The private key in ctx->private_key is currently initialized in reverse
byte order in ecdh_set_secret and whenever the key is needed in proper
byte order the variable priv is introduced and the bytes from
ctx->private_key are copied into priv while being byte-swapped
(ecc_swap_digits). To get rid of the unnecessary byte swapping initialize
ctx->private_key in proper byte order and clean up all functions that were
previously using priv or were called with ctx->private_key:
- ecc_gen_privkey: Directly initialize the passed ctx->private_key with
random bytes filling all the digits of the private key. Get rid of the
priv variable. This function only has ecdh_set_secret as a caller to
create NIST P192/256/384 private keys.
- crypto_ecdh_shared_secret: Called only from ecdh_compute_value with
ctx->private_key. Get rid of the priv variable and work with the passed
private_key directly.
- ecc_make_pub_key: Called only from ecdh_compute_value with
ctx->private_key. Get rid of the priv variable and work with the passed
private_key directly.
Cc: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
ecc_is_key_valid expects a key with the most significant digit in the last
entry of the digit array. Currently ecdh_set_secret passes a reversed key
to ecc_is_key_valid that then passes the rather simple test checking
whether the private key is in range [2, n-3]. For all current ecdh-
supported curves (NIST P192/256/384) the 'n' parameter is a rather large
number, therefore easily passing this test.
Throughout the ecdh and ecc codebase the variable 'priv' is used for a
private_key holding the bytes in proper byte order. Therefore, introduce
priv in ecdh_set_secret and copy the bytes from ctx->private_key into
priv in proper byte order by using ecc_swap_digits. Pass priv to
ecc_is_valid_key.
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The function adf_send_admin_tl_start() enables the telemetry (TL)
feature on a QAT device by sending the ICP_QAT_FW_TL_START message to
the firmware. This triggers the FW to start writing TL data to a DMA
buffer in memory and returns an array containing the number of
accelerators of each type (slices) supported by this HW.
The pointer to this array is stored in the adf_tl_hw_data data
structure called slice_cnt.
The array slice_cnt is then used in the function tl_print_dev_data()
to report in debugfs only statistics about the supported accelerators.
An incorrect value of the elements in slice_cnt might lead to an out
of bounds memory read.
At the moment, there isn't an implementation of FW that returns a wrong
value, but for robustness validate the slice count array returned by FW.
Fixes: 69e7649f7c ("crypto: qat - add support for device telemetry")
Signed-off-by: Lucas Segarra Fernandez <lucas.segarra.fernandez@intel.com>
Reviewed-by: Damian Muszynski <damian.muszynski@intel.com>
Reviewed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
I.G 9.7.B for FIPS 140-3 specifies that variables temporarily holding
cryptographic information should be zeroized once they are no longer
needed. Accomplish this by using kfree_sensitive for buffers that
previously held the private key.
Signed-off-by: Hailey Mothershead <hailmo@amazon.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tweak the round key logic so that they can be loaded using a single
branchless sequence using overlapping loads. This is shorter and
simpler, and puts the conditional branches based on the key size further
apart, which might benefit microarchitectures that cannot record taken
branches at every instruction. For these branches, use test-bit-branch
instructions that don't clobber the condition flags.
Note that none of this has any impact on performance, positive or
otherwise (and the branch prediction benefit would only benefit AES-192
which nobody uses). It does make for nicer code, though.
While at it, use \@ to generate the labels inside the macros, which is
more robust than using fixed numbers, which could clash inadvertently.
Also, bring aes-neon.S in line with these changes, including the switch
to test-and-branch instructions, to avoid surprises in the future when
we might start relying on the condition flags being preserved in the
chaining mode wrappers in aes-modes.S
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is ignored (apart
from emitting a warning) and this typically results in resource leaks.
To improve here there is a quest to make the remove callback return
void. In the first step of this quest all drivers are converted to
.remove_new(), which already returns void. Eventually after all drivers
are converted, .remove_new() will be renamed to .remove().
Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.
