH9BSj6jFOTlb
5/pgRKZLI6OCRZ8Wkx9lV3hvlmyZRtKhuLcOx/LR/TXNBlIN7wfkRcjPFIojhqM3
G5mr/TMmbL+PSOz8gEWwPsz7A+pDgoDDdvgId3Dn6CUKEZLIcf2tEzIOBjtST94b
svS5Y/wBe3xzlBD4yfNKkmwSYlgpDv7ZfAF3q38h3dTgb3nTYRgfKmflKe+aBf7z
iy05I/j7Hw8WmioG0oEUfX9t/j9dYdGzbK/3S8UV4igXj+i+XnzUIs9+dQpEpByS
tgS9KJbq8AYtuUdHU7xInG2ltrODrriJUdCQpzi65/jEUshoBLw+Dj3fmVKHJA48
LW0jgQ7eJm8dkkJyo7+s4Z5wTmS6zzqJ+2MZq34fvlHQFzHgJ3KAwTzoiqBLx4FY
1H/KEmK8hX2IDiJj5qrWHcZRmGiKbeKxiJkB0+6EQGj+aAVy3A6AR2TeQJf58OSN
nc+e7UWQFEumGyEN8cVTjdTuLJc1iY9ULpXuQfdi4ksDCpLMTMWk9V9psWB+pC15
MTqbsJCzJU4oeeYaZVWdMPcaZSjgg4Ar3ojvXvPoUkdqCuvnMPoBxTVXjkwNReZF
SxFIpYyKbSkZiN/FOZkICIh0tRMWLmMVNqXV0rjEi41BvcoH9tKXT2y5WgQEHvf1
BctV+BFfblU=
=T0Y6
-----END PGP SIGNATURE-----
Merge tag 'timers-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Ingo Molnar:
"Update/fix two CPU sanity checks in the hotplug and the boot code, and
fix a typo in the Kconfig help text.
[ Context: the first two commits are the result of an ongoing
annotation+review work of (intentional) tick_do_timer_cpu() data
races reported by KCSAN, but the annotations aren't fully cooked
yet ]"
* tag 'timers-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timekeeping: Fix spelling mistake in Kconfig "fullfill" -> "fulfill"
tick/sched: Remove bogus boot "safety" check
tick: Remove pointless cpu valid check in hotplug code
There is a spelling mistake in the Kconfig help text. Fix it.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/20201217171705.57586-1-colin.king@canonical.com
can_stop_idle_tick() checks whether the do_timer() duty has been taken over
by a CPU on boot. That's silly because the boot CPU always takes over with
the initial clockevent device.
But even if no CPU would have installed a clockevent and taken over the
duty then the question whether the tick on the current CPU can be stopped
or not is moot. In that case the current CPU would have no clockevent
either, so there would be nothing to keep ticking.
Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20201206212002.725238293@linutronix.de
tick_handover_do_timer() which is invoked when a CPU is unplugged has a
check for cpumask_first(cpu_online_mask) when it tries to hand over the
tick update duty.
Checking the result of cpumask_first() there is pointless because if the
online mask is empty at this point, then this would be the last CPU in the
system going offline, which is impossible. There is always at least one CPU
remaining. If online mask would be really empty then the timer duty would
be the least of the resulting problems.
Remove the well meant check simply because it is pointless and confusing.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20201206212002.582579516@linutronix.de
This cleans up two ancient timer features that were never completed in
the past, CONFIG_GENERIC_CLOCKEVENTS and CONFIG_ARCH_USES_GETTIMEOFFSET.
There was only one user left for the ARCH_USES_GETTIMEOFFSET variant
of clocksource implementations, the ARM EBSA110 platform. Rather than
changing to use modern timekeeping, we remove the platform entirely as
Russell no longer uses his machine and nobody else seems to have one
any more.
The conditional code for using arch_gettimeoffset() is removed as
a result.
For CONFIG_GENERIC_CLOCKEVENTS, there are still a couple of platforms
not using clockevent drivers: parisc, ia64, most of m68k, and one
Arm platform. These all do timer ticks slighly differently, and this
gets cleaned up to the point they at least all call the same helper
function. Instead of most platforms using 'select GENERIC_CLOCKEVENTS'
in Kconfig, the polarity is now reversed, with the few remaining ones
selecting LEGACY_TIMER_TICK instead.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAl/Y1v8ACgkQmmx57+YA
GNmCvQ/9EDlgCt92r8SB+LGafDtgB8TUQZeIrs9S2mByzdxwnw0lxObIXFCnhQgh
RpG3dR+ONRDnC5eI149B377JOEFMZWe2+BtYHUHkFARtUEWatslQcz7yAGvVRK/l
TS/qReb6piKltlzuanF1bMZbjy2OhlaDRcm+OlC3y5mALR33M4emb+rJ6cSdfk3K
v1iZhrxtfQT77ztesh/oPkPiyQ6kNcz7SfpyYOb6f5VLlml2BZ7YwBSVyGY7urHk
RL3XqOUP4KKlMEAI8w0E2nvft6Fk+luziBhrMYWK0GvbmI1OESENuX/c6tgT2OQ1
DRaVHvcPG/EAY8adOKxxVyHhEJDSoz5GJV/EtjlOegsJk6RomczR1uuiT3Kvm7Ah
PktMKv4xQht1E15KPSKbOvNIEP18w2s5z6gw+jVDv8pw42pVEQManm1D+BICqrhl
fcpw6T1drf9UxAjwX4+zXtmNs+a+mqiFG8puU4VVgT4GpQ8umHvunXz2WUjZO0jc
3m8ErJHBvtJwW5TOHGyXnjl9SkwPzHOfF6IcXTYWEDU4/gQIK9TwUvCjLc0lE27t
FMCV2ds7/K1CXwRgpa5IrefSkb8yOXSbRZ56NqqF7Ekxw4J5bYRSaY7jb+qD/e+3
5O1y+iPxFrpH+16hSahvzrtcdFNbLQvBBuRtEQOYuHLt2UJrNoU=
=QpNs
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-timers-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic cross-architecture timer cleanup from Arnd Bergmann:
"This cleans up two ancient timer features that were never completed in
the past, CONFIG_GENERIC_CLOCKEVENTS and CONFIG_ARCH_USES_GETTIMEOFFSET.
There was only one user left for the ARCH_USES_GETTIMEOFFSET variant
of clocksource implementations, the ARM EBSA110 platform. Rather than
changing to use modern timekeeping, we remove the platform entirely as
Russell no longer uses his machine and nobody else seems to have one
any more.
The conditional code for using arch_gettimeoffset() is removed as a
result.
For CONFIG_GENERIC_CLOCKEVENTS, there are still a couple of platforms
not using clockevent drivers: parisc, ia64, most of m68k, and one Arm
platform. These all do timer ticks slighly differently, and this gets
cleaned up to the point they at least all call the same helper
function.
Instead of most platforms using 'select GENERIC_CLOCKEVENTS' in
Kconfig, the polarity is now reversed, with the few remaining ones
selecting LEGACY_TIMER_TICK instead"
* tag 'asm-generic-timers-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
timekeeping: default GENERIC_CLOCKEVENTS to enabled
timekeeping: remove xtime_update
m68k: remove timer_interrupt() function
m68k: change remaining timers to legacy_timer_tick
m68k: m68328: use legacy_timer_tick()
m68k: sun3/sun3c: use legacy_timer_tick
m68k: split heartbeat out of timer function
m68k: coldfire: use legacy_timer_tick()
parisc: use legacy_timer_tick
ARM: rpc: use legacy_timer_tick
ia64: convert to legacy_timer_tick
timekeeping: add CONFIG_LEGACY_TIMER_TICK
timekeeping: remove arch_gettimeoffset
net: remove am79c961a driver
ARM: remove ebsa110 platform
- migrate_disable/enable() support which originates from the RT tree and
is now a prerequisite for the new preemptible kmap_local() API which aims
to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XwK4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoX28D/9cVrvziSQGfBfuQWnUiw8iOIq1QBa2
Me+Tvenhfrlt7xU6rbP9ciFu7eTN+fS06m5uQPGI+t22WuJmHzbmw1bJVXfkvYfI
/QoU+Hg7DkDAn1p7ZKXh0dRkV0nI9ixxSHl0E+Zf1ATBxCUMV2SO85flg6z/4qJq
3VWUye0dmR7/bhtkIjv5rwce9v2JB2g1AbgYXYTW9lHVoUdGoMSdiZAF4tGyHLnx
sJ6DMqQ+k+dmPyYO0z5MTzjW/fXit4n9w2e3z9TvRH/uBu58WSW1RBmQYX6aHBAg
dhT9F4lvTs6lJY23x5RSFWDOv6xAvKF5a0xfb8UZcyH5EoLYrPRvm42a0BbjdeRa
u0z7LbwIlKA+RFdZzFZWz8UvvO0ljyMjmiuqZnZ5dY9Cd80LSBuxrWeQYG0qg6lR
Y2povhhCepEG+q8AXIe2YjHKWKKC1s/l/VY3CNnCzcd21JPQjQ4Z5eWGmHif5IED
CntaeFFhZadR3w02tkX35zFmY3w4soKKrbI4EKWrQwd+cIEQlOSY7dEPI/b5BbYj
MWAb3P4EG9N77AWTNmbhK4nN0brEYb+rBbCA+5dtNBVhHTxAC7OTWElJOC2O66FI
e06dREjvwYtOkRUkUguWwErbIai2gJ2MH0VILV3hHoh64oRk7jjM8PZYnjQkdptQ
Gsq0rJW5iiu/OQ==
=Oz1V
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- migrate_disable/enable() support which originates from the RT tree
and is now a prerequisite for the new preemptible kmap_local() API
which aims to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
* tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
sched/fair: Trivial correction of the newidle_balance() comment
sched/fair: Clear SMT siblings after determining the core is not idle
sched: Fix kernel-doc markup
x86: Print ratio freq_max/freq_base used in frequency invariance calculations
x86, sched: Use midpoint of max_boost and max_P for frequency invariance on AMD EPYC
x86, sched: Calculate frequency invariance for AMD systems
irq_work: Optimize irq_work_single()
smp: Cleanup smp_call_function*()
irq_work: Cleanup
sched: Limit the amount of NUMA imbalance that can exist at fork time
sched/numa: Allow a floating imbalance between NUMA nodes
sched: Avoid unnecessary calculation of load imbalance at clone time
sched/numa: Rename nr_running and break out the magic number
sched: Make migrate_disable/enable() independent of RT
sched/topology: Condition EAS enablement on FIE support
arm64: Rebuild sched domains on invariance status changes
sched/topology,schedutil: Wrap sched domains rebuild
sched/uclamp: Allow to reset a task uclamp constraint value
sched/core: Fix typos in comments
Documentation: scheduler: fix information on arch SD flags, sched_domain and sched_debug
...
Core:
- Robustness improvements for the NOHZ tick management
- Fixes and consolidation of the NTP/RTC synchronization code
- Small fixes and improvements in various places
- A set of function documentation udpates and fixes
Drivers:
- Cleanups and improvements in various clocksoure/event drivers
- Removal of the EZChip NPS clocksource driver as the platfrom support
was removed from ARC
- The usual set of new device tree binding and json conversions
- The RTC driver which have been acked by the RTC maintainer:
- Fix a long standing bug in the MC146818 library code which can cause
reading garbage during the RTC internal update.
- The changes related to the NTP/RTC consolidation work.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/Xw1wTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYof7SD/4iIjuP5HoY7ec0z9wSFQ5U5nUwJnpW
Sre13SUXpW+wOa/RcjAaHiD2G4MGtQyUIBibuL18Q5GMtGOvlIueEniuYP57p1XU
ipr1UMnFvRkAaFNOnySzLiQyuliteBcNSDHrLYsSWW2BwjLbNzX46zG5kILrt31i
IsseHZdD9+7SXBLvCjO6FAYkVH8FeIaFKv+3ZmroWOxPBOXi4wn02K86HrXs/6Wu
9SCUIMcewhvSx3xCURzyMv6S2hgKSzywRNc5WcYIE8OPlKbnAE0IC370r3o2uL1B
4dZPv4H1y7F7M4G+/XlIv0l2DTp9RuiWut9QcYmHtlFCKkrEO3ZGlcgPU6y5+mNc
AwwG0J51yJYqg42aifdDNJ18B9GUNVCfVAKZcOYHLXOBgSvshd2WkPJkXsGaHd3z
KrK3kZUnx+/QUWZB7dMuq+HQG2PJTvKkEwu4VGReWPGmubXbsIqBZ0vH5jYHjuEo
t4QCUc5BpNlXOUJxal5wzVmDWnoqfKqbmnPky/f/cmNEfQNY6nA9hC3vo781j532
Z5snFXhbITqIkaHoN86wMuuDCjKBKBJGQvejZKgPvh3oIg9d5yaj9P0UAhoYtv+M
jMus4QDb6eBirgnZIVpgBC3kVZOxNOEHNsPeCcVfvPa7QOQnY4Cmb0GWnpZ2SZOz
KYSjTIXKgZnHiQ==
=eWC0
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers and timekeeping updates from Thomas Gleixner:
"Core:
- Robustness improvements for the NOHZ tick management
- Fixes and consolidation of the NTP/RTC synchronization code
- Small fixes and improvements in various places
- A set of function documentation udpates and fixes
Drivers:
- Cleanups and improvements in various clocksoure/event drivers
- Removal of the EZChip NPS clocksource driver as the platfrom
support was removed from ARC
- The usual set of new device tree binding and json conversions
- The RTC driver which have been acked by the RTC maintainer:
* fix a long standing bug in the MC146818 library code which can
cause reading garbage during the RTC internal update.
* changes related to the NTP/RTC consolidation work"
* tag 'timers-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
ntp: Fix prototype in the !CONFIG_GENERIC_CMOS_UPDATE case
tick/sched: Make jiffies update quick check more robust
ntp: Consolidate the RTC update implementation
ntp: Make the RTC sync offset less obscure
ntp, rtc: Move rtc_set_ntp_time() to ntp code
ntp: Make the RTC synchronization more reliable
rtc: core: Make the sync offset default more realistic
rtc: cmos: Make rtc_cmos sync offset correct
rtc: mc146818: Reduce spinlock section in mc146818_set_time()
rtc: mc146818: Prevent reading garbage
clocksource/drivers/sh_cmt: Fix potential deadlock when calling runtime PM
clocksource/drivers/arm_arch_timer: Correct fault programming of CNTKCTL_EL1.EVNTI
clocksource/drivers/arm_arch_timer: Use stable count reader in erratum sne
clocksource/drivers/dw_apb_timer_of: Add error handling if no clock available
clocksource/drivers/riscv: Make RISCV_TIMER depends on RISCV_SBI
clocksource/drivers/ingenic: Fix section mismatch
clocksource/drivers/cadence_ttc: Fix memory leak in ttc_setup_clockevent()
dt-bindings: timer: renesas: tmu: Convert to json-schema
dt-bindings: timer: renesas: tmu: Document r8a774e1 bindings
clocksource/drivers/orion: Add missing clk_disable_unprepare() on error path
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCX9daOgAKCRCRxhvAZXjc
ohPkAQChXUB2BAjtIzXlCkZoDBbzHHblm5DZ37oy/4xYFmAcEwEA5sw6dQqyGHnF
GEP9def51HvXLpBV2BzNUGggo1SoGgQ=
=w/cO
-----END PGP SIGNATURE-----
Merge tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull misc fixes from Christian Brauner:
"This contains several fixes which felt worth being combined into a
single branch:
- Use put_nsproxy() instead of open-coding it switch_task_namespaces()
- Kirill's work to unify lifecycle management for all namespaces. The
lifetime counters are used identically for all namespaces types.
Namespaces may of course have additional unrelated counters and
these are not altered. This work allows us to unify the type of the
counters and reduces maintenance cost by moving the counter in one
place and indicating that basic lifetime management is identical
for all namespaces.
- Peilin's fix adding three byte padding to Dmitry's
PTRACE_GET_SYSCALL_INFO uapi struct to prevent an info leak.
- Two smal patches to convert from the /* fall through */ comment
annotation to the fallthrough keyword annotation which I had taken
into my branch and into -next before df561f6688 ("treewide: Use
fallthrough pseudo-keyword") made it upstream which fixed this
tree-wide.
Since I didn't want to invalidate all testing for other commits I
didn't rebase and kept them"
* tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
nsproxy: use put_nsproxy() in switch_task_namespaces()
sys: Convert to the new fallthrough notation
signal: Convert to the new fallthrough notation
time: Use generic ns_common::count
cgroup: Use generic ns_common::count
mnt: Use generic ns_common::count
user: Use generic ns_common::count
pid: Use generic ns_common::count
ipc: Use generic ns_common::count
uts: Use generic ns_common::count
net: Use generic ns_common::count
ns: Add a common refcount into ns_common
ptrace: Prevent kernel-infoleak in ptrace_get_syscall_info()
The quick check in tick_do_update_jiffies64() whether jiffies need to be
updated is not really correct under all circumstances and on all
architectures, especially not on 32bit systems.
