Commit Graph

9 Commits

Author SHA1 Message Date
Deepak Thukral
3566362dd4 rust: std_vendor: update dbg macro from Rust upstream
`dbg!` contains adapted code from Rust upstream. Compare the kernel
code with the Rust upstream one and update missing column numbers in
`dbg!` outputs.

Column numbers are not copied but adjusted for the kernel's examples.

Suggested-by: Miguel Ojeda <ojeda@kernel.org>
Link: https://github.com/Rust-for-Linux/linux/issues/1124
Signed-off-by: Deepak Thukral <iapain@gmail.com>
Link: https://lore.kernel.org/r/20241004125616.49886-1-iapain@gmail.com
[ Fixed typo and slightly reworded. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-10-10 00:33:42 +02:00
Miguel Ojeda
1c71ddb310 rust: std_vendor: simplify { .. macro! .. } with inner attributes
It is cleaner to have a single inner attribute rather than needing
several hidden lines to wrap the macro invocations.

Thus simplify them.

Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Tested-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240904204347.168520-20-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-10-07 21:39:57 +02:00
Miguel Ojeda
1f9ed17254 rust: start using the #[expect(...)] attribute
In Rust, it is possible to `allow` particular warnings (diagnostics,
lints) locally, making the compiler ignore instances of a given warning
within a given function, module, block, etc.

It is similar to `#pragma GCC diagnostic push` + `ignored` + `pop` in C:

    #pragma GCC diagnostic push
    #pragma GCC diagnostic ignored "-Wunused-function"
    static void f(void) {}
    #pragma GCC diagnostic pop

But way less verbose:

    #[allow(dead_code)]
    fn f() {}

By that virtue, it makes it possible to comfortably enable more
diagnostics by default (i.e. outside `W=` levels) that may have some
false positives but that are otherwise quite useful to keep enabled to
catch potential mistakes.

The `#[expect(...)]` attribute [1] takes this further, and makes the
compiler warn if the diagnostic was _not_ produced. For instance, the
following will ensure that, when `f()` is called somewhere, we will have
to remove the attribute:

    #[expect(dead_code)]
    fn f() {}

If we do not, we get a warning from the compiler:

    warning: this lint expectation is unfulfilled
     --> x.rs:3:10
      |
    3 | #[expect(dead_code)]
      |          ^^^^^^^^^
      |
      = note: `#[warn(unfulfilled_lint_expectations)]` on by default

This means that `expect`s do not get forgotten when they are not needed.

See the next commit for more details, nuances on its usage and
documentation on the feature.

The attribute requires the `lint_reasons` [2] unstable feature, but it
is becoming stable in 1.81.0 (to be released on 2024-09-05) and it has
already been useful to clean things up in this patch series, finding
cases where the `allow`s should not have been there.

Thus, enable `lint_reasons` and convert some of our `allow`s to `expect`s
where possible.

This feature was also an example of the ongoing collaboration between
Rust and the kernel -- we tested it in the kernel early on and found an
issue that was quickly resolved [3].

Cc: Fridtjof Stoldt <xfrednet@gmail.com>
Cc: Urgau <urgau@numericable.fr>
Link: https://rust-lang.github.io/rfcs/2383-lint-reasons.html#expect-lint-attribute [1]
Link: https://github.com/rust-lang/rust/issues/54503 [2]
Link: https://github.com/rust-lang/rust/issues/114557 [3]
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Tested-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240904204347.168520-18-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-10-07 21:39:57 +02:00
Miguel Ojeda
2f390cc589 rust: provide proper code documentation titles
Rust 1.82.0's Clippy is introducing [1][2] a new warn-by-default lint,
`too_long_first_doc_paragraph` [3], which is intended to catch titles
of code documentation items that are too long (likely because no title
was provided and the item documentation starts with a paragraph).

This lint does not currently trigger anywhere, but it does detect a couple
cases if checking for private items gets enabled (which we will do in
the next commit):

    error: first doc comment paragraph is too long
      --> rust/kernel/init/__internal.rs:18:1
       |
    18 | / /// This is the module-internal type implementing `PinInit` and `Init`. It is unsafe to create this
    19 | | /// type, since the closure needs to fulfill the same safety requirement as the
    20 | | /// `__pinned_init`/`__init` functions.
       | |_
       |
       = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#too_long_first_doc_paragraph
       = note: `-D clippy::too-long-first-doc-paragraph` implied by `-D warnings`
       = help: to override `-D warnings` add `#[allow(clippy::too_long_first_doc_paragraph)]`

    error: first doc comment paragraph is too long
     --> rust/kernel/sync/arc/std_vendor.rs:3:1
      |
    3 | / //! The contents of this file come from the Rust standard library, hosted in
    4 | | //! the <https://github.com/rust-lang/rust> repository, licensed under
    5 | | //! "Apache-2.0 OR MIT" and adapted for kernel use. For copyright details,
    6 | | //! see <https://github.com/rust-lang/rust/blob/master/COPYRIGHT>.
      | |_
      |
      = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#too_long_first_doc_paragraph

Thus clean those two instances.