Fixes: 0880bb3b00 ("crypto: tegra - Add Tegra Security Engine driver")
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Acked-by: Akhil R <akhilrajeev@nvidia.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
x86_64 has the "interesting" property that the instruction size is
generally a bit shorter for instructions that operate on the 32-bit (or
less) part of registers, or registers that are in the original set of 8.
This patch adjusts the AES-XTS code to take advantage of that property
by changing the LEN parameter from size_t to unsigned int (which is all
that's needed and is what the non-AVX implementation uses) and using the
%eax register for KEYLEN.
This decreases the size of aes-xts-avx-x86_64.o by 1.2%.
Note that changing the kmovq to kmovd was going to be needed anyway to
make the AVX10/256 code really work on CPUs that don't support 512-bit
vectors (since the AVX10 spec says that 64-bit opmask instructions will
only be supported on processors that support 512-bit vectors).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
- For conditionally subtracting 16 from LEN when decrypting a message
whose length isn't a multiple of 16, use the cmovnz instruction.
- Fold the addition of 4*VL to LEN into the sub of VL or 16 from LEN.
- Remove an unnecessary test instruction.
This results in slightly shorter code, both source and binary.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Decrease the amount of code specific to the different AES variants by
"right-aligning" the sequence of round keys, and for AES-128 and AES-192
just skipping irrelevant rounds at the beginning.
This shrinks the size of aes-xts-avx-x86_64.o by 13.3%, and it improves
the efficiency of AES-128 and AES-192. The tradeoff is that for AES-256
some additional not-taken conditional jumps are now executed. But these
are predicted well and are cheap on x86.
Note that the ARMv8 CE based AES-XTS implementation uses a similar
strategy to handle the different AES variants.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since aesni_xts_enc() and aesni_xts_dec() are very similar, generate
them from a macro that's passed an argument enc=1 or enc=0. This
reduces the length of aesni-intel_asm.S by 112 lines while still
producing the exact same object file in both 32-bit and 64-bit mode.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When encrypting a message whose length isn't a multiple of 16 bytes,
encrypt the last full block in the main loop. This works because only
decryption uses the last two tweaks in reverse order, not encryption.
This improves the performance of decrypting messages whose length isn't
a multiple of the AES block length, shrinks the size of
aes-xts-avx-x86_64.o by 5.0%, and eliminates two instructions (a test
and a not-taken conditional jump) when encrypting a message whose length
*is* a multiple of the AES block length.
While it's not super useful to optimize for ciphertext stealing given
that it's rarely needed in practice, the other two benefits mentioned
above make this optimization worthwhile.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Due to a lack of alignment in the data sent by requests, the actual DMA
support of the STM32 hash driver is only working with digest calls.
This patch, based on the algorithm used in the driver omap-sham.c,
allows for the usage of DMA in any situation.
It has been functionally tested on STM32MP15, STM32MP13 and STM32MP25.
By checking the performance of this new driver with OpenSSL, the
following results were found:
Performance:
(datasize: 4096, number of hashes performed in 10s)
|type |no DMA |DMA support|software |
|-------|----------|-----------|----------|
|md5 |13873.56k |10958.03k |71163.08k |
|sha1 |13796.15k |10729.47k |39670.58k |
|sha224 |13737.98k |10775.76k |22094.64k |
|sha256 |13655.65k |10872.01k |22075.39k |
CPU Usage:
(algorithm used: sha256, computation time: 20s, measurement taken at
~10s)
|datasize |no DMA |DMA | software |
|----------|-------|-----|----------|
| 2048 | 56% | 49% | 50% |
| 4096 | 54% | 46% | 50% |
| 8192 | 53% | 40% | 50% |
| 16384 | 53% | 33% | 50% |
Note: this update doesn't change the driver performance without DMA.
As shown, performance with DMA is slightly lower than without, but in
most cases, it will save CPU time.
Signed-off-by: Maxime Méré <maxime.mere@foss.st.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Improve error logging in rate limiting feature. Staying consistent with
the error logging found in the telemetry feature.