The quick check does:
if (now < READ_ONCE(tick_next_period))
return;
and the counterpart in the update is:
WRITE_ONCE(tick_next_period, next_update_time);
This has two problems:
1) On weakly ordered architectures there is no guarantee that the stores
before the WRITE_ONCE() are visible which means that other CPUs can
operate on a stale jiffies value.
2) On 32bit the store of tick_next_period which is an u64 is split into
two 32bit stores. If the first 32bit store advances tick_next_period
far out and the second 32bit store is delayed (virt, NMI ...) then
jiffies will become stale until the second 32bit store happens.
Address this by seperating the handling for 32bit and 64bit.
On 64bit problem #1 is addressed by replacing READ_ONCE() / WRITE_ONCE()
with smp_load_acquire() / smp_store_release().
On 32bit problem #2 is addressed by protecting the quick check with the
jiffies sequence counter. The load and stores can be plain because the
sequence count mechanics provides the required barriers already.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87czzpc02w.fsf@nanos.tec.linutronix.de
The code for the legacy RTC and the RTC class based update are pretty much
the same. Consolidate the common parts into one function and just invoke
the actual setter functions.
For RTC class based devices the update code checks whether the offset is
valid for the device, which is usually not the case for the first
invocation. If it's not the same it stores the correct offset and lets the
caller try again. That's not much different from the previous approach
where the first invocation had a pretty low probability to actually hit the
allowed window.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.355743355@linutronix.de
The current RTC set_offset_nsec value is not really intuitive to
understand.
tsched twrite(t2.tv_sec - 1) t2 (seconds increment)
The offset is calculated from twrite based on the assumption that t2 -
twrite == 1s. That means for the MC146818 RTC the offset needs to be
negative so that the write happens 500ms before t2.
It's easier to understand when the whole calculation is based on t2. That
avoids negative offsets and the meaning is obvious:
t2 - twrite: The time defined by the chip when seconds increment
after the write.
twrite - tsched: The time for the transport to the point where the chip
is updated.
==> set_offset_nsec = t2 - tsched
ttransport = twrite - tsched
tRTCinc = t2 - twrite
==> set_offset_nsec = ttransport + tRTCinc
tRTCinc is a chip property and can be obtained from the data sheet.
ttransport depends on how the RTC is connected. It is close to 0 for
directly accessible RTCs. For RTCs behind a slow bus, e.g. i2c, it's the
time required to send the update over the bus. This can be estimated or
even calibrated, but that's a different problem.
Adjust the implementation and update comments accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.263204937@linutronix.de
rtc_set_ntp_time() is not really RTC functionality as the code is just a
user of RTC. Move it into the NTP code which allows further cleanups.
Requested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.166871172@linutronix.de
Miroslav reported that the periodic RTC synchronization in the NTP code
fails more often than not to hit the specified update window.
The reason is that the code uses delayed_work to schedule the update which
needs to be in thread context as the underlying RTC might be connected via
a slow bus, e.g. I2C. In the update function it verifies whether the
current time is correct vs. the requirements of the underlying RTC.
But delayed_work is using the timer wheel for scheduling which is
inaccurate by design. Depending on the distance to the expiry the wheel
gets less granular to allow batching and to avoid the cascading of the
original timer wheel. See 500462a9de ("timers: Switch to a non-cascading
wheel") and the code for further details.
The code already deals with this by splitting the 660 seconds period into a
long 659 seconds timer and then retrying with a smaller delta.
But looking at the actual granularities of the timer wheel (which depend on
the HZ configuration) the 659 seconds timer ends up in an outer wheel level
and is affected by a worst case granularity of:
HZ Granularity
1000 32s
250 16s
100 40s
So the initial timer can be already off by max 12.5% which is not a big
issue as the period of the sync is defined as ~11 minutes.
The fine grained second attempt schedules to the desired update point with
a timer expiring less than a second from now. Depending on the actual delta
and the HZ setting even the second attempt can end up in outer wheel levels
which have a large enough granularity to make the correctness check fail.
As this is a fundamental property of the timer wheel there is no way to
make this more accurate short of iterating in one jiffies steps towards the
update point.
Switch it to an hrtimer instead which schedules the actual update work. The
hrtimer will expire precisely (max 1 jiffie delay when high resolution
timers are not available). The actual scheduling delay of the work is the
same as before.
The update is triggered from do_adjtimex() which is a bit racy but not much
more racy than it was before:
if (ntp_synced())
queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
which is racy when the work is currently executed and has not managed to
reschedule itself.
This becomes now:
if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
queue_work(system_power_efficient_wq, &sync_work, 0);
which is racy when the hrtimer has expired and the work is currently
executed and has not yet managed to rearm the hrtimer.
Not a big problem as it just schedules work for nothing.
The new implementation has a safe guard in place to catch the case where
the hrtimer is queued on entry to the work function and avoids an extra
update attempt of the RTC that way.
Reported-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Miroslav Lichvar <mlichvar@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.062910520@linutronix.de
Get rid of the __call_single_node union and clean up the API a little
to avoid external code relying on the structure layout as much.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
The variable tick_period is initialized to NSEC_PER_TICK / HZ during boot
and never updated again.
If NSEC_PER_TICK is not an integer multiple of HZ this computation is less
accurate than TICK_NSEC which has proper rounding in place.
Aside of the inaccuracy there is no reason for having this variable at
all. It's just a pointless indirection and all usage sites can just use the
TICK_NSEC constant.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.766643526@linutronix.de
calc_load_global() does not need the sequence count protection.
[ tglx: Split it up properly and added comments ]
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.660902274@linutronix.de
If jiffies are up to date already (caller lost the race against another
CPU) there is no point to change the sequence count. Doing that just forces
other CPUs into the seqcount retry loop in tick_nohz_next_event() for
nothing.
Just bail out early.
[ tglx: Rewrote most of it ]
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.462195901@linutronix.de
No point in doing calculations.
tick_next_period = last_jiffies_update + tick_period
Just check whether now is before tick_next_period to figure out whether
jiffies need an update.
Add a comment why the intentional data race in the quick check is safe or
not so safe in a 32bit corner case and why we don't worry about it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.337366695@linutronix.de
tick_broadcast_setup_oneshot() accesses tick_next_period twice without any
serialization. This is wrong in two aspects:
- Reading it twice might make the broadcast data inconsistent if the
variable is updated concurrently.
- On 32bit systems the access might see an partial update
Protect it with jiffies_lock. That's safe as none of the callchains leading
up to this function can create a lock ordering violation:
timer interrupt
run_local_timers()
hrtimer_run_queues()
hrtimer_switch_to_hres()
tick_init_highres()
tick_switch_to_oneshot()
tick_broadcast_switch_to_oneshot()
or
tick_check_oneshot_change()
tick_nohz_switch_to_nohz()
tick_switch_to_oneshot()
tick_broadcast_switch_to_oneshot()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.061341507@linutronix.de
timens_on_fork() always return 0, and maybe not
need to judge the return value in copy_namespaces().
So make timens_on_fork() return nothing and do not
judge its return val in copy_namespaces().
Signed-off-by: Hui Su <sh_def@163.com>
Link: https://lore.kernel.org/r/20201117161750.GA45121@rlk
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The hrtimer_get_remaining() markup is documenting, instead,
__hrtimer_get_remaining(), as it is placed at the C file.
In order to properly document it, a kernel-doc markup is needed together
with the function prototype. So, add a new one, while preserving the
existing one, just fixing the function name.
The hrtimer_is_queued prototype has a typo: it is using
'=' instead of '-' to split: identifier - description
as required by kernel-doc markup.
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/9dc87808c2fd07b7e050bafcd033c5ef05808fea.1605521731.git.mchehab+huawei@kernel.org
No users outside of the timer code. Move the caller below this function to
avoid a pointless forward declaration.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The kernel-doc parser complains:
kernel/time/timekeeping.c:1543: warning: Function parameter or member
'ts' not described in 'read_persistent_clock64'
kernel/time/timekeeping.c:764: warning: Function parameter or member
'tk' not described in 'timekeeping_forward_now'
kernel/time/timekeeping.c:1331: warning: Function parameter or member
'ts' not described in 'timekeeping_inject_offset'
kernel/time/timekeeping.c:1331: warning: Excess function parameter 'tv'
description in 'timekeeping_inject_offset'
Add the missing parameter documentations and rename the 'tv' parameter of
timekeeping_inject_offset() to 'ts' so it matches the implemention.
[ tglx: Reworded a few docs and massaged changelog ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-5-git-send-email-alex.shi@linux.alibaba.com
Address the following kernel-doc markup warnings:
kernel/time/timekeeping.c:1563: warning: Function parameter or member
'wall_time' not described in 'read_persistent_wall_and_boot_offset'
kernel/time/timekeeping.c:1563: warning: Function parameter or member
'boot_offset' not described in 'read_persistent_wall_and_boot_offset'
The parameters are described but miss the leading '@' and the colon after
the parameter names.
[ tglx: Massaged changelog ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-6-git-send-email-alex.shi@linux.alibaba.com
The kernel-doc parser complains about:
kernel/time/timekeeping.c:651: warning: Function parameter or member
'nb' not described in 'pvclock_gtod_register_notifier'
kernel/time/timekeeping.c:670: warning: Function parameter or member
'nb' not described in 'pvclock_gtod_unregister_notifier'
Add the missing parameter explanations.
[ tglx: Massaged changelog ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-3-git-send-email-alex.shi@linux.alibaba.com
Alex reported the following warning:
kernel/time/timekeeping.c:464: warning: Function parameter or member
'tkf' not described in '__ktime_get_fast_ns'
which is not entirely correct because the documented function is
ktime_get_mono_fast_ns() which does not have a parameter, but the
kernel-doc parser looks at the function declaration which follows the
comment and complains about the missing parameter documentation.
Aside of that the documentation for the rest of the NMI safe accessors is
either incomplete or missing.
- Move the function documentation to the right place
- Fixup the references and inconsistencies
- Add the missing documentation for ktime_get_raw_fast_ns()
Reported-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Address the following warning:
kernel/time/timekeeping.c:415: warning: Function parameter or member
'tkf' not described in 'update_fast_timekeeper'
[ tglx: Remove the bogus ktime_get_mono_fast_ns() part ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-2-git-send-email-alex.shi@linux.alibaba.com
Various static functions in the timekeeping code have function comments
which pretend to be kernel-doc, but are incomplete and trigger parser
warnings.
As these functions are local to the timekeeping core code there is no need
to expose them via kernel-doc.
Remove the double star kernel-doc marker and remove excess newlines.
[ tglx: Massaged changelog and removed excess newlines ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-4-git-send-email-alex.shi@linux.alibaba.com
Address these kernel-doc warnings:
kernel/time/timeconv.c:79: warning: Function parameter or member
'totalsecs' not described in 'time64_to_tm'
kernel/time/timeconv.c:79: warning: Function parameter or member
'offset' not described in 'time64_to_tm'
kernel/time/timeconv.c:79: warning: Function parameter or member
'result' not described in 'time64_to_tm'
The parameters are described but lack colons after the parameter name.
[ tglx: Massaged changelog ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-1-git-send-email-alex.shi@linux.alibaba.com
PREEMPT_RT does not spin and wait until a running timer completes its
callback but instead it blocks on a sleeping lock to prevent a livelock in
the case that the task waiting for the callback completion preempted the
callback.
This cannot be done for timers flagged with TIMER_IRQSAFE. These timers can
be canceled from an interrupt disabled context even on RT kernels.
The expiry callback of such timers is invoked with interrupts disabled so
there is no need to use the expiry lock mechanism because obviously the
callback cannot be preempted even on RT kernels.
Do not use the timer_base::expiry_lock mechanism when waiting for a running
callback to complete if the timer is flagged with TIMER_IRQSAFE.
Also add a lockdep assertion for RT kernels to validate that the expiry
lock mechanism is always invoked in preemptible context.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201103190937.hga67rqhvknki3tp@linutronix.de
Use the "%ps" printk format string to resolve symbol names.
This works on all platforms, including ia64, ppc64 and parisc64 on which
one needs to dereference pointers to function descriptors instead of
function pointers.
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201104163401.GA3984@ls3530.fritz.box
Almost all machines use GENERIC_CLOCKEVENTS, so it feels wrong to
require each one to select that symbol manually.
Instead, enable it whenever CONFIG_LEGACY_TIMER_TICK is disabled as
a simplification. It should be possible to select both
GENERIC_CLOCKEVENTS and LEGACY_TIMER_TICK from an architecture now
and decide at runtime between the two.
For the clockevents arch-support.txt file, this means that additional
architectures are marked as TODO when they have at least one machine
that still uses LEGACY_TIMER_TICK, rather than being marked 'ok' when
at least one machine has been converted. This means that both m68k and
arm (for riscpc) revert to TODO.
At this point, we could just always enable CONFIG_GENERIC_CLOCKEVENTS
rather than leaving it off when not needed. I built an m68k
defconfig kernel (using gcc-10.1.0) and found that this would add
around 5.5KB in kernel image size:
text data bss dec hex filename
3861936 1092236 196656 5150828 4e986c obj-m68k/vmlinux-no-clockevent
3866201 1093832 196184 5156217 4ead79 obj-m68k/vmlinux-clockevent
On Arm (MACH_RPC), that difference appears to be twice as large,
around 11KB on top of an 6MB vmlinux.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
There are no more users of xtime_update aside from legacy_timer_tick(),
so fold it into that function and remove the declaration.
update_process_times() is now only called inside of the kernel/time/
code, so the declaration can be moved there.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
All platforms that currently do not use generic clockevents roughly call
the same set of functions in their timer interrupts: xtime_update(),
update_process_times() and profile_tick(), sometimes in a different
sequence.
Add a helper function that performs all three of them, to make the
callers more uniform and simplify the interface.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
With Arm EBSA110 gone, nothing uses it any more, so the corresponding
code and the Kconfig option can be removed.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
UBSAN reports:
Undefined behaviour in ./include/linux/time64.h:127:27
signed integer overflow:
17179869187 * 1000000000 cannot be represented in type 'long long int'
Call Trace:
timespec64_to_ns include/linux/time64.h:127 [inline]
set_cpu_itimer+0x65c/0x880 kernel/time/itimer.c:180
do_setitimer+0x8e/0x740 kernel/time/itimer.c:245
__x64_sys_setitimer+0x14c/0x2c0 kernel/time/itimer.c:336
do_syscall_64+0xa1/0x540 arch/x86/entry/common.c:295
Commit bd40a17576 ("y2038: itimer: change implementation to timespec64")
replaced the original conversion which handled time clamping correctly with
timespec64_to_ns() which has no overflow protection.
Fix it in timespec64_to_ns() as this is not necessarily limited to the
usage in itimers.
[ tglx: Added comment and adjusted the fixes tag ]
Fixes: 361a3bf005 ("time64: Add time64.h header and define struct timespec64")
Signed-off-by: Zeng Tao <prime.zeng@hisilicon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1598952616-6416-1-git-send-email-prime.zeng@hisilicon.com
Since sched_clock_read_begin() and sched_clock_read_retry() are called
by notrace function sched_clock(), they shouldn't be traceable either,
or else ftrace_graph_caller will run into a dead loop on the path
as below (arm for instance):
ftrace_graph_caller()
prepare_ftrace_return()
function_graph_enter()
ftrace_push_return_trace()
trace_clock_local()
sched_clock()
sched_clock_read_begin/retry()
Fixes: 1b86abc1c6 ("sched_clock: Expose struct clock_read_data")
Signed-off-by: Quanyang Wang <quanyang.wang@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200929082027.16787-1-quanyang.wang@windriver.com
Use the new api and associate the seqcounter to the jiffies_lock enabling
lockdep support - although for this particular case the write-side locking
and non-preemptibility are quite obvious.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201021190749.19363-1-dave@stgolabs.net
With the removal of the interrupt perturbations in previous random32
change (random32: make prandom_u32() output unpredictable), the PRNG
has become 100% deterministic again. While SipHash is expected to be
way more robust against brute force than the previous Tausworthe LFSR,
there's still the risk that whoever has even one temporary access to
the PRNG's internal state is able to predict all subsequent draws till
the next reseed (roughly every minute). This may happen through a side
channel attack or any data leak.
This patch restores the spirit of commit f227e3ec3b ("random32: update
the net random state on interrupt and activity") in that it will perturb
the internal PRNG's statee using externally collected noise, except that
it will not pick that noise from the random pool's bits nor upon
interrupt, but will rather combine a few elements along the Tx path
that are collectively hard to predict, such as dev, skb and txq
pointers, packet length and jiffies values. These ones are combined
using a single round of SipHash into a single long variable that is
mixed with the net_rand_state upon each invocation.