In addition, since we have a second `std_vendor.rs` file with a similar
header, do the same there too (even if that one does not trigger the lint,
because it is `doc(hidden)`).

Link: https://github.com/rust-lang/rust/pull/129531 [1]
Link: https://github.com/rust-lang/rust-clippy/pull/12993 [2]
Link: https://rust-lang.github.io/rust-clippy/master/index.html#/too_long_first_doc_paragraph [3]
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Tested-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240904204347.168520-15-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-10-07 21:39:57 +02:00
Miguel Ojeda
8577c9dca7 rust: replace clippy::dbg_macro with disallowed_macros
Back when we used Rust 1.60.0 (before Rust was merged in the kernel),
we added `-Wclippy::dbg_macro` to the compilation flags. This worked
great with our custom `dbg!` macro (vendored from `std`, but slightly
modified to use the kernel printing facilities).

However, in the very next version, 1.61.0, it stopped working [1] since
the lint started to use a Rust diagnostic item rather than a path to find
the `dbg!` macro [1]. This behavior remains until the current nightly
(1.83.0).

Therefore, currently, the `dbg_macro` is not doing anything, which
explains why we can invoke `dbg!` in samples/rust/rust_print.rs`, as well
as why changing the `#[allow()]`s to `#[expect()]`s in `std_vendor.rs`
doctests does not work since they are not fulfilled.

One possible workaround is using `rustc_attrs` like the standard library
does. However, this is intended to be internal, and we just started
supporting several Rust compiler versions, so it is best to avoid it.

Therefore, instead, use `disallowed_macros`. It is a stable lint and
is more flexible (in that we can provide different macros), although
its diagnostic message(s) are not as nice as the specialized one (yet),
and does not allow to set different lint levels per macro/path [2].

In turn, this requires allowing the (intentional) `dbg!` use in the
sample, as one would have expected.

Finally, in a single case, the `allow` is fixed to be an inner attribute,
since otherwise it was not being applied.

Link: https://github.com/rust-lang/rust-clippy/issues/11303 [1]
Link: https://github.com/rust-lang/rust-clippy/issues/11307 [2]
Tested-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240904204347.168520-13-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-10-07 21:39:05 +02:00
Michael Vetter
c73051168e rust: kernel: use docs.kernel.org links in code documentation
Use links to docs.kernel.org instead of www.kernel.org/doc/html/latest
in the code documentation. The links are shorter and cleaner.

Link: https://github.com/Rust-for-Linux/linux/issues/1101
Signed-off-by: Michael Vetter <jubalh@iodoru.org>
[ Reworded slightly. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-08-25 14:44:34 +02:00
Raghav Narang
ea175b2d6f rust: update dbg!() to format column number
In Rust 1.76.0, the `dbg!()` macro was updated to also format the column
number. The reason cited was usage of a few characters worth of
horizontal space while allowing direct jumps to the source location. [1]

Link: https://github.com/rust-lang/rust/pull/114962 [1]
Link: https://github.com/Rust-for-Linux/linux/issues/1065
Signed-off-by: Raghav Narang <dev@raxyte.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/eba70259-9b10-4bf7-ac4f-d7accf6b8891@smtp-relay.sendinblue.com
[ Fixed commit author name and removed spurious newline in message. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-05-05 18:09:04 +02:00
Miguel Ojeda
3ed03f4da0 rust: upgrade to Rust 1.68.2
This is the first upgrade to the Rust toolchain since the initial Rust
merge, from 1.62.0 to 1.68.2 (i.e. the latest).

# Context

The kernel currently supports only a single Rust version [1] (rather
than a minimum) given our usage of some "unstable" Rust features [2]
which do not promise backwards compatibility.

The goal is to reach a point where we can declare a minimum version for
the toolchain. For instance, by waiting for some of the features to be
stabilized. Therefore, the first minimum Rust version that the kernel
will support is "in the future".

# Upgrade policy

Given we will eventually need to reach that minimum version, it would be
ideal to upgrade the compiler from time to time to be as close as
possible to that goal and find any issues sooner. In the extreme, we
could upgrade as soon as a new Rust release is out. Of course, upgrading
so often is in stark contrast to what one normally would need for GCC
and LLVM, especially given the release schedule: 6 weeks for Rust vs.
half a year for LLVM and a year for GCC.

Having said that, there is no particular advantage to updating slowly
either: kernel developers in "stable" distributions are unlikely to be
able to use their distribution-provided Rust toolchain for the kernel
anyway [3]. Instead, by routinely upgrading to the latest instead,
kernel developers using Linux distributions that track the latest Rust
release may be able to use those rather than Rust-provided ones,
especially if their package manager allows to pin / hold back /
downgrade the version for some days during windows where the version may
not match. For instance, Arch, Fedora, Gentoo and openSUSE all provide
and track the latest version of Rust as they get released every 6 weeks.