Fixes: d9fb840837 ("crypto: qat - add rate limiting feature to qat_4xxx")
Signed-off-by: Adam Guerin <adam.guerin@intel.com>
Reviewed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Improve error message to be more readable.
Fixes: 5da6a2d535 ("crypto: qat - generate dynamically arbiter mappings")
Signed-off-by: Adam Guerin <adam.guerin@intel.com>
Reviewed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of loading the message words into both MSG and \m0 and then
adding the round constants to MSG, load the message words into \m0 and
the round constants into MSG and then add \m0 to MSG. This shortens the
source code slightly. It changes the instructions slightly, but it
doesn't affect binary code size and doesn't seem to affect performance.
Suggested-by: Stefan Kanthak <stefan.kanthak@nexgo.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
- Load the SHA-256 round constants relative to a pointer that points
into the middle of the constants rather than to the beginning. Since
x86 instructions use signed offsets, this decreases the instruction
length required to access some of the later round constants.
- Use punpcklqdq or punpckhqdq instead of longer instructions such as
pshufd, pblendw, and palignr. This doesn't harm performance.
The end result is that sha256_ni_transform shrinks from 839 bytes to 791
bytes, with no loss in performance.
Suggested-by: Stefan Kanthak <stefan.kanthak@nexgo.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
MSGTMP[0-3] are used to hold the message schedule and are not temporary
registers per se. MSGTMP4 is used as a temporary register for several
different purposes and isn't really related to MSGTMP[0-3]. Rename them
to MSG[0-3] and TMP accordingly.
Also add a comment that clarifies what MSG is.
Suggested-by: Stefan Kanthak <stefan.kanthak@nexgo.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
To avoid source code duplication, do the SHA-256 rounds using macros.
This reduces the length of sha256_ni_asm.S by 153 lines while still
producing the exact same object file.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The Intel QAT driver provides support for the Diffie-Hellman (DH)
algorithm, limited to prime numbers up to 4K. This driver is used
by default on platforms with integrated QAT hardware for all DH requests.
This has led to failures with algorithms requiring larger prime sizes,
such as ffdhe6144.
alg: ffdhe6144(dh): test failed on vector 1, err=-22
alg: self-tests for ffdhe6144(qat-dh) (ffdhe6144(dh)) failed (rc=-22)
Implement a fallback mechanism when an unsupported request is received.
Signed-off-by: Damian Muszynski <damian.muszynski@intel.com>
Reviewed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Access the AES round keys using offsets -7*16 through 7*16, instead of
0*16 through 14*16. This allows VEX-encoded instructions to address all
round keys using 1-byte offsets, whereas before some needed 4-byte
offsets. This decreases the code size of aes-xts-avx-x86_64.o by 4.2%.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add check for dma_map_single() and return error if it fails in order
to avoid invalid dma address.
Fixes: e92971117c ("crypto: octeontx2 - add ctx_val workaround")
Signed-off-by: Chen Ni <nichen@iscas.ac.cn>
Reviewed-by: Bharat Bhushan <bbhushan2@marvell.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Make the non-AVX implementation of AES-XTS (xts-aes-aesni) use the new
glue code that was introduced for the AVX implementations of AES-XTS.
This reduces code size, and it improves the performance of xts-aes-aesni
due to the optimization for messages that don't span page boundaries.
This required moving the new glue functions higher up in the file and
allowing the IV encryption function to be specified by the caller.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a DEFINE_FREE() clause for x509_certificate structs and use it in
x509_cert_parse() and x509_key_preparse(). These are the only functions
where scope-based x509_certificate allocation currently makes sense.
A third user will be introduced with the forthcoming SPDM library
(Security Protocol and Data Model) for PCI device authentication.
Unlike most other DEFINE_FREE() clauses, this one checks for IS_ERR()
instead of NULL before calling x509_free_certificate() at end of scope.
That's because the "constructor" of x509_certificate structs,
x509_cert_parse(), returns a valid pointer or an ERR_PTR(), but never
NULL.