The operation was inlined because it produces very small and efficient
code, typically 3 xor, 2 add and 2 rol. The performance was measured
to be the same (even very slightly better) than before the switch to
SipHash; on a 6-core 12-thread Core i7-8700k equipped with a 40G NIC
(i40e), the connection rate dropped from 556k/s to 555k/s while the
SYN cookie rate grew from 5.38 Mpps to 5.45 Mpps.
Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/
Cc: George Spelvin <lkml@sdf.org>
Cc: Amit Klein <aksecurity@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: tytso@mit.edu
Cc: Florian Westphal <fw@strlen.de>
Cc: Marc Plumb <lkml.mplumb@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Non-cryptographic PRNGs may have great statistical properties, but
are usually trivially predictable to someone who knows the algorithm,
given a small sample of their output. An LFSR like prandom_u32() is
particularly simple, even if the sample is widely scattered bits.
It turns out the network stack uses prandom_u32() for some things like
random port numbers which it would prefer are *not* trivially predictable.
Predictability led to a practical DNS spoofing attack. Oops.
This patch replaces the LFSR with a homebrew cryptographic PRNG based
on the SipHash round function, which is in turn seeded with 128 bits
of strong random key. (The authors of SipHash have *not* been consulted
about this abuse of their algorithm.) Speed is prioritized over security;
attacks are rare, while performance is always wanted.
Replacing all callers of prandom_u32() is the quick fix.
Whether to reinstate a weaker PRNG for uses which can tolerate it
is an open question.
Commit f227e3ec3b ("random32: update the net random state on interrupt
and activity") was an earlier attempt at a solution. This patch replaces
it.
Reported-by: Amit Klein <aksecurity@gmail.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: tytso@mit.edu
Cc: Florian Westphal <fw@strlen.de>
Cc: Marc Plumb <lkml.mplumb@gmail.com>
Fixes: f227e3ec3b ("random32: update the net random state on interrupt and activity")
Signed-off-by: George Spelvin <lkml@sdf.org>
Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/
[ willy: partial reversal of f227e3ec3b5c; moved SIPROUND definitions
to prandom.h for later use; merged George's prandom_seed() proposal;
inlined siprand_u32(); replaced the net_rand_state[] array with 4
members to fix a build issue; cosmetic cleanups to make checkpatch
happy; fixed RANDOM32_SELFTEST build ]
Signed-off-by: Willy Tarreau <w@1wt.eu>
Pull RCU changes from Ingo Molnar:
- Debugging for smp_call_function()
- RT raw/non-raw lock ordering fixes
- Strict grace periods for KASAN
- New smp_call_function() torture test
- Torture-test updates
- Documentation updates
- Miscellaneous fixes
[ This doesn't actually pull the tag - I've dropped the last merge from
the RCU branch due to questions about the series. - Linus ]
* tag 'core-rcu-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (77 commits)
smp: Make symbol 'csd_bug_count' static
kernel/smp: Provide CSD lock timeout diagnostics
smp: Add source and destination CPUs to __call_single_data
rcu: Shrink each possible cpu krcp
rcu/segcblist: Prevent useless GP start if no CBs to accelerate
torture: Add gdb support
rcutorture: Allow pointer leaks to test diagnostic code
rcutorture: Hoist OOM registry up one level
refperf: Avoid null pointer dereference when buf fails to allocate
rcutorture: Properly synchronize with OOM notifier
rcutorture: Properly set rcu_fwds for OOM handling
torture: Add kvm.sh --help and update help message
rcutorture: Add CONFIG_PROVE_RCU_LIST to TREE05
torture: Update initrd documentation
rcutorture: Replace HTTP links with HTTPS ones
locktorture: Make function torture_percpu_rwsem_init() static
torture: document --allcpus argument added to the kvm.sh script
rcutorture: Output number of elapsed grace periods
rcutorture: Remove KCSAN stubs
rcu: Remove unused "cpu" parameter from rcu_report_qs_rdp()
...
- Add deadlock detection for recursive read-locks. The rationale is outlined
in:
224ec489d3: ("lockdep/Documention: Recursive read lock detection reasoning")
The main deadlock pattern we want to detect is:
TASK A: TASK B:
read_lock(X);
write_lock(X);
read_lock_2(X);
- Add "latch sequence counters" (seqcount_latch_t):
A sequence counter variant where the counter even/odd value is used to
switch between two copies of protected data. This allows the read path,
typically NMIs, to safely interrupt the write side critical section.
We utilize this new variant for sched-clock, and to make x86 TSC handling safer.
- Other seqlock cleanups, fixes and enhancements
- KCSAN updates
- LKMM updates
- Misc updates, cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+EX6QRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1g3gxAAkg+Jy/tcdRxlxlEDOQPFy1mBqvFmulNA
pGFPkB6dzqmAWF/NfOZSl4g/h/mqGYsq2V+PfK5E8Sq8DQ/yCmnLhjgVOHNUUliv
x0WWfOysNgJdtdf69NLYJufIQhxhyI0dwFHHoHIsCdGdGqjh2DVevQFPFTBjdpOc
BUZYo+u3gCaCdB6A2nmlcWYbEw8eVEHgv3qLG6dq46J0KJOV0HfliqJoU3EZqH+s
977LvEIo+THfuYWMo/Jepwngbi0y36KeeukOAdwm9fK196htBHIUR+YPPrAe+FWD
z+UXP5IS5XIw9V1sGLmUaC2m+6gpdW19jKBtlzPkxHXmJmsgiZdLLeytEh3WYey7
nzfH+9Jd4NyyZKucLssYkOjf6P5BxGKCyJ9LXb7vlSthIhiDdFNx47oKtW4hxjOY
jubsI3BP5c3G1sIBIjTS53XmOhJg+Z52FxTpQ33JswXn1wGidcHZiuNHZuU5q28p
+tn8rGb2NGJFb4Sw/Vp0yTcqIpEXf+vweiQoaxm6tc9BWzcVzZntGnh0i3gFotx/
VgKafN4+pgXgo6bwHbN2WBK2FGyvcXFaptfaOMZL48En82hJ1DI6EnBEYN+vuERQ
JcCXg+iHeeVbxoou7q8NJxITkBmEL5xNBIugXRRqNSP3fXLxKjFuPYqT84/e7yZi
elGTReYcq6g=
=Iq51
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
"These are the locking updates for v5.10:
- Add deadlock detection for recursive read-locks.
The rationale is outlined in commit 224ec489d3 ("lockdep/
Documention: Recursive read lock detection reasoning")
The main deadlock pattern we want to detect is:
TASK A: TASK B:
read_lock(X);
write_lock(X);
read_lock_2(X);
- Add "latch sequence counters" (seqcount_latch_t):
A sequence counter variant where the counter even/odd value is used
to switch between two copies of protected data. This allows the
read path, typically NMIs, to safely interrupt the write side
critical section.
We utilize this new variant for sched-clock, and to make x86 TSC
handling safer.
- Other seqlock cleanups, fixes and enhancements
- KCSAN updates
- LKMM updates
- Misc updates, cleanups and fixes"
* tag 'locking-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
lockdep: Revert "lockdep: Use raw_cpu_*() for per-cpu variables"
lockdep: Fix lockdep recursion
lockdep: Fix usage_traceoverflow
locking/atomics: Check atomic-arch-fallback.h too
locking/seqlock: Tweak DEFINE_SEQLOCK() kernel doc
lockdep: Optimize the memory usage of circular queue
seqlock: Unbreak lockdep
seqlock: PREEMPT_RT: Do not starve seqlock_t writers
seqlock: seqcount_LOCKNAME_t: Introduce PREEMPT_RT support
seqlock: seqcount_t: Implement all read APIs as statement expressions
seqlock: Use unique prefix for seqcount_t property accessors
seqlock: seqcount_LOCKNAME_t: Standardize naming convention
seqlock: seqcount latch APIs: Only allow seqcount_latch_t
rbtree_latch: Use seqcount_latch_t
x86/tsc: Use seqcount_latch_t
timekeeping: Use seqcount_latch_t
time/sched_clock: Use seqcount_latch_t
seqlock: Introduce seqcount_latch_t
mm/swap: Do not abuse the seqcount_t latching API
time/sched_clock: Use raw_read_seqcount_latch() during suspend
...
Core:
- Early boot support for the NMI safe timekeeper by utilizing
local_clock() up to the point where timekeeping is initialized. This
allows printk() to store multiple timestamps in the ringbuffer which is
useful for coordinating dmesg information across a fleet of machines.
- Provide a multi-timestamp accessor for printk()
- Make timer init more robust by checking for invalid timer flags.
- Comma vs. semicolon fixes
Drivers:
- Support for new platforms in existing drivers (SP804 and Renesas CMT)
- Comma vs. semicolon fixes
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+ETs4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoY/SEACva6YyL5F+GWT3aq1JBkQm55I0BSTS
KD6XKeT765c88wB+CGzi/huYtSlL9lUonZ+8h2x/Yd9ObYEBqKANWUpzbPFM3aMd
5UbUHE9rIAbkAm7Ry1/GAQHVLCI/qYXZwaWDi37iHIplXwgY5jSr8AbqHsSBqM92
e1GMrLo6dxKqVhqPmHYCiZYPNH/15KIgzzrM8Mx7/pxHZaF7rSF/sjFAQObb4UOM
3ec9dqaKLAmQD04gHG5Y0YDttqHtii1+Gzqi9886Sv9xIvlM020J4elrKQqFnuV3
GGXRL4Rkhr4rXCJlYYTxE+7kQ7SVQDaztnQEqQCYMi8+DlmsdZsVUU3stsIA8SoF
T6cC94g0ngoGbtA9Eb+WDT4eIlRPO+Ah/CsMnt78DkgNkI5Vc6U4cVrsWmGUtUDC
oi/5gJeM8gP/UIzA+N+n3NNpQjC6PaVS0wIQQt/wOpBY6v9GOrcLxwJCpMujW8XG
th8hXxANimAnyrI4osQhiYrY1zLnmJ7QB1PuuTkb8tyipGg+xkX68qD+oi6tKW+v
Fo+aMbxv5sadyEA/yqxKLTpnTaVG7bexqrnkFBOxzBS2l3/WLXG4rWN/xYhDWAnm
4xc5lDOEwSGKk+saU9rs4x1TsLi02Fn++DwuGV0GIqT0qPX+jWsNpVTwE43epaDO
Cpw7Cx+iGqsfkg==
=h6YX
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timekeeping updates from Thomas Gleixner:
"Updates for timekeeping, timers and related drivers:
Core:
- Early boot support for the NMI safe timekeeper by utilizing
local_clock() up to the point where timekeeping is initialized.
This allows printk() to store multiple timestamps in the ringbuffer
which is useful for coordinating dmesg information across a fleet
of machines.
- Provide a multi-timestamp accessor for printk()
- Make timer init more robust by checking for invalid timer flags.
- Comma vs semicolon fixes
Drivers:
- Support for new platforms in existing drivers (SP804 and Renesas
CMT)
- Comma vs semicolon fixes
* tag 'timers-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource/drivers/armada-370-xp: Use semicolons rather than commas to separate statements
clocksource/drivers/mps2-timer: Use semicolons rather than commas to separate statements
timers: Mask invalid flags in do_init_timer()
clocksource/drivers/sp804: Enable Hisilicon sp804 timer 64bit mode
clocksource/drivers/sp804: Add support for Hisilicon sp804 timer
clocksource/drivers/sp804: Support non-standard register offset
clocksource/drivers/sp804: Prepare for support non-standard register offset
clocksource/drivers/sp804: Remove a mismatched comment
clocksource/drivers/sp804: Delete the leading "__" of some functions
clocksource/drivers/sp804: Remove unused sp804_timer_disable() and timer-sp804.h
clocksource/drivers/sp804: Cleanup clk_get_sys()
dt-bindings: timer: renesas,cmt: Document r8a774e1 CMT support
dt-bindings: timer: renesas,cmt: Document r8a7742 CMT support
alarmtimer: Convert comma to semicolon
timekeeping: Provide multi-timestamp accessor to NMI safe timekeeper
timekeeping: Utilize local_clock() for NMI safe timekeeper during early boot
Pull v5.10 RCU changes from Paul E. McKenney:
- Debugging for smp_call_function().
- Strict grace periods for KASAN. The point of this series is to find
RCU-usage bugs, so the corresponding new RCU_STRICT_GRACE_PERIOD
Kconfig option depends on both DEBUG_KERNEL and RCU_EXPERT, and is
further disabled by dfefault. Finally, the help text includes
a goodly list of scary caveats.
- New smp_call_function() torture test.
- Torture-test updates.
- Documentation updates.
- Miscellaneous fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
do_init_timer() accepts any combination of timer flags handed in by the
caller without a sanity check, but only TIMER_DEFFERABLE, TIMER_PINNED and
TIMER_IRQSAFE are valid.
If the supplied flags have other bits set, this could result in
malfunction. If bits are set in TIMER_CPUMASK the first timer usage could
deference a cpu base which is outside the range of possible CPUs. If
TIMER_MIGRATION is set, then the switch_timer_base() will live lock.
Prevent that with a sanity check which warns when invalid flags are
supplied and masks them out.
[ tglx: Made it WARN_ON_ONCE() and added context to the changelog ]
Signed-off-by: Qianli Zhao <zhaoqianli@xiaomi.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/9d79a8aa4eb56713af7379f99f062dedabcde140.1597326756.git.zhaoqianli@xiaomi.com
This should make it harder for the kernel to corrupt the debug object
descriptor, used to call functions to fixup state and track debug objects,
by moving the structure to read-only memory.
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20200815004027.2046113-3-swboyd@chromium.org
Latch sequence counters are a multiversion concurrency control mechanism
where the seqcount_t counter even/odd value is used to switch between
two data storage copies. This allows the seqcount_t read path to safely
interrupt its write side critical section (e.g. from NMIs).
Initially, latch sequence counters were implemented as a single write
function, raw_write_seqcount_latch(), above plain seqcount_t. The read
path was expected to use plain seqcount_t raw_read_seqcount().
A specialized read function was later added, raw_read_seqcount_latch(),
and became the standardized way for latch read paths. Having unique read
and write APIs meant that latch sequence counters are basically a data
type of their own -- just inappropriately overloading plain seqcount_t.
The seqcount_latch_t data type was thus introduced at seqlock.h.
Use that new data type instead of seqcount_raw_spinlock_t. This ensures
that only latch-safe APIs are to be used with the sequence counter.
Note that the use of seqcount_raw_spinlock_t was not very useful in the
first place. Only the "raw_" subset of seqcount_t APIs were used at
timekeeping.c. This subset was created for contexts where lockdep cannot
be used. seqcount_LOCKTYPE_t's raison d'être -- verifying that the
seqcount_t writer serialization lock is held -- cannot thus be done.
References: 0c3351d451 ("seqlock: Use raw_ prefix instead of _no_lockdep")
References: 55f3560df9 ("seqlock: Extend seqcount API with associated locks")
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200827114044.11173-6-a.darwish@linutronix.de
Latch sequence counters have unique read and write APIs, and thus
seqcount_latch_t was recently introduced at seqlock.h.
Use that new data type instead of plain seqcount_t. This adds the
necessary type-safety and ensures only latching-safe seqcount APIs are
to be used.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200827114044.11173-5-a.darwish@linutronix.de
sched_clock uses seqcount_t latching to switch between two storage
places protected by the sequence counter. This allows it to have
interruptible, NMI-safe, seqcount_t write side critical sections.
Since 7fc26327b7 ("seqlock: Introduce raw_read_seqcount_latch()"),
raw_read_seqcount_latch() became the standardized way for seqcount_t
latch read paths. Due to the dependent load, it has one read memory
barrier less than the currently used raw_read_seqcount() API.
Use raw_read_seqcount_latch() for the suspend path.
Commit aadd6e5caa ("time/sched_clock: Use raw_read_seqcount_latch()")
missed changing that instance of raw_read_seqcount().
References: 1809bfa44e ("timers, sched/clock: Avoid deadlock during read from NMI")
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200715092345.GA231464@debian-buster-darwi.lab.linutronix.de
Replace a comma between expression statements by a semicolon.
Signed-off-by: Xu Wang <vulab@iscas.ac.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Stephen Boyd <sboyd@kernel.org>
Link: https://lore.kernel.org/r/20200818062651.21680-1-vulab@iscas.ac.cn
Currently, can_stop_idle_tick() prints "NOHZ: local_softirq_pending HH"
(where "HH" is the hexadecimal softirq vector number) when one or more
non-RCU softirq handlers are still enabled when checking to stop the
scheduler-tick interrupt. This message is not as enlightening as one
might hope, so this commit changes it to "NOHZ tick-stop error: Non-RCU
local softirq work is pending, handler #HH".
Reported-by: Andy Lutomirski <luto@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
printk wants to store various timestamps (MONOTONIC, REALTIME, BOOTTIME) to
make correlation of dmesg from several systems easier.