Then, when the minimum version is reached, we will stop upgrading and
decide how wide the window of support will be. For instance, a year of
Rust versions. We will probably want to start small, and then widen it
over time, just like the kernel did originally for LLVM, see commit
3519c4d6e0 ("Documentation: add minimum clang/llvm version").

# Unstable features stabilized

This upgrade allows us to remove the following unstable features since
they were stabilized:

  - `feature(explicit_generic_args_with_impl_trait)` (1.63).
  - `feature(core_ffi_c)` (1.64).
  - `feature(generic_associated_types)` (1.65).
  - `feature(const_ptr_offset_from)` (1.65, *).
  - `feature(bench_black_box)` (1.66, *).
  - `feature(pin_macro)` (1.68).

The ones marked with `*` apply only to our old `rust` branch, not
mainline yet, i.e. only for code that we may potentially upstream.

With this patch applied, the only unstable feature allowed to be used
outside the `kernel` crate is `new_uninit`, though other code to be
upstreamed may increase the list.

Please see [2] for details.

# Other required changes

Since 1.63, `rustdoc` triggers the `broken_intra_doc_links` lint for
links pointing to exported (`#[macro_export]`) `macro_rules`. An issue
was opened upstream [4], but it turns out it is intended behavior. For
the moment, just add an explicit reference for each link. Later we can
revisit this if `rustdoc` removes the compatibility measure.

Nevertheless, this was helpful to discover a link that was pointing to
the wrong place unintentionally. Since that one was actually wrong, it
is fixed in a previous commit independently.

Another change was the addition of `cfg(no_rc)` and `cfg(no_sync)` in
upstream [5], thus remove our original changes for that.

Similarly, upstream now tests that it compiles successfully with
`#[cfg(not(no_global_oom_handling))]` [6], which allow us to get rid
of some changes, such as an `#[allow(dead_code)]`.

In addition, remove another `#[allow(dead_code)]` due to new uses
within the standard library.

Finally, add `try_extend_trusted` and move the code in `spec_extend.rs`
since upstream moved it for the infallible version.

# `alloc` upgrade and reviewing

There are a large amount of changes, but the vast majority of them are
due to our `alloc` fork being upgraded at once.

There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.

Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.

Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.

To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:

    # Get the difference with respect to the old version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > old.patch
    git -C linux restore rust/alloc

    # Apply this patch.
    git -C linux am rust-upgrade.patch

    # Get the difference with respect to the new version.
    git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
    git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
        cut -d/ -f3- |
        grep -Fv README.md |
        xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
    git -C linux diff --patch-with-stat --summary -R > new.patch
    git -C linux restore rust/alloc

Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.

Link: https://rust-for-linux.com/rust-version-policy [1]
Link: https://github.com/Rust-for-Linux/linux/issues/2 [2]
Link: https://lore.kernel.org/rust-for-linux/CANiq72mT3bVDKdHgaea-6WiZazd8Mvurqmqegbe5JZxVyLR8Yg@mail.gmail.com/ [3]
Link: https://github.com/rust-lang/rust/issues/106142 [4]
Link: https://github.com/rust-lang/rust/pull/89891 [5]
Link: https://github.com/rust-lang/rust/pull/98652 [6]
Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com>
Reviewed-by: Gary Guo <gary@garyguo.net>
Reviewed-By: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Tested-by: Ariel Miculas <amiculas@cisco.com>
Tested-by: David Gow <davidgow@google.com>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/20230418214347.324156-4-ojeda@kernel.org
[ Removed `feature(core_ffi_c)` from `uapi` ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-05-31 17:35:03 +02:00
Niklas Mohrin
bee1688940 rust: std_vendor: add dbg! macro based on std's one
The Rust standard library has a really handy macro, `dbg!` [1,2].
It prints the source location (filename and line) along with the raw
source code that is invoked with and the `Debug` representation
of the given expression, e.g.:

    let a = 2;
    let b = dbg!(a * 2) + 1;
    //      ^-- prints: [src/main.rs:2] a * 2 = 4
    assert_eq!(b, 5);

Port the macro over to the `kernel` crate inside a new module
called `std_vendor`, using `pr_info!` instead of `eprintln!` and
make the rules about committing uses of `dbg!` into version control
more concrete (i.e. tailored for the kernel).

Since the source code for the macro is taken from the standard
library source (with only minor adjustments), the new file is
licensed under `Apache 2.0 OR MIT`, just like the original [3,4].

Link: https://doc.rust-lang.org/std/macro.dbg.html [1]
Link: https://github.com/rust-lang/rust/blob/master/library/std/src/macros.rs#L212 [2]
Link: https://github.com/rust-lang/rust/blob/master/library/std/Cargo.toml [3]
Link: https://github.com/rust-lang/rust/blob/master/COPYRIGHT [4]
Signed-off-by: Niklas Mohrin <dev@niklasmohrin.de>
[Reworded, adapted for upstream and applied latest changes]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2022-12-04 01:59:16 +01:00