Comparing the Assembler output before/after has shown they are identical,
save for the fact that gcc-12 always generates two return paths when
__cleanup() is used, one for the success case and one for the error case.
In x509_cert_parse(), add a hint for the compiler that kzalloc() never
returns an ERR_PTR(). Otherwise the compiler adds a gratuitous IS_ERR()
check on return. Introduce an assume() macro for this which can be
re-used elsewhere in the kernel to provide hints for the compiler.
Suggested-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Link: https://lore.kernel.org/all/20231003153937.000034ca@Huawei.com/
Link: https://lwn.net/Articles/934679/
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When the qm uninit command is executed, the err data needs to
be released to prevent memory leakage. The error information
release operation and uacce_remove are integrated in
qm_remove_uacce.
So add the qm_remove_uacce to qm uninit to avoid err memory
leakage.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When dumping SQ, only the corresponding ID's SQE needs to be
dumped, and there is no need to apply for the entire SQE
memory. This is because excessive dump operations can lead to
memory resource waste.
Therefor apply for the space corresponding to sqe_id separately
to avoid space waste.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The AIV is one of the SEC resources. When releasing resources,
it need to release the AIV resources at the same time.
Otherwise, memory leakage occurs.
The aiv resource release is added to the sec resource release
function.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There is a scenario where the file directory is created but the
file memory is not set. In this case, if a user accesses the
file, an error occurs.
So during the creation process of debugfs, memory should be
allocated first before creating the directory. In the release
process, the directory should be deleted first before releasing
the memory to avoid the situation where the memory does not
exist when accessing the directory.
In addition, the directory released by the debugfs is a global
variable. When the debugfs of an accelerator fails to be
initialized, releasing the directory of the global variable
affects the debugfs initialization of other accelerators.
The debugfs root directory released by debugfs init should be a
member of qm, not a global variable.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The cmd type can be extended. Currently, only four types of cmd
can be processed. Therefor, add the default processing branch
to intercept incorrect parameter input.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There is a scenario where the file directory is created but the
file attribute is not set. In this case, if a user accesses the
file, an error occurs.
So adjust the processing logic in the debugfs creation to
prevent the file from being accessed before the file attributes
such as the index are set.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The input parameter check in acc_get_sgl is redundant. The
caller has been verified once. When the check is performed for
multiple times, the performance deteriorates.
So the redundant parameter verification is deleted, and the
index verification is changed to the module entry function for
verification.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
During the zip probe process, the debugfs failure does not stop
the probe. When debugfs initialization fails, jumping to the
error branch will also release regs, in addition to its own
rollback operation.
As a result, it may be released repeatedly during the regs
uninit process. Therefore, the null check needs to be added to
the regs uninit process.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When CONFIG_PCI_IOV is disabled, the SRIOV configuration
function is not required. An error occurs if this function is
incorrectly called.
Consistent with other modules, add the condition for
configuring the sriov function of sec_pci_driver.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since sha512_transform_rorx() uses ymm registers, execute vzeroupper
before returning from it. This is necessary to avoid reducing the
performance of SSE code.
Fixes: e01d69cb01 ("crypto: sha512 - Optimized SHA512 x86_64 assembly routine using AVX instructions.")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since sha256_transform_rorx() uses ymm registers, execute vzeroupper
before returning from it. This is necessary to avoid reducing the
performance of SSE code.
Fixes: d34a460092 ("crypto: sha256 - Optimized sha256 x86_64 routine using AVX2's RORX instructions")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since nh_avx2() uses ymm registers, execute vzeroupper before returning
from it. This is necessary to avoid reducing the performance of SSE
code.
Fixes: 0f961f9f67 ("crypto: x86/nhpoly1305 - add AVX2 accelerated NHPoly1305")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
If some cpus are offlined, or if the node mask is smaller than
expected, the 'nonexistent cpu' warning in rebalance_wq_table() may be
erroneously triggered.
Use cpumask_weight() to make sure we only iterate over the exact
number of cpus in the mask.
Also use num_possible_cpus() instead of num_online_cpus() to make sure
all slots in the wq table are initialized.