Provide an interface to retrieve all three timestamps in one go.
There are some caveats:
1) Boot time and late sleep time injection
Boot time is a racy access on 32bit systems if the sleep time injection
happens late during resume and not in timekeeping_resume(). That could be
avoided by expanding struct tk_read_base with boot offset for 32bit and
adding more overhead to the update. As this is a hard to observe once per
resume event which can be filtered with reasonable effort using the
accurate mono/real timestamps, it's probably not worth the trouble.
Aside of that it might be possible on 32 and 64 bit to observe the
following when the sleep time injection happens late:
CPU 0 CPU 1
timekeeping_resume()
ktime_get_fast_timestamps()
mono, real = __ktime_get_real_fast()
inject_sleep_time()
update boot offset
boot = mono + bootoffset;
That means that boot time already has the sleep time adjustment, but
real time does not. On the next readout both are in sync again.
Preventing this for 64bit is not really feasible without destroying the
careful cache layout of the timekeeper because the sequence count and
struct tk_read_base would then need two cache lines instead of one.
2) Suspend/resume timestamps
Access to the time keeper clock source is disabled accross the innermost
steps of suspend/resume. The accessors still work, but the timestamps
are frozen until time keeping is resumed which happens very early.
For regular suspend/resume there is no observable difference vs. sched
clock, but it might affect some of the nasty low level debug printks.
OTOH, access to sched clock is not guaranteed accross suspend/resume on
all systems either so it depends on the hardware in use.
If that turns out to be a real problem then this could be mitigated by
using sched clock in a similar way as during early boot. But it's not as
trivial as on early boot because it needs some careful protection
against the clock monotonic timestamp jumping backwards on resume.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20200814115512.159981360@linutronix.de
During early boot the NMI safe timekeeper returns 0 until the first
clocksource becomes available.
This prevents it from being used for printk or other facilities which today
use sched clock. sched clock can be available way before timekeeping is
initialized.
The obvious workaround for this is to utilize the early sched clock in the
default dummy clock read function until a clocksource becomes available.
After switching to the clocksource clock MONOTONIC and BOOTTIME will not
jump because the timekeeping_init() bases clock MONOTONIC on sched clock
and the offset between clock MONOTONIC and BOOTTIME is zero during boot.
Clock REALTIME cannot provide useful timestamps during early boot up to
the point where a persistent clock becomes available, which is either in
timekeeping_init() or later when the RTC driver which might depend on I2C
or other subsystems is initialized.
There is a minor difference to sched_clock() vs. suspend/resume. As the
timekeeper clock source might not be accessible during suspend, after
timekeeping_suspend() timestamps freeze up to the point where
timekeeping_resume() is invoked. OTOH this is true for some sched clock
implementations as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20200814115512.041422402@linutronix.de
Switch over time namespaces to use the newly introduced common lifetime
counter.
Currently every namespace type has its own lifetime counter which is stored
in the specific namespace struct. The lifetime counters are used
identically for all namespaces types. Namespaces may of course have
additional unrelated counters and these are not altered.
This introduces a common lifetime counter into struct ns_common. The
ns_common struct encompasses information that all namespaces share. That
should include the lifetime counter since its common for all of them.
It also allows us to unify the type of the counters across all namespaces.
Most of them use refcount_t but one uses atomic_t and at least one uses
kref. Especially the last one doesn't make much sense since it's just a
wrapper around refcount_t since 2016 and actually complicates cleanup
operations by having to use container_of() to cast the correct namespace
struct out of struct ns_common.
Having the lifetime counter for the namespaces in one place reduces
maintenance cost. Not just because after switching all namespaces over we
will have removed more code than we added but also because the logic is
more easily understandable and we indicate to the user that the basic
lifetime requirements for all namespaces are currently identical.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/r/159644982033.604812.9406853013011123238.stgit@localhost.localdomain
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
- Preparatory work to allow S390 to switch over to the generic VDSO
implementation.
S390 requires that the VDSO data pointer is handed in to the counter
read function when time namespace support is enabled. Adding the pointer
is a NOOP for all other architectures because the compiler is supposed
to optimize that out when it is unused in the architecture specific
inline. The change also solved a similar problem for MIPS which
fortunately has time namespaces not yet enabled.
S390 needs to update clock related VDSO data independent of the
timekeeping updates. This was solved so far with yet another sequence
counter in the S390 implementation. A better solution is to utilize the
already existing VDSO sequence count for this. The core code now exposes
helper functions which allow to serialize against the timekeeper code
and against concurrent readers.
S390 needs extra data for their clock readout function. The initial
common VDSO data structure did not provide a way to add that. It now has
an embedded architecture specific struct embedded which defaults to an
empty struct.
Doing this now avoids tree dependencies and conflicts post rc1 and
allows all other architectures which work on generic VDSO support to
work from a common upstream base.
- A trivial comment fix.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl82tGYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoRkKD/9YEYlYPQ4omRNVNIJRnalBH6OB/GOk
jTJ4RCvNP2ew6XtgEz5Yg1VqxrmJP4MLNCnMr7mQulfezUmslK0uJMlqZC4dgYth
PUhliLyFi5PK+CKaY+2NFlZMAoE53YlJ2FVPq114FUW4ASVbucDPXpmhO22cc2Iu
0RD3z9/+vQmA8lUqI6wPIFTC+euN+2kbkeZjt7BlkBAdiRBga5UnarFzetq0nWyc
kcprQ2qZfGLYzRY6dRuvNLz27Ta7SAlVGOGUDpWr9MISLDFQzHwhVATDNFW3hLGT
Fr5xNqStUVxxTzYkfCj/Podez0aR3por8bm9SoWxZn7oeLdLgTsDwn2pY0J0PjyB
wWz9lmqT1vzrHEfQH1YhHvycowl6azue9rT2ERWwZTdbADEwu6Zr8ufv2XHcMu0J
dyzSYa81cQrTeAwwdNjODs+QCTX+0G6u86AU2Xg+YgqkAywcAMvzcff/9D62hfv2
5BSz+0OeitQCnSvHILUPw4XT/2rNZfhlcmc4tkzoBFewzDsMEqWT19p+GgqcRNiU
5Jl4kGnaeHjP0e5Vn/ZJurKaF3YEJwgjkohDORloaqo0AXiYo1ANhDlKvSRu5hnU
GDIWOVu8ATXwkjMFcLQz7O5/J1MqJCkleIjSCDjLDhhMbLY/nR9L3QS9jbqiVVRN
nTZlSMF6HeQmew==
=y8Z5
-----END PGP SIGNATURE-----
Merge tag 'timers-urgent-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timekeeping updates from Thomas Gleixner:
"A set of timekeeping/VDSO updates:
- Preparatory work to allow S390 to switch over to the generic VDSO
implementation.
S390 requires that the VDSO data pointer is handed in to the
counter read function when time namespace support is enabled.
Adding the pointer is a NOOP for all other architectures because
the compiler is supposed to optimize that out when it is unused in
the architecture specific inline. The change also solved a similar
problem for MIPS which fortunately has time namespaces not yet
enabled.
S390 needs to update clock related VDSO data independent of the
timekeeping updates. This was solved so far with yet another
sequence counter in the S390 implementation. A better solution is
to utilize the already existing VDSO sequence count for this. The
core code now exposes helper functions which allow to serialize
against the timekeeper code and against concurrent readers.
S390 needs extra data for their clock readout function. The initial
common VDSO data structure did not provide a way to add that. It
now has an embedded architecture specific struct embedded which
defaults to an empty struct.
Doing this now avoids tree dependencies and conflicts post rc1 and
allows all other architectures which work on generic VDSO support
to work from a common upstream base.
- A trivial comment fix"
* tag 'timers-urgent-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Delete repeated words in comments
lib/vdso: Allow to add architecture-specific vdso data
timekeeping/vsyscall: Provide vdso_update_begin/end()
vdso/treewide: Add vdso_data pointer argument to __arch_get_hw_counter()
posix CPU timers into task work context. The tick interrupt is reduced to a
quick check which queues the work which is doing the heavy lifting before
returning to user space or going back to guest mode. Moving this out is
deferring the signal delivery slightly but posix CPU timers are inaccurate
by nature as they depend on the tick so there is no real damage. The
relevant test cases all passed.
This lifts the last offender for RT out of the hard interrupt context tick
handler, but it also has the general benefit that the actual heavy work is
accounted to the task/process and not to the tick interrupt itself.
Further optimizations are possible to break long sighand lock hold and
interrupt disabled (on !RT kernels) times when a massive amount of posix
CPU timers (which are unpriviledged) is armed for a task/process.
This is currently only enabled for x86 because the architecture has to
ensure that task work is handled in KVM before entering a guest, which was
just established for x86 with the new common entry/exit code which got
merged post 5.8 and is not the case for other KVM architectures.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl82sRkTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUs2D/9IZuALnVXtnvsOQh5uMRpxr/I6tpQm
KJSRkcSSne9rIV3dQlswDdaT7bGibd7pbKQOnlA0vc37vDwaJHEzmTOJGpHpHnMA
fHH2QP3LL2oZ1d7DG6eNJESCmaFBcaYXNbKtluOWQzHQhd9P8yHb4N+kzfxHK0Fr
uNd+cd6T658xPsNOLaLP3MG2Yz0rVt2F5c1v8n78NfibeKckYhPov8cwVrf2WGWr
XFHKorx4lXZ+vFwKEeZ7qQtqvAsLDixgMkFfY2GGSPhd1AMAaIUICZgsdEj2gg7H
YK+lwA0uoqPaXshOCmdkCLkfPA7BRmAySWE7jUPbIvRqM94Uapk9+4CqjgiH1Qs+
T8CWbcZk8tZACFrouhZkhrnjUTev/vE7oirsjn26DRY68/Ec7llpCOjvVA7HZWqN
vJ/BN35IufA7WEkf2TWNv5mg1zIlHI0O17zDifFq4g2VKFDVvQB0QYWlvug/eAu9
zYNX3WwA/IP8C9EOHZt54e6AKH8F3dT04oLFUkmRIcVKv1SEbdFufVfV7RavPEwK
P21JNXPDdd0aLUO7ksqyQN7pyR3puGXSCb5NAPtZY6UWSMN4G/3SVry3mJa/0BJd
mn+uYGpo9vmceh90vAHBoGIena/pez/PyRLWgGeT9jMjk95rNY0sEhaLEAOF9AR5
ck+3K2rY0S3wwQ==
=Reot
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more timer updates from Thomas Gleixner:
"A set of posix CPU timer changes which allows to defer the heavy work
of posix CPU timers into task work context. The tick interrupt is
reduced to a quick check which queues the work which is doing the
heavy lifting before returning to user space or going back to guest
mode. Moving this out is deferring the signal delivery slightly but
posix CPU timers are inaccurate by nature as they depend on the tick
so there is no real damage. The relevant test cases all passed.
This lifts the last offender for RT out of the hard interrupt context
tick handler, but it also has the general benefit that the actual
heavy work is accounted to the task/process and not to the tick
interrupt itself.
Further optimizations are possible to break long sighand lock hold and
interrupt disabled (on !RT kernels) times when a massive amount of
posix CPU timers (which are unpriviledged) is armed for a
task/process.
This is currently only enabled for x86 because the architecture has to
ensure that task work is handled in KVM before entering a guest, which
was just established for x86 with the new common entry/exit code which
got merged post 5.8 and is not the case for other KVM architectures"
* tag 'timers-core-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Select POSIX_CPU_TIMERS_TASK_WORK
posix-cpu-timers: Provide mechanisms to defer timer handling to task_work
posix-cpu-timers: Split run_posix_cpu_timers()
- Untangle the header spaghetti which causes build failures in various
situations caused by the lockdep additions to seqcount to validate that
the write side critical sections are non-preemptible.
- The seqcount associated lock debug addons which were blocked by the
above fallout.
seqcount writers contrary to seqlock writers must be externally
serialized, which usually happens via locking - except for strict per
CPU seqcounts. As the lock is not part of the seqcount, lockdep cannot
validate that the lock is held.
This new debug mechanism adds the concept of associated locks.
sequence count has now lock type variants and corresponding
initializers which take a pointer to the associated lock used for
writer serialization. If lockdep is enabled the pointer is stored and
write_seqcount_begin() has a lockdep assertion to validate that the
lock is held.
Aside of the type and the initializer no other code changes are
required at the seqcount usage sites. The rest of the seqcount API is
unchanged and determines the type at compile time with the help of
_Generic which is possible now that the minimal GCC version has been
moved up.
Adding this lockdep coverage unearthed a handful of seqcount bugs which
have been addressed already independent of this.
While generaly useful this comes with a Trojan Horse twist: On RT
kernels the write side critical section can become preemtible if the
writers are serialized by an associated lock, which leads to the well
known reader preempts writer livelock. RT prevents this by storing the
associated lock pointer independent of lockdep in the seqcount and
changing the reader side to block on the lock when a reader detects
that a writer is in the write side critical section.
- Conversion of seqcount usage sites to associated types and initializers.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8xmPYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoTuQEACyzQCjU8PgehPp9oMqWzaX2fcVyuZO
QU2yw6gmz2oTz3ZHUNwdW8UnzGh2OWosK3kDruoD9FtSS51lER1/ISfSPCGfyqxC
KTjOcB1Kvxwq/3LcCx7Zi3ZxWApat74qs3EhYhKtEiQ2Y9xv9rLq8VV1UWAwyxq0
eHpjlIJ6b6rbt+ARslaB7drnccOsdK+W/roNj4kfyt+gezjBfojGRdMGQNMFcpnv
shuTC+vYurAVIiVA/0IuizgHfwZiXOtVpjVoEWaxg6bBH6HNuYMYzdSa/YrlDkZs
n/aBI/Xkvx+Eacu8b1Zwmbzs5EnikUK/2dMqbzXKUZK61eV4hX5c2xrnr1yGWKTs
F/juh69Squ7X6VZyKVgJ9RIccVueqwR2EprXWgH3+RMice5kjnXH4zURp0GHALxa
DFPfB6fawcH3Ps87kcRFvjgm6FBo0hJ1AxmsW1dY4ACFB9azFa2euW+AARDzHOy2
VRsUdhL9CGwtPjXcZ/9Rhej6fZLGBXKr8uq5QiMuvttp4b6+j9FEfBgD4S6h8csl
AT2c2I9LcbWqyUM9P4S7zY/YgOZw88vHRuDH7tEBdIeoiHfrbSBU7EQ9jlAKq/59
f+Htu2Io281c005g7DEeuCYvpzSYnJnAitj5Lmp/kzk2Wn3utY1uIAVszqwf95Ul
81ppn2KlvzUK8g==
=7Gj+
-----END PGP SIGNATURE-----
Merge tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Thomas Gleixner:
"A set of locking fixes and updates:
- Untangle the header spaghetti which causes build failures in
various situations caused by the lockdep additions to seqcount to
validate that the write side critical sections are non-preemptible.
- The seqcount associated lock debug addons which were blocked by the
above fallout.
seqcount writers contrary to seqlock writers must be externally
serialized, which usually happens via locking - except for strict
per CPU seqcounts. As the lock is not part of the seqcount, lockdep
cannot validate that the lock is held.
This new debug mechanism adds the concept of associated locks.
sequence count has now lock type variants and corresponding
initializers which take a pointer to the associated lock used for
writer serialization. If lockdep is enabled the pointer is stored
and write_seqcount_begin() has a lockdep assertion to validate that
the lock is held.
Aside of the type and the initializer no other code changes are
required at the seqcount usage sites. The rest of the seqcount API
is unchanged and determines the type at compile time with the help
of _Generic which is possible now that the minimal GCC version has
been moved up.
Adding this lockdep coverage unearthed a handful of seqcount bugs
which have been addressed already independent of this.
While generally useful this comes with a Trojan Horse twist: On RT
kernels the write side critical section can become preemtible if
the writers are serialized by an associated lock, which leads to
the well known reader preempts writer livelock. RT prevents this by
storing the associated lock pointer independent of lockdep in the
seqcount and changing the reader side to block on the lock when a
reader detects that a writer is in the write side critical section.
- Conversion of seqcount usage sites to associated types and
initializers"
* tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
locking/seqlock, headers: Untangle the spaghetti monster
locking, arch/ia64: Reduce <asm/smp.h> header dependencies by moving XTP bits into the new <asm/xtp.h> header
x86/headers: Remove APIC headers from <asm/smp.h>
seqcount: More consistent seqprop names
seqcount: Compress SEQCNT_LOCKNAME_ZERO()
seqlock: Fold seqcount_LOCKNAME_init() definition
seqlock: Fold seqcount_LOCKNAME_t definition
seqlock: s/__SEQ_LOCKDEP/__SEQ_LOCK/g
hrtimer: Use sequence counter with associated raw spinlock
kvm/eventfd: Use sequence counter with associated spinlock
userfaultfd: Use sequence counter with associated spinlock
NFSv4: Use sequence counter with associated spinlock
iocost: Use sequence counter with associated spinlock
raid5: Use sequence counter with associated spinlock
vfs: Use sequence counter with associated spinlock
timekeeping: Use sequence counter with associated raw spinlock
xfrm: policy: Use sequence counters with associated lock
netfilter: nft_set_rbtree: Use sequence counter with associated rwlock
netfilter: conntrack: Use sequence counter with associated spinlock
sched: tasks: Use sequence counter with associated spinlock
...
Drop repeated words in kernel/time/. {when, one, into}
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <john.stultz@linaro.org>
Link: https://lore.kernel.org/r/20200807033248.8452-1-rdunlap@infradead.org
Running posix CPU timers in hard interrupt context has a few downsides:
- For PREEMPT_RT it cannot work as the expiry code needs to take
sighand lock, which is a 'sleeping spinlock' in RT. The original RT
approach of offloading the posix CPU timer handling into a high
priority thread was clumsy and provided no real benefit in general.
- For fine grained accounting it's just wrong to run this in context of
the timer interrupt because that way a process specific CPU time is
accounted to the timer interrupt.
- Long running timer interrupts caused by a large amount of expiring
timers which can be created and armed by unpriviledged user space.
There is no hard requirement to expire them in interrupt context.
If the signal is targeted at the task itself then it won't be delivered
before the task returns to user space anyway. If the signal is targeted at
a supervisor process then it might be slightly delayed, but posix CPU
timers are inaccurate anyway due to the fact that they are tied to the
tick.
Provide infrastructure to schedule task work which allows splitting the
posix CPU timer code into a quick check in interrupt context and a thread
context expiry and signal delivery function. This has to be enabled by
architectures as it requires that the architecture specific KVM
implementation handles pending task work before exiting to guest mode.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200730102337.783470146@linutronix.de
Split it up as a preparatory step to move the heavy lifting out of
interrupt context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200730102337.677439437@linutronix.de
Architectures can have the requirement to add additional architecture
specific data to the VDSO data page which needs to be updated independent
of the timekeeper updates.
To protect these updates vs. concurrent readers and a conflicting update
through timekeeping, provide helper functions to make such updates safe.
vdso_update_begin() takes the timekeeper_lock to protect against a
potential update from timekeeper code and increments the VDSO sequence
count to signal data inconsistency to concurrent readers. vdso_update_end()
makes the sequence count even again to signal data consistency and drops
the timekeeper lock.
[ Sven: Add interrupt disable handling to the functions ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200804150124.41692-3-svens@linux.ibm.com
- Prevent unnecessary timer softirq invocations by extending the tracking
of the next expiring timer in the timer wheel beyond the existing NOHZ
functionality. The tracking overhead at enqueue time is within the
noise, but on sensitive workloads the avoidance of the soft interrupt
invocation is a measurable improvement.
- The obligatory new clocksource driver for Ingenic X100 OST
- The usual fixes, improvements, cleanups and extensions for newer chip
variants all over the driver space.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8pD7ITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoRIXD/9VRiGKHIP27O0aoPj9HGFiZyY+bXbC
xv5HA9CTlJjG23JTZWg13Kk26l8+mzIJoH54nMnceVDdCwPb1e7iRFgefyHOgEW4
oKpJnwqvGOA9cvAnu8Tl9oNNILUoS2k0dHDeGICMCOqqjycUoKGRPpiizsbXZ08x
yOLUMktX0wtNnL6DOqOpvmfN+b3T8gO0fuNzgRcvcHZpamQxo7wN2P05mt9nmWLV
zfEwyhn33Xy9toGPZfkbCYNzVSI3fkMXuMDIkLo5jOtt18i06AeUZov8Z0V7xk9B
S1lu2HmP4PnX00/P7KB8LwtlhzhM/H7IxK4bxYJYlHmGcd2hJHjKdIfCg3bqo41d
YmsIelukI3jLvnrB6YXyWx3mt1a8p/i3zf/+Fwqs81qV/60FXhp0zD2QnltJEEC3
INXrb93CkC5vMqOs0otizL5cPnPhTS0fMe/GhnHlsteUXlqEeJ1HU5f+j0FFaIJA
h+dEPT57eJwDyuh6iWNHjvAI/HtLSBTsHC0CPWa+DxHKxzItZWpiVl+EEw5ofepX
zJyf8nxq1nOMDOROCiTxdbyp4yacDk3dak/trbRZCfX9fapSuzJFzDRCM0Ums2lH
lh12jR9nRZgKb5atC31UUpw4HYZfvcbj2NGr27SAx9b3hh5q6SRW8yowL8tta1lK
/Afs0OhmQS5Raw==
=uJnp
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Time, timers and related driver updates:
- Prevent unnecessary timer softirq invocations by extending the
tracking of the next expiring timer in the timer wheel beyond the
existing NOHZ functionality.
The tracking overhead at enqueue time is within the noise, but on
sensitive workloads the avoidance of the soft interrupt invocation
is a measurable improvement.
- The obligatory new clocksource driver for Ingenic X100 OST
- The usual fixes, improvements, cleanups and extensions for newer
chip variants all over the driver space"
* tag 'timers-core-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
timers: Recalculate next timer interrupt only when necessary
clocksource/drivers/ingenic: Add support for the Ingenic X1000 OST.
dt-bindings: timer: Add Ingenic X1000 OST bindings.
clocksource/drivers: Replace HTTP links with HTTPS ones
clocksource/drivers/nomadik-mtu: Handle 32kHz clock
clocksource/drivers/sh_cmt: Use "kHz" for kilohertz
clocksource/drivers/imx: Add support for i.MX TPM driver with ARM64
clocksource/drivers/ingenic: Add high resolution timer support for SMP/SMT.
timers: Lower base clock forwarding threshold
timers: Remove must_forward_clk
timers: Spare timer softirq until next expiry
timers: Expand clk forward logic beyond nohz
timers: Reuse next expiry cache after nohz exit
timers: Always keep track of next expiry
timers: Optimize _next_timer_interrupt() level iteration
timers: Add comments about calc_index() ceiling work
timers: Move trigger_dyntick_cpu() to enqueue_timer()
timers: Use only bucket expiry for base->next_expiry value
timers: Preserve higher bits of expiration on index calculation
clocksource/drivers/timer-atmel-tcb: Add sama5d2 support
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXygcLwAKCRCRxhvAZXjc
ohajAP4n5E3BmN0jpIviXT4eNhP62jzxJtxlVXtgGT3D8b1mpQEA5n8NSOlQLoAh
yUGsjtwR9xDcHMcrhXD3yN6eYJSK0A8=
=tn4R
-----END PGP SIGNATURE-----
Merge tag 'threads-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull thread updates from Christian Brauner:
"This contains the changes to add the missing support for attaching to
time namespaces via pidfds.
Last cycle setns() was changed to support attaching to multiple
namespaces atomically. This requires all namespaces to have a point of
no return where they can't fail anymore.
Specifically, <namespace-type>_install() is allowed to perform
permission checks and install the namespace into the new struct nsset
that it has been given but it is not allowed to make visible changes
to the affected task. Once <namespace-type>_install() returns,
anything that the given namespace type additionally requires to be
setup needs to ideally be done in a function that can't fail or if it
fails the failure must be non-fatal.
For time namespaces the relevant functions that fell into this
category were timens_set_vvar_page() and vdso_join_timens(). The
latter could still fail although it didn't need to. This function is
only implemented for vdso_join_timens() in current mainline. As
discussed on-list (cf. [1]), in order to make setns() support time
namespaces when attaching to multiple namespaces at once properly we
changed vdso_join_timens() to always succeed. So vdso_join_timens()
replaces the mmap_write_lock_killable() with mmap_read_lock().
Please note that arm is about to grow vdso support for time namespaces
(possibly this merge window). We've synced on this change and arm64
also uses mmap_read_lock(), i.e. makes vdso_join_timens() a function
that can't fail. Once the changes here and the arm64 changes have
landed, vdso_join_timens() should be turned into a void function so
it's obvious to callers and implementers on other architectures that
the expectation is that it can't fail.
We didn't do this right away because it would've introduced
unnecessary merge conflicts between the two trees for no major gain.
As always, tests included"
[1]: https://lore.kernel.org/lkml/20200611110221.pgd3r5qkjrjmfqa2@wittgenstein
* tag 'threads-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
tests: add CLONE_NEWTIME setns tests
nsproxy: support CLONE_NEWTIME with setns()
timens: add timens_commit() helper
timens: make vdso_join_timens() always succeed
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the values
become larger. This is now replaced with more precise arithmetics,
using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oJDURHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ixLg//bqWzFlfWirvngTgDxDnplwUTyKXmMCcq
R1IYhlyK2O5FxvhbRmdmW11W3yzyTPvgCs6Q/70negGaPNe2w1OxfxiK9NMKz5eu
M1LoXas7pL5g7Pr/ZxxHk/8VqJLV4t9MkodiiInmV6lTaznT3sU6a/kpYQjJyFnG
Tuu9jd6JhdRKmePDJnNmUBoGQ7JiOQDcX4HtkcQ3OA+An3624tmJzbW1yts+uj7J
ZWo2EY60RfbA9MxQXGPOaR/nAjngWs4Q6tddAh10mftsPq1gR2iFUKju1d31MQt/
RHLdiqJf+AyUC4popKG7a+7ilCKMBwPociSreTJNPyEUQ1X4AM3vUVk4yjUoiDph
k2WdsCF8/JRdhXg0NnrpPUqOaAbQj53EeXnitEb92E7WyTZgLOvAtpV//xZo6utp
2QHerfrQ9SoGQjz/ho78za5vQtV1x25yDhd+X4XV4QEhIy85G9/2JCpC/Kc/TXLf
OO7A4X69XztKTEJhP60g8ldCPUe4N2vbh1vKY6oAD8AFQVVNZ6n7375/Qa//b0/k
++hcYkPc2EK97/aBFdvzDgqb7aUo7Mtn2ibke16sQU4szulaoRuAHQG4jdGKMwbD
dk2VBoxyxeYFXWHsNneSe87+ha3sd0dSN0ul1EB/SlFrVELMvy634YXnMYGW8ima
PzyPB0ezpuA=
=PbO7
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the
values become larger. This is now replaced with more precise
arithmetics, using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
* tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched/doc: Factorize bits between sched-energy.rst & sched-capacity.rst
sched/doc: Document capacity aware scheduling
sched: Document arch_scale_*_capacity()
arm, arm64: Fix selection of CONFIG_SCHED_THERMAL_PRESSURE
Documentation/sysctl: Document uclamp sysctl knobs
sched/uclamp: Add a new sysctl to control RT default boost value
sched/uclamp: Fix a deadlock when enabling uclamp static key
sched: Remove duplicated tick_nohz_full_enabled() check
sched: Fix a typo in a comment
sched/uclamp: Remove unnecessary mutex_init()
arm, arm64: Select CONFIG_SCHED_THERMAL_PRESSURE
sched: Cleanup SCHED_THERMAL_PRESSURE kconfig entry
arch_topology, sched/core: Cleanup thermal pressure definition
trace/events/sched.h: fix duplicated word
linux/sched/mm.h: drop duplicated words in comments
smp: Fix a potential usage of stale nr_cpus
sched/fair: update_pick_idlest() Select group with lowest group_util when idle_cpus are equal
sched: nohz: stop passing around unused "ticks" parameter.
sched: Better document ttwu()
sched: Add a tracepoint to track rq->nr_running
...
- Removal of the tremendously unpopular read_barrier_depends() barrier,
which is a NOP on all architectures apart from Alpha, in favour of
allowing architectures to override READ_ONCE() and do whatever dance
they need to do to ensure address dependencies provide LOAD ->
LOAD/STORE ordering. This work also offers a potential solution if
compilers are shown to convert LOAD -> LOAD address dependencies into
control dependencies (e.g. under LTO), as weakly ordered architectures
will effectively be able to upgrade READ_ONCE() to smp_load_acquire().
The latter case is not used yet, but will be discussed further at LPC.
- Make the MSI/IOMMU input/output ID translation PCI agnostic, augment
the MSI/IOMMU ACPI/OF ID mapping APIs to accept an input ID
bus-specific parameter and apply the resulting changes to the device
ID space provided by the Freescale FSL bus.
- arm64 support for TLBI range operations and translation table level
hints (part of the ARMv8.4 architecture version).
- Time namespace support for arm64.
- Export the virtual and physical address sizes in vmcoreinfo for
makedumpfile and crash utilities.
- CPU feature handling cleanups and checks for programmer errors
(overlapping bit-fields).
- ACPI updates for arm64: disallow AML accesses to EFI code regions and
kernel memory.
- perf updates for arm64.
- Miscellaneous fixes and cleanups, most notably PLT counting
optimisation for module loading, recordmcount fix to ignore
relocations other than R_AARCH64_CALL26, CMA areas reserved for
gigantic pages on 16K and 64K configurations.
- Trivial typos, duplicate words.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl8oTcsACgkQa9axLQDI
XvEj6hAAkn39mO5xrR/Vhpg3DyFPk63ZlMSX9SsOeVyaLbovT6stTs1XAZXPpnkt
rV3gwACyGSrqH6+uey9pHgHJuPF2TdrGEVK08yVKo9KGW/6yXSIncdKFE4jUJ/WJ
wF5j7eMET2aGzcpm5AlzMmq6HOrKB8nZac9H8/x6H+Ox2WdgJkEjOkDvyqACUyum
N3FsTZkWj2pIkTXHNgDZ8KjxVLO8HlFaB2hkxFDl9NPlX2UTCQJ8Tg1KiPLafKaK
gUvH4usQDFdb5RU/UWogre37J4emO0ZTApZOyju+U+PMMWlWVHjZ4isUIS9zz/AE
JNZ23dnKZX2HrYa5p8HZx175zwj/vXUqUHCZPLvQXaAudCEhF8BVljPiG0e80FV5
GHFUgUbylKspp01I/9L+2JvsG96Mr0e+P3Sx7L2HTI42cmtoSa14+MpoSRj7zlft
Qcl8hfrVOjCjUnFRHa/1y1cGvnD9GbgnKJR7zgVxl9bD/Jd48r1HUtwRORZCzWFr
mRPVbPS72fWxMzMV9DZYJm02jJY9kLX2BMl49njbB8MhAhzOvrMVzoVVtMMeRFLR
XHeJpmg36W09FiRGe7LRXlkXIhCQzQG2bJfiphuupCfhjRAitPoq8I925G6Pig60
c8RWaXGU7PrEsdMNrL83vekvGKgqrkoFkRVtsCoQ2X6Hvu/XdYI=
=mh79
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 and cross-arch updates from Catalin Marinas:
"Here's a slightly wider-spread set of updates for 5.9.
Going outside the usual arch/arm64/ area is the removal of
read_barrier_depends() series from Will and the MSI/IOMMU ID
translation series from Lorenzo.
The notable arm64 updates include ARMv8.4 TLBI range operations and
translation level hint, time namespace support, and perf.
Summary:
- Removal of the tremendously unpopular read_barrier_depends()
barrier, which is a NOP on all architectures apart from Alpha, in
favour of allowing architectures to override READ_ONCE() and do
whatever dance they need to do to ensure address dependencies
provide LOAD -> LOAD/STORE ordering.
This work also offers a potential solution if compilers are shown
to convert LOAD -> LOAD address dependencies into control
dependencies (e.g. under LTO), as weakly ordered architectures will
effectively be able to upgrade READ_ONCE() to smp_load_acquire().
The latter case is not used yet, but will be discussed further at
LPC.
- Make the MSI/IOMMU input/output ID translation PCI agnostic,
augment the MSI/IOMMU ACPI/OF ID mapping APIs to accept an input ID
bus-specific parameter and apply the resulting changes to the
device ID space provided by the Freescale FSL bus.
- arm64 support for TLBI range operations and translation table level
hints (part of the ARMv8.4 architecture version).
- Time namespace support for arm64.
- Export the virtual and physical address sizes in vmcoreinfo for
makedumpfile and crash utilities.
- CPU feature handling cleanups and checks for programmer errors
(overlapping bit-fields).
- ACPI updates for arm64: disallow AML accesses to EFI code regions
and kernel memory.
- perf updates for arm64.
- Miscellaneous fixes and cleanups, most notably PLT counting
optimisation for module loading, recordmcount fix to ignore
relocations other than R_AARCH64_CALL26, CMA areas reserved for
gigantic pages on 16K and 64K configurations.