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Enable the x509 parser to accept NIST P521 certificates and add the
OID for ansip521r1, which is the identifier for NIST P521.
Cc: David Howells <dhowells@redhat.com>
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Adjust the calculation of the maximum signature size for support of
NIST P521. While existing curves may prepend a 0 byte to their coordinates
(to make the number positive), NIST P521 will not do this since only the
first bit in the most significant byte is used.
If the encoding of the x & y coordinates requires at least 128 bytes then
an additional byte is needed for the encoding of the length. Take this into
account when calculating the maximum signature size.
Reviewed-by: Lukas Wunner <lukas@wunner.de>
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Register NIST P521 as an akcipher and extend the testmgr with
NIST P521-specific test vectors.
Add a module alias so the module gets automatically loaded by the crypto
subsystem when the curve is needed.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In cases where 'keylen' was referring to the size of the buffer used by
a curve's digits, it does not reflect the purpose of the variable anymore
once NIST P521 is used. What it refers to then is the size of the buffer,
which may be a few bytes larger than the size a coordinate of a key.
Therefore, rename keylen to bufsize where appropriate.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace the usage of ndigits with nbits where precise space calculations
are needed, such as in ecdsa_max_size where the length of a coordinate is
determined.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add the parameters for the NIST P521 curve and define a new curve ID
for it. Make the curve available in ecc_get_curve.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In ecc_point_mult use the number of bits of the NIST P521 curve + 2. The
change is required specifically for NIST P521 to pass mathematical tests
on the public key.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Implement vli_mmod_fast_521 following the description for how to calculate
the modulus for NIST P521 in the NIST publication "Recommendations for
Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters"
section G.1.4.
NIST p521 requires 9 64bit digits, so increase the ECC_MAX_DIGITS so that
the vli digit array provides enough elements to fit the larger integers
required by this curve.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add the number of bits a curve has to the ecc_curve definition to be able
to derive the number of bytes a curve requires for its coordinates from it.
It also allows one to identify a curve by its particular size. Set the
number of bits on all curve definitions.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
res.x has been calculated by ecc_point_mult_shamir, which uses
'mod curve_prime' on res.x and therefore p > res.x with 'p' being the
curve_prime. Further, it is true that for the NIST curves p > n with 'n'
being the 'curve_order' and therefore the following may be true as well:
p > res.x >= n.
If res.x >= n then res.x mod n can be calculated by iteratively sub-
tracting n from res.x until res.x < n. For NIST P192/256/384 this can be
done in a single subtraction. This can also be done in a single
subtraction for NIST P521.
The mathematical reason why a single subtraction is sufficient is due to
the values of 'p' and 'n' of the NIST curves where the following holds
true:
note: max(res.x) = p - 1
max(res.x) - n < n
p - 1 - n < n
p - 1 < 2n => holds true for the NIST curves
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In preparation for support of NIST P521, adjust the basic tests on the
length of the provided key parameters to only ensure that the length of the
x plus y coordinates parameter array is not an odd number and that each
coordinate fits into an array of 'ndigits' digits. Mathematical tests on
the key's parameters are then done in ecc_is_pubkey_valid_full rejecting
invalid keys.
The change is necessary since NIST P521 keys do not have keys with
coordinates that each require 'full' digits (= all bits in u64 used).
NIST P521 only requires 2 bytes (9 bits) in the most significant digit
unlike NIST P192/256/384 that each require multiple 'full' digits.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
For NIST P192/256/384 the public key's x and y parameters could be copied
directly from a given array since both parameters filled 'ndigits' of
digits (a 'digit' is a u64). For support of NIST P521 the key parameters
need to have leading zeros prepended to the most significant digit since
only 2 bytes of the most significant digit are provided.
Therefore, implement ecc_digits_from_bytes to convert a byte array into an
array of digits and use this function in ecdsa_set_pub_key where an input
byte array needs to be converted into digits.
Suggested-by: Lukas Wunner <lukas@wunner.de>
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>