- Trivial typos, duplicate words"
Link: http://lkml.kernel.org/r/20200710165203.31284-1-will@kernel.org
Link: http://lkml.kernel.org/r/20200619082013.13661-1-lorenzo.pieralisi@arm.com
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (82 commits)
arm64: use IRQ_STACK_SIZE instead of THREAD_SIZE for irq stack
arm64/mm: save memory access in check_and_switch_context() fast switch path
arm64: sigcontext.h: delete duplicated word
arm64: ptrace.h: delete duplicated word
arm64: pgtable-hwdef.h: delete duplicated words
bus: fsl-mc: Add ACPI support for fsl-mc
bus/fsl-mc: Refactor the MSI domain creation in the DPRC driver
of/irq: Make of_msi_map_rid() PCI bus agnostic
of/irq: make of_msi_map_get_device_domain() bus agnostic
dt-bindings: arm: fsl: Add msi-map device-tree binding for fsl-mc bus
of/device: Add input id to of_dma_configure()
of/iommu: Make of_map_rid() PCI agnostic
ACPI/IORT: Add an input ID to acpi_dma_configure()
ACPI/IORT: Remove useless PCI bus walk
ACPI/IORT: Make iort_msi_map_rid() PCI agnostic
ACPI/IORT: Make iort_get_device_domain IRQ domain agnostic
ACPI/IORT: Make iort_match_node_callback walk the ACPI namespace for NC
arm64: enable time namespace support
arm64/vdso: Restrict splitting VVAR VMA
arm64/vdso: Handle faults on timens page
...
This modifies the first 32 bits out of the 128 bits of a random CPU's
net_rand_state on interrupt or CPU activity to complicate remote
observations that could lead to guessing the network RNG's internal
state.
Note that depending on some network devices' interrupt rate moderation
or binding, this re-seeding might happen on every packet or even almost
never.
In addition, with NOHZ some CPUs might not even get timer interrupts,
leaving their local state rarely updated, while they are running
networked processes making use of the random state. For this reason, we
also perform this update in update_process_times() in order to at least
update the state when there is user or system activity, since it's the
only case we care about.
Reported-by: Amit Klein <aksecurity@gmail.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A sequence counter write side critical section must be protected by some
form of locking to serialize writers. A plain seqcount_t does not
contain the information of which lock must be held when entering a write
side critical section.
Use the new seqcount_raw_spinlock_t data type, which allows to associate
a raw spinlock with the sequence counter. This enables lockdep to verify
that the raw spinlock used for writer serialization is held when the
write side critical section is entered.
If lockdep is disabled this lock association is compiled out and has
neither storage size nor runtime overhead.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-25-a.darwish@linutronix.de
A sequence counter write side critical section must be protected by some
form of locking to serialize writers. A plain seqcount_t does not
contain the information of which lock must be held when entering a write
side critical section.
Use the new seqcount_raw_spinlock_t data type, which allows to associate
a raw spinlock with the sequence counter. This enables lockdep to verify
that the raw spinlock used for writer serialization is held when the
write side critical section is entered.
If lockdep is disabled this lock association is compiled out and has
neither storage size nor runtime overhead.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-18-a.darwish@linutronix.de
The nohz tick code recalculates the timer wheel's next expiry on each idle
loop iteration.
On the other hand, the base next expiry is now always cached and updated
upon timer enqueue and execution. Only timer dequeue may leave
base->next_expiry out of date (but then its stale value won't ever go past
the actual next expiry to be recalculated).
Since recalculating the next_expiry isn't a free operation, especially when
the last wheel level is reached to find out that no timer has been enqueued
at all, reuse the next expiry cache when it is known to be reliable, which
it is most of the time.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200723151641.12236-1-frederic@kernel.org
The "ticks" parameter was added in commit 0f004f5a69 ("sched: Cure more
NO_HZ load average woes") since calc_global_nohz() was called and needed
the "ticks" argument.
But in commit c308b56b53 ("sched: Fix nohz load accounting -- again!")
it became unused as the function calc_global_nohz() dropped using "ticks".
Fixes: c308b56b53 ("sched: Fix nohz load accounting -- again!")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593628458-32290-1-git-send-email-paul.gortmaker@windriver.com
sched_clock uses seqcount_t latching to switch between two storage
places protected by the sequence counter. This allows it to have
interruptible, NMI-safe, seqcount_t write side critical sections.
Since 7fc26327b7 ("seqlock: Introduce raw_read_seqcount_latch()"),
raw_read_seqcount_latch() became the standardized way for seqcount_t
latch read paths. Due to the dependent load, it also has one read
memory barrier less than the currently used raw_read_seqcount() API.
Use raw_read_seqcount_latch() for the seqcount_t latch read path.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Link: https://lkml.kernel.org/r/20200625085745.GD117543@hirez.programming.kicks-ass.net
Link: https://lkml.kernel.org/r/20200715092345.GA231464@debian-buster-darwi.lab.linutronix.de
Link: https://lore.kernel.org/r/20200716051130.4359-3-leo.yan@linaro.org
References: 1809bfa44e ("timers, sched/clock: Avoid deadlock during read from NMI")
Signed-off-by: Will Deacon <will@kernel.org>
In order to support perf_event_mmap_page::cap_time features, an
architecture needs, aside from a userspace readable counter register,
to expose the exact clock data so that userspace can convert the
counter register into a correct timestamp.
Provide struct clock_read_data and two (seqcount) helpers so that
architectures (arm64 in specific) can expose the numbers to userspace.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Link: https://lore.kernel.org/r/20200716051130.4359-2-leo.yan@linaro.org
Signed-off-by: Will Deacon <will@kernel.org>
There is nothing that prevents from forwarding the base clock if it's one
jiffy off. The reason for this arbitrary limit of two jiffies is historical
and does not longer exist.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-13-frederic@kernel.org
There is no reason to keep this guard around. The code makes sure that
base->clk remains sane and won't be forwarded beyond jiffies nor set
backward.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-12-frederic@kernel.org
Now that the core timer infrastructure doesn't depend anymore on
periodic base->clk increments, even when the CPU is not in NO_HZ mode,
timer softirqs can be skipped until there are timers to expire.
Some spurious softirqs can still remain since base->next_expiry doesn't
keep track of canceled timers but this still reduces the number of softirqs
significantly: ~15 times less for HZ=1000 and ~5 times less for HZ=100.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-11-frederic@kernel.org
As for next_expiry, the base->clk catch up logic will be expanded beyond
NOHZ in order to avoid triggering useless softirqs.
If softirqs should only fire to expire pending timers, periodic base->clk
increments must be skippable for random amounts of time. Therefore prepare
to catch-up with missing updates whenever an up-to-date base clock is
needed.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-10-frederic@kernel.org
Now that the next expiry it tracked unconditionally when a timer is added,
this information can be reused on a tick firing after exiting nohz.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-9-frederic@kernel.org
So far next expiry was only tracked while the CPU was in nohz_idle mode
in order to cope with missing ticks that can't increment the base->clk
periodically anymore.
This logic is going to be expanded beyond nohz in order to spare timer
softirqs so do it unconditionally.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-8-frederic@kernel.org
If a level has a timer that expires before reaching the next level, there
is no need to iterate further.
The next level is reached when the 3 lower bits of the current level are
cleared. If the next event happens before/during that, the next levels
won't provide an earlier expiration.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-7-frederic@kernel.org
calc_index() adds 1 unit of the level granularity to the expiry passed
in parameter to ensure that the timer doesn't expire too early. Add a
comment to explain that and the resulting layout in the wheel.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-6-frederic@kernel.org
Consolidate the code by calling trigger_dyntick_cpu() from
enqueue_timer() instead of calling it from all its callers.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-5-frederic@kernel.org
The bucket expiry time is the effective expriy time of timers and is
greater than or equal to the requested timer expiry time. This is due
to the guarantee that timers never expire early and the reduced expiry
granularity in the secondary wheel levels.
When a timer is enqueued, trigger_dyntick_cpu() checks whether the
timer is the new first timer. This check compares next_expiry with
the requested timer expiry value and not with the effective expiry
value of the bucket into which the timer was queued.
Storing the requested timer expiry value in base->next_expiry can lead
to base->clk going backwards if the requested timer expiry value is
smaller than base->clk. Commit 30c66fc30e ("timer: Prevent base->clk
from moving backward") worked around this by preventing the store when
timer->expiry is before base->clk, but did not fix the underlying
problem.
Use the expiry value of the bucket into which the timer is queued to
do the new first timer check. This fixes the base->clk going backward
problem.
The workaround of commit 30c66fc30e ("timer: Prevent base->clk from
moving backward") in trigger_dyntick_cpu() is not longer necessary as the
timers bucket expiry is guaranteed to be greater than or equal base->clk.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200717140551.29076-4-frederic@kernel.org
The higher bits of the timer expiration are cropped while calling
calc_index() due to the implicit cast from unsigned long to unsigned int.
This loss shouldn't have consequences on the current code since all the
computation to calculate the index is done on the lower 32 bits.
However to prepare for returning the actual bucket expiration from
calc_index() in order to properly fix base->next_expiry updates, the higher
bits need to be preserved.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200717140551.29076-3-frederic@kernel.org
When an expiration delta falls into the last level of the wheel, that delta
has be compared against the maximum possible delay and reduced to fit in if
necessary.
However instead of comparing the delta against the maximum, the code
compares the actual expiry against the maximum. Then instead of fixing the
delta to fit in, it sets the maximum delta as the expiry value.
This can result in various undesired outcomes, the worst possible one
being a timer expiring 15 days ahead to fire immediately.
Fixes: 500462a9de ("timers: Switch to a non-cascading wheel")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200717140551.29076-2-frederic@kernel.org
When a timer is enqueued with a negative delta (ie: expiry is below
base->clk), it gets added to the wheel as expiring now (base->clk).
Yet the value that gets stored in base->next_expiry, while calling
trigger_dyntick_cpu(), is the initial timer->expires value. The
resulting state becomes:
base->next_expiry < base->clk
On the next timer enqueue, forward_timer_base() may accidentally
rewind base->clk. As a possible outcome, timers may expire way too
early, the worst case being that the highest wheel levels get spuriously
processed again.
To prevent from that, make sure that base->next_expiry doesn't get below
base->clk.
Fixes: a683f390b9 ("timers: Forward the wheel clock whenever possible")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200703010657.2302-1-frederic@kernel.org
So far setns() was missing time namespace support. This was partially due
to it simply not being implemented but also because vdso_join_timens()
could still fail which made switching to multiple namespaces atomically
problematic. This is now fixed so support CLONE_NEWTIME with setns()
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Serge Hallyn <serge@hallyn.com>
Cc: Dmitry Safonov <dima@arista.com>
Link: https://lore.kernel.org/r/20200706154912.3248030-4-christian.brauner@ubuntu.com
Wrap the calls to timens_set_vvar_page() and vdso_join_timens() in
timens_on_fork() and timens_install() in a new timens_commit() helper.
We'll use this helper in a follow-up patch in nsproxy too.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20200706154912.3248030-3-christian.brauner@ubuntu.com
As discussed on-list (cf. [1]), in order to make setns() support time
namespaces when attaching to multiple namespaces at once properly we
need to tweak vdso_join_timens() to always succeed. So switch
vdso_join_timens() to using a read lock and replacing
mmap_write_lock_killable() to mmap_read_lock() as we discussed.
Last cycle setns() was changed to support attaching to multiple namespaces
atomically. This requires all namespaces to have a point of no return where
they can't fail anymore. Specifically, <namespace-type>_install() is
allowed to perform permission checks and install the namespace into the new
struct nsset that it has been given but it is not allowed to make visible
changes to the affected task. Once <namespace-type>_install() returns
anything that the given namespace type requires to be setup in addition
needs to ideally be done in a function that can't fail or if it fails the
failure is not fatal. For time namespaces the relevant functions that fall
into this category are timens_set_vvar_page() and vdso_join_timens().
Currently the latter can fail but doesn't need to. With this we can go on
to implement a timens_commit() helper in a follow up patch to be used by
setns().
[1]: https://lore.kernel.org/lkml/20200611110221.pgd3r5qkjrjmfqa2@wittgenstein
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20200706154912.3248030-2-christian.brauner@ubuntu.com
Setting a tick dependency on any task, including the case where a task
sets that dependency on itself, triggers an IPI to all CPUs. That is
of course suboptimal but it had previously not been an issue because it
was only used by POSIX CPU timers on nohz_full, which apparently never
occurs in latency-sensitive workloads in production. (Or users of such
systems are suffering in silence on the one hand or venting their ire
on the wrong people on the other.)
But RCU now sets a task tick dependency on the current task in order
to fix stall issues that can occur during RCU callback processing.
Thus, RCU callback processing triggers frequent system-wide IPIs from
nohz_full CPUs. This is quite counter-productive, after all, avoiding
IPIs is what nohz_full is supposed to be all about.
This commit therefore optimizes tasks' self-setting of a task tick
dependency by using tick_nohz_full_kick() to avoid the system-wide IPI.
Instead, only the execution of the one task is disturbed, which is
acceptable given that this disturbance is well down into the noise
compared to the degree to which the RCU callback processing itself
disturbs execution.
Fixes: 6a949b7af8 (rcu: Force on tick when invoking lots of callbacks)
Reported-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: stable@kernel.org
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This all started about 6 month ago with the attempt to move the Posix CPU
timer heavy lifting out of the timer interrupt code and just have lockless
quick checks in that code path. Trivial 5 patches.
This unearthed an inconsistency in the KVM handling of task work and the
review requested to move all of this into generic code so other
architectures can share.
Valid request and solved with another 25 patches but those unearthed
inconsistencies vs. RCU and instrumentation.
Digging into this made it obvious that there are quite some inconsistencies
vs. instrumentation in general. The int3 text poke handling in particular
was completely unprotected and with the batched update of trace events even
more likely to expose to endless int3 recursion.
In parallel the RCU implications of instrumenting fragile entry code came
up in several discussions.
The conclusion of the X86 maintainer team was to go all the way and make
the protection against any form of instrumentation of fragile and dangerous
code pathes enforcable and verifiable by tooling.
A first batch of preparatory work hit mainline with commit d5f744f9a2.
The (almost) full solution introduced a new code section '.noinstr.text'
into which all code which needs to be protected from instrumentation of all
sorts goes into. Any call into instrumentable code out of this section has
to be annotated. objtool has support to validate this. Kprobes now excludes
this section fully which also prevents BPF from fiddling with it and all
'noinstr' annotated functions also keep ftrace off. The section, kprobes
and objtool changes are already merged.
The major changes coming with this are:
- Preparatory cleanups
- Annotating of relevant functions to move them into the noinstr.text
section or enforcing inlining by marking them __always_inline so the
compiler cannot misplace or instrument them.
- Splitting and simplifying the idtentry macro maze so that it is now
clearly separated into simple exception entries and the more
interesting ones which use interrupt stacks and have the paranoid
handling vs. CR3 and GS.
- Move quite some of the low level ASM functionality into C code:
- enter_from and exit to user space handling. The ASM code now calls
into C after doing the really necessary ASM handling and the return
path goes back out without bells and whistels in ASM.
- exception entry/exit got the equivivalent treatment
- move all IRQ tracepoints from ASM to C so they can be placed as
appropriate which is especially important for the int3 recursion
issue.
- Consolidate the declaration and definition of entry points between 32
and 64 bit. They share a common header and macros now.
- Remove the extra device interrupt entry maze and just use the regular
exception entry code.
- All ASM entry points except NMI are now generated from the shared header
file and the corresponding macros in the 32 and 64 bit entry ASM.
- The C code entry points are consolidated as well with the help of
DEFINE_IDTENTRY*() macros. This allows to ensure at one central point
that all corresponding entry points share the same semantics. The
actual function body for most entry points is in an instrumentable
and sane state.
There are special macros for the more sensitive entry points,
e.g. INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
They allow to put the whole entry instrumentation and RCU handling
into safe places instead of the previous pray that it is correct
approach.
- The INT3 text poke handling is now completely isolated and the
recursion issue banned. Aside of the entry rework this required other
isolation work, e.g. the ability to force inline bsearch.
- Prevent #DB on fragile entry code, entry relevant memory and disable
it on NMI, #MC entry, which allowed to get rid of the nested #DB IST
stack shifting hackery.
- A few other cleanups and enhancements which have been made possible
through this and already merged changes, e.g. consolidating and
further restricting the IDT code so the IDT table becomes RO after
init which removes yet another popular attack vector
- About 680 lines of ASM maze are gone.
There are a few open issues:
- An escape out of the noinstr section in the MCE handler which needs
some more thought but under the aspect that MCE is a complete
trainwreck by design and the propability to survive it is low, this was
not high on the priority list.
- Paravirtualization
When PV is enabled then objtool complains about a bunch of indirect
calls out of the noinstr section. There are a few straight forward
ways to fix this, but the other issues vs. general correctness were
more pressing than parawitz.
- KVM
KVM is inconsistent as well. Patches have been posted, but they have
not yet been commented on or picked up by the KVM folks.
- IDLE
Pretty much the same problems can be found in the low level idle code
especially the parts where RCU stopped watching. This was beyond the
scope of the more obvious and exposable problems and is on the todo
list.
The lesson learned from this brain melting exercise to morph the evolved
code base into something which can be validated and understood is that once
again the violation of the most important engineering principle
"correctness first" has caused quite a few people to spend valuable time on
problems which could have been avoided in the first place. The "features
first" tinkering mindset really has to stop.
With that I want to say thanks to everyone involved in contributing to this
effort. Special thanks go to the following people (alphabetical order):
Alexandre Chartre
Andy Lutomirski
Borislav Petkov
Brian Gerst
Frederic Weisbecker
Josh Poimboeuf
Juergen Gross
Lai Jiangshan
Macro Elver
Paolo Bonzini
Paul McKenney
Peter Zijlstra
Vitaly Kuznetsov
Will Deacon
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7j510THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoU2WD/4refvaNm08fG7aiVYem3JJzr0+Pq5O
/opwnI/1D973ApApj5W/Nd53sN5tVqOiXncSKgywRBWZxRCAGjVYypl9rjpvXu4l
HlMjhEKBmWkDryxxrM98Vr7hl3hnId5laR56oFfH+G4LUsItaV6Uak/HfXZ4Mq1k
iYVbEtl2CN+KJjvSgZ6Y1l853Ab5mmGvmeGNHHWCj8ZyjF3cOLoelDTQNnsb0wXM
crKXBcXJSsCWKYyJ5PTvB82crQCET7Su+LgwK06w/ZbW1//2hVIjSCiN5o/V+aRJ
06BZNMj8v9tfglkN8LEQvRIjTlnEQ2sq3GxbrVtA53zxkzbBCBJQ96w8yYzQX0ux
yhqQ/aIZJ1wTYEjJzSkftwLNMRHpaOUnKvJndXRKAYi+eGI7syF61qcZSYGKuAQ/
bK3b/CzU6QWr1235oTADxh4isEwxA0Pg5wtJCfDDOG0MJ9ALMSOGUkhoiz5EqpkU
mzFAwfG/Uj7hRjlkms7Yj2OjZfnU7iypj63GgpXghLjr5ksRFKEOMw8e1GXltVHs
zzwghUjqp2EPq0VOOQn3lp9lol5Prc3xfFHczKpO+CJW6Rpa4YVdqJmejBqJy/on
Hh/T/ST3wa2qBeAw89vZIeWiUJZZCsQ0f//+2hAbzJY45Y6DuR9vbTAPb9agRgOM
xg+YaCfpQqFc1A==
=llba
-----END PGP SIGNATURE-----
Merge tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 entry updates from Thomas Gleixner:
"The x86 entry, exception and interrupt code rework
This all started about 6 month ago with the attempt to move the Posix
CPU timer heavy lifting out of the timer interrupt code and just have
lockless quick checks in that code path. Trivial 5 patches.
This unearthed an inconsistency in the KVM handling of task work and
the review requested to move all of this into generic code so other
architectures can share.
Valid request and solved with another 25 patches but those unearthed
inconsistencies vs. RCU and instrumentation.
Digging into this made it obvious that there are quite some
inconsistencies vs. instrumentation in general. The int3 text poke
handling in particular was completely unprotected and with the batched
update of trace events even more likely to expose to endless int3
recursion.
In parallel the RCU implications of instrumenting fragile entry code
came up in several discussions.
The conclusion of the x86 maintainer team was to go all the way and
make the protection against any form of instrumentation of fragile and
dangerous code pathes enforcable and verifiable by tooling.
A first batch of preparatory work hit mainline with commit
d5f744f9a2 ("Pull x86 entry code updates from Thomas Gleixner")
That (almost) full solution introduced a new code section
'.noinstr.text' into which all code which needs to be protected from
instrumentation of all sorts goes into. Any call into instrumentable
code out of this section has to be annotated. objtool has support to
validate this.
Kprobes now excludes this section fully which also prevents BPF from
fiddling with it and all 'noinstr' annotated functions also keep
ftrace off. The section, kprobes and objtool changes are already
merged.
The major changes coming with this are:
- Preparatory cleanups
- Annotating of relevant functions to move them into the
noinstr.text section or enforcing inlining by marking them
__always_inline so the compiler cannot misplace or instrument
them.
- Splitting and simplifying the idtentry macro maze so that it is
now clearly separated into simple exception entries and the more
interesting ones which use interrupt stacks and have the paranoid
handling vs. CR3 and GS.
- Move quite some of the low level ASM functionality into C code:
- enter_from and exit to user space handling. The ASM code now
calls into C after doing the really necessary ASM handling and
the return path goes back out without bells and whistels in
ASM.
- exception entry/exit got the equivivalent treatment
- move all IRQ tracepoints from ASM to C so they can be placed as
appropriate which is especially important for the int3
recursion issue.
- Consolidate the declaration and definition of entry points between
32 and 64 bit. They share a common header and macros now.
- Remove the extra device interrupt entry maze and just use the
regular exception entry code.
- All ASM entry points except NMI are now generated from the shared
header file and the corresponding macros in the 32 and 64 bit
entry ASM.
- The C code entry points are consolidated as well with the help of
DEFINE_IDTENTRY*() macros. This allows to ensure at one central
point that all corresponding entry points share the same
semantics. The actual function body for most entry points is in an
instrumentable and sane state.
There are special macros for the more sensitive entry points, e.g.
INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
They allow to put the whole entry instrumentation and RCU handling
into safe places instead of the previous pray that it is correct
approach.
- The INT3 text poke handling is now completely isolated and the
recursion issue banned. Aside of the entry rework this required
other isolation work, e.g. the ability to force inline bsearch.
- Prevent #DB on fragile entry code, entry relevant memory and
disable it on NMI, #MC entry, which allowed to get rid of the
nested #DB IST stack shifting hackery.
- A few other cleanups and enhancements which have been made
possible through this and already merged changes, e.g.
consolidating and further restricting the IDT code so the IDT
table becomes RO after init which removes yet another popular
attack vector
- About 680 lines of ASM maze are gone.
There are a few open issues:
- An escape out of the noinstr section in the MCE handler which needs
some more thought but under the aspect that MCE is a complete
trainwreck by design and the propability to survive it is low, this
was not high on the priority list.
- Paravirtualization
When PV is enabled then objtool complains about a bunch of indirect
calls out of the noinstr section. There are a few straight forward
ways to fix this, but the other issues vs. general correctness were
more pressing than parawitz.
- KVM
KVM is inconsistent as well. Patches have been posted, but they
have not yet been commented on or picked up by the KVM folks.
- IDLE
Pretty much the same problems can be found in the low level idle
code especially the parts where RCU stopped watching. This was
beyond the scope of the more obvious and exposable problems and is
on the todo list.
The lesson learned from this brain melting exercise to morph the
evolved code base into something which can be validated and understood
is that once again the violation of the most important engineering
principle "correctness first" has caused quite a few people to spend
valuable time on problems which could have been avoided in the first
place. The "features first" tinkering mindset really has to stop.
With that I want to say thanks to everyone involved in contributing to
this effort. Special thanks go to the following people (alphabetical
order): Alexandre Chartre, Andy Lutomirski, Borislav Petkov, Brian
Gerst, Frederic Weisbecker, Josh Poimboeuf, Juergen Gross, Lai
Jiangshan, Macro Elver, Paolo Bonzin,i Paul McKenney, Peter Zijlstra,
Vitaly Kuznetsov, and Will Deacon"
* tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (142 commits)
x86/entry: Force rcu_irq_enter() when in idle task
x86/entry: Make NMI use IDTENTRY_RAW
x86/entry: Treat BUG/WARN as NMI-like entries
x86/entry: Unbreak __irqentry_text_start/end magic
x86/entry: __always_inline CR2 for noinstr
lockdep: __always_inline more for noinstr
x86/entry: Re-order #DB handler to avoid *SAN instrumentation
x86/entry: __always_inline arch_atomic_* for noinstr
x86/entry: __always_inline irqflags for noinstr
x86/entry: __always_inline debugreg for noinstr
x86/idt: Consolidate idt functionality
x86/idt: Cleanup trap_init()
x86/idt: Use proper constants for table size
x86/idt: Add comments about early #PF handling
x86/idt: Mark init only functions __init
x86/entry: Rename trace_hardirqs_off_prepare()
x86/entry: Clarify irq_{enter,exit}_rcu()
x86/entry: Remove DBn stacks
x86/entry: Remove debug IDT frobbing
x86/entry: Optimize local_db_save() for virt
...
- Unbreak paravirt VDSO clocks. While the VDSO code was moved into lib
for sharing a subtle check for the validity of paravirt clocks got
replaced. While the replacement works perfectly fine for bare metal as
the update of the VDSO clock mode is synchronous, it fails for paravirt
clocks because the hypervisor can invalidate them asynchronous. Bring
it back as an optional function so it does not inflict this on
architectures which are free of PV damage.
- Fix the jiffies to jiffies64 mapping on 64bit so it does not trigger
an ODR violation on newer compilers
- Three fixes for the SSBD and *IB* speculation mitigation maze to ensure
consistency, not disabling of some *IB* variants wrongly and to prevent
a rogue cross process shutdown of SSBD. All marked for stable.
- Add yet more CPU models to the splitlock detection capable list !@#%$!
- Bring the pr_info() back which tells that TSC deadline timer is enabled.
- Reboot quirk for MacBook6,1
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7ie1oTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofXrEACDD0mNBU2c4vQiR+n4d41PqW1p15DM
/wG7dYqYt2RdR6qOAspmNL5ilUP+L+eoT/86U9y0g4j3FtTREqyy6mpWE4MQzqaQ
eKWVoeYt7l9QbR1kP4eks1CN94OyVBUPo3P78UPruWMB11iyKjyrkEdsDmRSLOdr
6doqMFGHgowrQRwsLPFUt7b2lls6ssOSYgM/ChHi2Iga431ZuYYcRe2mNVsvqx3n
0N7QZlJ/LivXdCmdpe3viMBsDaomiXAloKUo+HqgrCLYFXefLtfOq09U7FpddYqH
ztxbGW/7gFn2HEbmdeaiufux263MdHtnjvdPhQZKHuyQmZzzxDNBFgOILSrBJb5y
qLYJGhMa0sEwMBM9MMItomNgZnOITQ3WGYAdSCg3mG3jK4EXzr6aQm/Qz5SI+Cte
bQKB2dgR53Gw/1uc7F5qMGQ2NzeUbKycT0ZbF3vkUPVh1kdU3juIntsovv2lFeBe
Rog/rZliT1xdHrGAHRbubb2/3v66CSodMoYz0eQtr241Oz0LGwnyFqLN3qcZVLDt
OtxHQ3bbaxevDEetJXfSh3CfHKNYMToAcszmGDse3MJxC7DL5AA51OegMa/GYOX6
r5J99MUsEzZQoQYyXFf1MjwgxH4CQK1xBBUXYaVG65AcmhT21YbNWnCbxgf7hW+V
hqaaUSig4V3NLw==
=VlBk
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more x86 updates from Thomas Gleixner:
"A set of fixes and updates for x86:
- Unbreak paravirt VDSO clocks.
While the VDSO code was moved into lib for sharing a subtle check
for the validity of paravirt clocks got replaced. While the
replacement works perfectly fine for bare metal as the update of
the VDSO clock mode is synchronous, it fails for paravirt clocks
because the hypervisor can invalidate them asynchronously.
Bring it back as an optional function so it does not inflict this
on architectures which are free of PV damage.
- Fix the jiffies to jiffies64 mapping on 64bit so it does not
trigger an ODR violation on newer compilers
- Three fixes for the SSBD and *IB* speculation mitigation maze to
ensure consistency, not disabling of some *IB* variants wrongly and
to prevent a rogue cross process shutdown of SSBD. All marked for
stable.
- Add yet more CPU models to the splitlock detection capable list
!@#%$!
- Bring the pr_info() back which tells that TSC deadline timer is
enabled.
- Reboot quirk for MacBook6,1"
* tag 'x86-urgent-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Unbreak paravirt VDSO clocks
lib/vdso: Provide sanity check for cycles (again)
clocksource: Remove obsolete ifdef
x86_64: Fix jiffies ODR violation
x86/speculation: PR_SPEC_FORCE_DISABLE enforcement for indirect branches.
x86/speculation: Prevent rogue cross-process SSBD shutdown
x86/speculation: Avoid force-disabling IBPB based on STIBP and enhanced IBRS.
x86/cpu: Add Sapphire Rapids CPU model number
x86/split_lock: Add Icelake microserver and Tigerlake CPU models
x86/apic: Make TSC deadline timer detection message visible
x86/reboot/quirks: Add MacBook6,1 reboot quirk
Mark the relevant functions noinstr, use the plain non-instrumented MSR
accessors. The only odd part is the instrumentation_begin()/end() pair around the
indirect machine_check_vector() call as objtool can't figure that out. The
possible invoked functions are annotated correctly.
Also use notrace variant of nmi_enter/exit(). If MCEs happen then hardware
latency tracing is the least of the worries.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.476734898@linutronix.de
CONFIG_GENERIC_VDSO_CLOCK_MODE was a transitional config switch which got
removed after all architectures got converted to the new storage model.
But the removal forgot to remove the #ifdef which guards the
vdso_clock_mode sanity check, which effectively disables the sanity check.
Remove it now.
Fixes: f86fd32db7 ("lib/vdso: Cleanup clock mode storage leftovers")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200606221531.845475036@linutronix.de
Pull proc updates from Eric Biederman:
"This has four sets of changes:
- modernize proc to support multiple private instances
- ensure we see the exit of each process tid exactly
- remove has_group_leader_pid
- use pids not tasks in posix-cpu-timers lookup
Alexey updated proc so each mount of proc uses a new superblock. This
allows people to actually use mount options with proc with no fear of
messing up another mount of proc. Given the kernel's internal mounts
of proc for things like uml this was a real problem, and resulted in
Android's hidepid mount options being ignored and introducing security
issues.
The rest of the changes are small cleanups and fixes that came out of
my work to allow this change to proc. In essence it is swapping the
pids in de_thread during exec which removes a special case the code
had to handle. Then updating the code to stop handling that special
case"
* 'proc-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
proc: proc_pid_ns takes super_block as an argument
remove the no longer needed pid_alive() check in __task_pid_nr_ns()
posix-cpu-timers: Replace __get_task_for_clock with pid_for_clock
posix-cpu-timers: Replace cpu_timer_pid_type with clock_pid_type
posix-cpu-timers: Extend rcu_read_lock removing task_struct references
signal: Remove has_group_leader_pid
exec: Remove BUG_ON(has_group_leader_pid)
posix-cpu-timer: Unify the now redundant code in lookup_task
posix-cpu-timer: Tidy up group_leader logic in lookup_task
proc: Ensure we see the exit of each process tid exactly once
rculist: Add hlists_swap_heads_rcu
proc: Use PIDTYPE_TGID in next_tgid
Use proc_pid_ns() to get pid_namespace from the proc superblock
proc: use named enums for better readability
proc: use human-readable values for hidepid
docs: proc: add documentation for "hidepid=4" and "subset=pid" options and new mount behavior
proc: add option to mount only a pids subset
proc: instantiate only pids that we can ptrace on 'hidepid=4' mount option
proc: allow to mount many instances of proc in one pid namespace
proc: rename struct proc_fs_info to proc_fs_opts
Pull networking updates from David Miller:
1) Allow setting bluetooth L2CAP modes via socket option, from Luiz
Augusto von Dentz.
2) Add GSO partial support to igc, from Sasha Neftin.
3) Several cleanups and improvements to r8169 from Heiner Kallweit.
4) Add IF_OPER_TESTING link state and use it when ethtool triggers a
device self-test. From Andrew Lunn.
5) Start moving away from custom driver versions, use the globally
defined kernel version instead, from Leon Romanovsky.
6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin.
7) Allow hard IRQ deferral during NAPI, from Eric Dumazet.
8) Add sriov and vf support to hinic, from Luo bin.
9) Support Media Redundancy Protocol (MRP) in the bridging code, from
Horatiu Vultur.
10) Support netmap in the nft_nat code, from Pablo Neira Ayuso.
11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina
Dubroca. Also add ipv6 support for espintcp.
12) Lots of ReST conversions of the networking documentation, from Mauro
Carvalho Chehab.
13) Support configuration of ethtool rxnfc flows in bcmgenet driver,
from Doug Berger.
14) Allow to dump cgroup id and filter by it in inet_diag code, from
Dmitry Yakunin.
15) Add infrastructure to export netlink attribute policies to
userspace, from Johannes Berg.
16) Several optimizations to sch_fq scheduler, from Eric Dumazet.
17) Fallback to the default qdisc if qdisc init fails because otherwise
a packet scheduler init failure will make a device inoperative. From
Jesper Dangaard Brouer.
18) Several RISCV bpf jit optimizations, from Luke Nelson.
19) Correct the return type of the ->ndo_start_xmit() method in several
drivers, it's netdev_tx_t but many drivers were using
'int'. From Yunjian Wang.
20) Add an ethtool interface for PHY master/slave config, from Oleksij
Rempel.
21) Add BPF iterators, from Yonghang Song.
22) Add cable test infrastructure, including ethool interfaces, from
Andrew Lunn. Marvell PHY driver is the first to support this
facility.
23) Remove zero-length arrays all over, from Gustavo A. R. Silva.
24) Calculate and maintain an explicit frame size in XDP, from Jesper
Dangaard Brouer.
25) Add CAP_BPF, from Alexei Starovoitov.
26) Support terse dumps in the packet scheduler, from Vlad Buslov.
27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei.
28) Add devm_register_netdev(), from Bartosz Golaszewski.
29) Minimize qdisc resets, from Cong Wang.
30) Get rid of kernel_getsockopt and kernel_setsockopt in order to
eliminate set_fs/get_fs calls. From Christoph Hellwig.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits)
selftests: net: ip_defrag: ignore EPERM
net_failover: fixed rollback in net_failover_open()
Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv"
Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv"
vmxnet3: allow rx flow hash ops only when rss is enabled
hinic: add set_channels ethtool_ops support
selftests/bpf: Add a default $(CXX) value
tools/bpf: Don't use $(COMPILE.c)
bpf, selftests: Use bpf_probe_read_kernel
s390/bpf: Use bcr 0,%0 as tail call nop filler
s390/bpf: Maintain 8-byte stack alignment
selftests/bpf: Fix verifier test
selftests/bpf: Fix sample_cnt shared between two threads
bpf, selftests: Adapt cls_redirect to call csum_level helper
bpf: Add csum_level helper for fixing up csum levels
bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf()
crypto/chtls: IPv6 support for inline TLS
Crypto/chcr: Fixes a coccinile check error
Crypto/chcr: Fixes compilations warnings
...
Add a simple struct nsset. It holds all necessary pieces to switch to a new
set of namespaces without leaving a task in a half-switched state which we
will make use of in the next patch. This patch switches the existing setns
logic over without causing a change in setns() behavior. This brings
setns() closer to how unshare() works(). The prepare_ns() function is
responsible to prepare all necessary information. This has two reasons.
First it minimizes dependencies between individual namespaces, i.e. all
install handler can expect that all fields are properly initialized
independent in what order they are called in. Second, this makes the code
easier to maintain and easier to follow if it needs to be changed.
The prepare_ns() helper will only be switched over to use a flags argument
in the next patch. Here it will still use nstype as a simple integer
argument which was argued would be clearer. I'm not particularly
opinionated about this if it really helps or not. The struct nsset itself
already contains the flags field since its name already indicates that it
can contain information required by different namespaces. None of this
should have functional consequences.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Serge Hallyn <serge@hallyn.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Serge Hallyn <serge@hallyn.com>
Cc: Jann Horn <jannh@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Link: https://lore.kernel.org/r/20200505140432.181565-2-christian.brauner@ubuntu.com
Now that the codes store references to pids instead of referendes to
tasks. Looking up a task for a clock instead of looking up a struct
pid makes the code more difficult to verify it is correct than
necessary.
In posix_cpu_timers_create get_task_pid can race with release_task for
threads and return a NULL pid. As put_pid and cpu_timer_task_rcu
handle NULL pids just fine the code works without problems but it is
an extra case to consider and keep in mind while verifying and
modifying the code.
There are races with de_thread to consider that only don't apply
because thread clocks are only allowed for threads in the same
thread_group.
So instead of leaving a burden for people making modification to the
code in the future return a rcu protected struct pid for the clock
instead.
The logic for __get_task_for_pid and lookup_task has been folded into
the new function pid_for_clock with the only change being the logic
has been modified from working on a task to working on a pid that
will be returned.
In posix_cpu_clock_get instead of calling pid_for_clock checking the
result and then calling pid_task to get the task. The result of
pid_for_clock is fed directly into pid_task. This is safe because
pid_task handles NULL pids. As such an extra error check was
unnecessary.
Instead of hiding the flag that enables the special clock_gettime
handling, I have made the 3 callers just pass the flag in themselves.
That is less code and seems just as simple to work with as the
wrapper functions.
Historically the clock_gettime special case of allowing a process
clock to be found by the thread id did not even exist [33ab0fec33]
but Thomas Gleixner reports that he has found code that uses that
functionality [55e8c8eb2c].
Link: https://lkml.kernel.org/r/87zhaxqkwa.fsf@nanos.tec.linutronix.de/
Ref: 33ab0fec33 ("posix-timers: Consolidate posix_cpu_clock_get()")
Ref: 55e8c8eb2c ("posix-cpu-timers: Store a reference to a pid not a task")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Taking a clock and returning a pid_type is a more general and
a superset of taking a timer and returning a pid_type.
Perform this generalization so that future changes may use
this code on clocks as well as timers.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Now that the code stores of pid references it is no longer necessary
or desirable to take a reference on task_struct in __get_task_for_clock.
Instead extend the scope of rcu_read_lock and remove the reference
counting on struct task_struct entirely.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Now that both !thread paths through lookup_task call
thread_group_leader, unify them into the single test at the end of
lookup_task.
This unification just makes it clear what is happening in the gettime
special case of lookup_task.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Replace has_group_leader_pid with thread_group_leader. Years ago Oleg
suggested changing thread_group_leader to has_group_leader_pid to handle
races. Looking at the code then and now I don't see how it ever helped.
Especially as then the code really did need to be the
thread_group_leader.
Today it doesn't make a difference if thread_group_leader races with
de_thread as the task returned from lookup_task in the non-thread case is
just used to find values in task->signal.
Since the races with de_thread have never been handled revert
has_group_header_pid to thread_group_leader for clarity.
Update the comment in lookup_task to remove implementation details that
are no longer true and to mention task->signal instead of task->sighand,
as the relevant cpu timer details are all in task->signal.
Ref: 55e8c8eb2c ("posix-cpu-timers: Store a reference to a pid not a task")
Ref: c0deae8c95 ("posix-cpu-timers: Rcu_read_lock/unlock protect find_task_by_vpid call")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull in Christoph Hellwig's series that changes the sysctl's ->proc_handler
methods to take kernel pointers instead. It gets rid of the set_fs address
space overrides used by BPF. As per discussion, pull in the feature branch
into bpf-next as it relates to BPF sysctl progs.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200427071508.GV23230@ZenIV.linux.org.uk/T/
Instead of having all the sysctl handlers deal with user pointers, which
is rather hairy in terms of the BPF interaction, copy the input to and
from userspace in common code. This also means that the strings are
always NUL-terminated by the common code, making the API a little bit
safer.
As most handler just pass through the data to one of the common handlers
a lot of the changes are mechnical.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Michael Kerrisk suggested to replace numeric clock IDs with symbolic names.
Now the content of these files looks like this:
$ cat /proc/774/timens_offsets
monotonic 864000 0
boottime 1728000 0
For setting offsets, both representations of clocks (numeric and symbolic)
can be used.
As for compatibility, it is acceptable to change things as long as
userspace doesn't care. The format of timens_offsets files is very new and
there are no userspace tools yet which rely on this format.
But three projects crun, util-linux and criu rely on the interface of
setting time offsets and this is why it's required to continue supporting
the numeric clock IDs on write.
Fixes: 04a8682a71 ("fs/proc: Introduce /proc/pid/timens_offsets")
Suggested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200411154031.642557-1-avagin@gmail.com
Looking at the contents of the /proc/PID/ns/time_for_children symlink shows
an anomaly:
$ ls -l /proc/self/ns/* |awk '{print $9, $10, $11}'
...
/proc/self/ns/pid -> pid:[4026531836]
/proc/self/ns/pid_for_children -> pid:[4026531836]
/proc/self/ns/time -> time:[4026531834]
/proc/self/ns/time_for_children -> time_for_children:[4026531834]
/proc/self/ns/user -> user:[4026531837]
...
The reference for 'time_for_children' should be a 'time' namespace, just as
the reference for 'pid_for_children' is a 'pid' namespace. In other words,
the above time_for_children link should read:
/proc/self/ns/time_for_children -> time:[4026531834]
Fixes: 769071ac9f ("ns: Introduce Time Namespace")
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dmitry Safonov <dima@arista.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Andrei Vagin <avagin@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/a2418c48-ed80-3afe-116e-6611cb799557@gmail.com
A hrtimer can be released in its callback, but lockdep_hrtimer_exit()
dereferences the pointer after the callback returns, i.e. a potential use
after free.
Retrieve the context in which the hrtimer expires before the callback is
invoked and use it in lockdep_hrtimer_exit().
Fixes: 40db173965 ("lockdep: Add hrtimer context tracing bits")
Reported-by: syzbot+62c155c276e580cfb606@syzkaller.appspotmail.com
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200331201849.fkp2siy3vcdqvqlz@linutronix.de
Core:
- Consolidation of the vDSO build infrastructure to address the
difficulties of cross-builds for ARM64 compat vDSO libraries by
restricting the exposure of header content to the vDSO build.
This is achieved by splitting out header content into separate
headers. which contain only the minimaly required information which is
necessary to build the vDSO. These new headers are included from the
kernel headers and the vDSO specific files.
- Enhancements to the generic vDSO library allowing more fine grained
control over the compiled in code, further reducing architecture
specific storage and preparing for adopting the generic library by PPC.
- Cleanup and consolidation of the exit related code in posix CPU timers.
- Small cleanups and enhancements here and there
Drivers:
- The obligatory new drivers: Ingenic JZ47xx and X1000 TCU support
- Correct the clock rate of PIT64b global clock
- setup_irq() cleanup
- Preparation for PWM and suspend support for the TI DM timer
- Expand the fttmr010 driver to support ast2600 systems
- The usual small fixes, enhancements and cleanups all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B+QETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofJ5D/94s5fpaqiuNcaAsLq2D3DRIrTnqxx7
yEeAOPcbYV1bM1SgY/M83L5yGc2S8ny787e26abwRTCZhZV3eAmRTphIFFIZR0Xk
xS+i67odscbdJTRtztKj3uQ9rFxefszRuphyaa89pwSY9nnyMWLcahGSQOGs0LJK
hvmgwPjyM1drNfPxgPiaFg7vDr2XxNATpQr/FBt+BhelvVan8TlAfrkcNPiLr++Y
Axz925FP7jMaRRbZ1acji34gLiIAZk0jLCUdbix7YkPrqDB4GfO+v8Vez+fGClbJ
uDOYeR4r1+Be/BtSJtJ2tHqtsKCcAL6agtaE2+epZq5HbzaZFRvBFaxgFNF8WVcn
3FFibdEMdsRNfZTUVp5wwgOLN0UIqE/7LifE12oLEL2oFB5H2PiNEUw3E02XHO11
rL3zgHhB6Ke1sXKPCjSGdmIQLbxZmV5kOlQFy7XuSeo5fmRapVzKNffnKcftIliF
1HNtZbgdA+3tdxMFCqoo1QX+kotl9kgpslmdZ0qHAbaRb3xqLoSskbqEjFRMuSCC
8bjJrwboD9T5GPfwodSCgqs/58CaSDuqPFbIjCay+p90Fcg6wWAkZtyG04ZLdPRc
GgNNdN4gjTD9bnrRi8cH47z1g8OO4vt4K4SEbmjo8IlDW+9jYMxuwgR88CMeDXd7
hu7aKsr2I2q/WQ==
=5o9G
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timekeeping and timer updates from Thomas Gleixner:
"Core:
- Consolidation of the vDSO build infrastructure to address the
difficulties of cross-builds for ARM64 compat vDSO libraries by
restricting the exposure of header content to the vDSO build.
This is achieved by splitting out header content into separate
headers. which contain only the minimaly required information which
is necessary to build the vDSO. These new headers are included from
the kernel headers and the vDSO specific files.
- Enhancements to the generic vDSO library allowing more fine grained
control over the compiled in code, further reducing architecture
specific storage and preparing for adopting the generic library by
PPC.
- Cleanup and consolidation of the exit related code in posix CPU
timers.
- Small cleanups and enhancements here and there
Drivers:
- The obligatory new drivers: Ingenic JZ47xx and X1000 TCU support
- Correct the clock rate of PIT64b global clock
- setup_irq() cleanup
- Preparation for PWM and suspend support for the TI DM timer
- Expand the fttmr010 driver to support ast2600 systems
- The usual small fixes, enhancements and cleanups all over the
place"
* tag 'timers-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
Revert "clocksource/drivers/timer-probe: Avoid creating dead devices"
vdso: Fix clocksource.h macro detection
um: Fix header inclusion
arm64: vdso32: Enable Clang Compilation
lib/vdso: Enable common headers
arm: vdso: Enable arm to use common headers
x86/vdso: Enable x86 to use common headers
mips: vdso: Enable mips to use common headers
arm64: vdso32: Include common headers in the vdso library
arm64: vdso: Include common headers in the vdso library
arm64: Introduce asm/vdso/processor.h
arm64: vdso32: Code clean up
linux/elfnote.h: Replace elf.h with UAPI equivalent
scripts: Fix the inclusion order in modpost
common: Introduce processor.h
linux/ktime.h: Extract common header for vDSO
linux/jiffies.h: Extract common header for vDSO
linux/time64.h: Extract common header for vDSO
linux/time32.h: Extract common header for vDSO
linux/time.h: Extract common header for vDSO
...
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- Continued user-access cleanups in the futex code.
- percpu-rwsem rewrite that uses its own waitqueue and atomic_t
instead of an embedded rwsem. This addresses a couple of
weaknesses, but the primary motivation was complications on the -rt
kernel.
- Introduce raw lock nesting detection on lockdep
(CONFIG_PROVE_RAW_LOCK_NESTING=y), document the raw_lock vs. normal
lock differences. This too originates from -rt.
- Reuse lockdep zapped chain_hlocks entries, to conserve RAM
footprint on distro-ish kernels running into the "BUG:
MAX_LOCKDEP_CHAIN_HLOCKS too low!" depletion of the lockdep
chain-entries pool.
- Misc cleanups, smaller fixes and enhancements - see the changelog
for details"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (55 commits)
fs/buffer: Make BH_Uptodate_Lock bit_spin_lock a regular spinlock_t
thermal/x86_pkg_temp: Make pkg_temp_lock a raw_spinlock_t
Documentation/locking/locktypes: Minor copy editor fixes
Documentation/locking/locktypes: Further clarifications and wordsmithing
m68knommu: Remove mm.h include from uaccess_no.h
x86: get rid of user_atomic_cmpxchg_inatomic()
generic arch_futex_atomic_op_inuser() doesn't need access_ok()
x86: don't reload after cmpxchg in unsafe_atomic_op2() loop
x86: convert arch_futex_atomic_op_inuser() to user_access_begin/user_access_end()
objtool: whitelist __sanitizer_cov_trace_switch()
[parisc, s390, sparc64] no need for access_ok() in futex handling
sh: no need of access_ok() in arch_futex_atomic_op_inuser()
futex: arch_futex_atomic_op_inuser() calling conventions change
completion: Use lockdep_assert_RT_in_threaded_ctx() in complete_all()
lockdep: Add posixtimer context tracing bits
lockdep: Annotate irq_work
lockdep: Add hrtimer context tracing bits
lockdep: Introduce wait-type checks
completion: Use simple wait queues
sched/swait: Prepare usage in completions
...
Pull RCU changes from Paul E. McKenney:
- Make kfree_rcu() use kfree_bulk() for added performance
- RCU updates
- Callback-overload handling updates
- Tasks-RCU KCSAN and sparse updates
- Locking torture test and RCU torture test updates
- Documentation updates
- Miscellaneous fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Splitting run_posix_cpu_timers() into two parts is work in progress which
is stuck on other entry code related problems. The heavy lifting which
involves locking of sighand lock will be moved into task context so the
necessary execution time is burdened on the task and not on interrupt
context.
Until this work completes lockdep with the spinlock nesting rules enabled
would emit warnings for this known context.
Prevent it by setting "->irq_config = 1" for the invocation of
run_posix_cpu_timers() so lockdep does not complain when sighand lock is
acquried. This will be removed once the split is completed.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.751182723@linutronix.de
Mark irq_work items with IRQ_WORK_HARD_IRQ which should be invoked in
hardirq context even on PREEMPT_RT. IRQ_WORK without this flag will be
invoked in softirq context on PREEMPT_RT.
Set ->irq_config to 1 for the IRQ_WORK items which are invoked in softirq
context so lockdep knows that these can safely acquire a spinlock_t.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.643576700@linutronix.de
Set current->irq_config = 1 for hrtimers which are not marked to expire in
hard interrupt context during hrtimer_init(). These timers will expire in
softirq context on PREEMPT_RT.
Setting this allows lockdep to differentiate these timers. If a timer is
marked to expire in hard interrupt context then the timer callback is not
supposed to acquire a regular spinlock instead of a raw_spinlock in the
expiry callback.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.534508206@linutronix.de