Move nested_vmx_succeed/nested_vmx_failInvalid/nested_vmx_failValid
ahead of handle_vmon to eliminate double declaration in the same
file
Signed-off-by: Arthur Chunqi Li <yzt356@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that kvm_arch_memslots_updated() catches every increment of the
memslots->generation, checking if the mmio generation has reached its
maximum value is enough.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is called right after the memslots is updated, i.e. when the result
of update_memslots() gets installed in install_new_memslots(). Since
the memslots needs to be updated twice when we delete or move a memslot,
kvm_arch_commit_memory_region() does not correspond to this exactly.
In the following patch, x86 will use this new API to check if the mmio
generation has reached its maximum value, in which case mmio sptes need
to be flushed out.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Acked-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, fast page fault incorrectly tries to fix mmio page fault when
the generation number is invalid (spte.gen != kvm.gen). It then returns
to guest to retry the fault since it sees the last spte is nonpresent.
This causes an infinite loop.
Since fast page fault only works for direct mmu, the issue exists when
1) tdp is enabled. It is only triggered only on AMD host since on Intel host
the mmio page fault is recognized as ept-misconfig whose handler call
fault-page path with error_code = 0
2) guest paging is disabled. Under this case, the issue is hardly discovered
since paging disable is short-lived and the sptes will be invalid after
memslot changed for 150 times
Fix it by filtering out MMIO page faults in page_fault_can_be_fast.
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Tested-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some userspaces do not preserve unusable property. Since usable
segment has to be present according to VMX spec we can use present
property to amend userspace bug by making unusable segment always
nonpresent. vmx_segment_access_rights() already marks nonpresent segment
as unusable.
Cc: stable@vger.kernel.org # 3.9+
Reported-by: Stefan Pietsch <stefan.pietsch@lsexperts.de>
Tested-by: Stefan Pietsch <stefan.pietsch@lsexperts.de>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On the x86 side, there are some optimizations and documentation updates.
The big ARM/KVM change for 3.11, support for AArch64, will come through
Catalin Marinas's tree. s390 and PPC have misc cleanups and bugfixes.
There is a conflict due to "s390/pgtable: fix ipte notify bit" having
entered 3.10 through Martin Schwidefsky's s390 tree. This pull request
has additional changes on top, so this tree's version is the correct one.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.13 (GNU/Linux)
iQIcBAABAgAGBQJR0oU6AAoJEBvWZb6bTYbynnsP/RSUrrHrA8Wu1tqVfAKu+1y5
6OIihqZ9x11/YMaNofAfv86jqxFu0/j7CzMGphNdjzujqKI+Q1tGe7oiVCmKzoG+
UvSctWsz0lpllgBtnnrm5tcfmG6rrddhLtpA7m320+xCVx8KV5P4VfyHZEU+Ho8h
ziPmb2mAQ65gBNX6nLHEJ3ITTgad6gt4NNbrKIYpyXuWZQJypzaRqT/vpc4md+Ed
dCebMXsL1xgyb98EcnOdrWH1wV30MfucR7IpObOhXnnMKeeltqAQPvaOlKzZh4dK
+QfxJfdRZVS0cepcxzx1Q2X3dgjoKQsHq1nlIyz3qu1vhtfaqBlixLZk0SguZ/R9
1S1YqucZiLRO57RD4q0Ak5oxwobu18ZoqJZ6nledNdWwDe8bz/W2wGAeVty19ky0
qstBdM9jnwXrc0qrVgZp3+s5dsx3NAm/KKZBoq4sXiDLd/yBzdEdWIVkIrU3X9wU
3X26wOmBxtsB7so/JR7ciTsQHelmLicnVeXohAEP9CjIJffB81xVXnXs0P0SYuiQ
RzbSCwjPzET4JBOaHWT0Dhv0DTS/EaI97KzlN32US3Bn3WiLlS1oDCoPFoaLqd2K
LxQMsXS8anAWxFvexfSuUpbJGPnKSidSQoQmJeMGBa9QhmZCht3IL16/Fb641ToN
xBohzi49L9FDbpOnTYfz
=1zpG
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"On the x86 side, there are some optimizations and documentation
updates. The big ARM/KVM change for 3.11, support for AArch64, will
come through Catalin Marinas's tree. s390 and PPC have misc cleanups
and bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (87 commits)
KVM: PPC: Ignore PIR writes
KVM: PPC: Book3S PR: Invalidate SLB entries properly
KVM: PPC: Book3S PR: Allow guest to use 1TB segments
KVM: PPC: Book3S PR: Don't keep scanning HPTEG after we find a match
KVM: PPC: Book3S PR: Fix invalidation of SLB entry 0 on guest entry
KVM: PPC: Book3S PR: Fix proto-VSID calculations
KVM: PPC: Guard doorbell exception with CONFIG_PPC_DOORBELL
KVM: Fix RTC interrupt coalescing tracking
kvm: Add a tracepoint write_tsc_offset
KVM: MMU: Inform users of mmio generation wraparound
KVM: MMU: document fast invalidate all mmio sptes
KVM: MMU: document fast invalidate all pages
KVM: MMU: document fast page fault
KVM: MMU: document mmio page fault
KVM: MMU: document write_flooding_count
KVM: MMU: document clear_spte_count
KVM: MMU: drop kvm_mmu_zap_mmio_sptes
KVM: MMU: init kvm generation close to mmio wrap-around value
KVM: MMU: add tracepoint for check_mmio_spte
KVM: MMU: fast invalidate all mmio sptes
...
Pull asm/x86 changes from Ingo Molnar:
"Misc changes, with a bigger processor-flags cleanup/reorganization by
Peter Anvin"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, asm, cleanup: Replace open-coded control register values with symbolic
x86, processor-flags: Fix the datatypes and add bit number defines
x86: Rename X86_CR4_RDWRGSFS to X86_CR4_FSGSBASE
x86, flags: Rename X86_EFLAGS_BIT1 to X86_EFLAGS_FIXED
linux/const.h: Add _BITUL() and _BITULL()
x86/vdso: Convert use of typedef ctl_table to struct ctl_table
x86: __force_order doesn't need to be an actual variable
This reverts most of the f1ed0450a5fac7067590317cbf027f566b6ccbca. After
the commit kvm_apic_set_irq() no longer returns accurate information
about interrupt injection status if injection is done into disabled
APIC. RTC interrupt coalescing tracking relies on the information to be
accurate and cannot recover if it is not.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Add a tracepoint write_tsc_offset for tracing TSC offset change.
We want to merge ftrace's trace data of guest OSs and the host OS using
TSC for timestamp in chronological order. We need "TSC offset" values for
each guest when merge those because the TSC value on a guest is always the
host TSC plus guest's TSC offset. If we get the TSC offset values, we can
calculate the host TSC value for each guest events from the TSC offset and
the event TSC value. The host TSC values of the guest events are used when we
want to merge trace data of guests and the host in chronological order.
(Note: the trace_clock of both the host and the guest must be set x86-tsc in
this case)
This tracepoint also records vcpu_id which can be used to merge trace data for
SMP guests. A merge tool will read TSC offset for each vcpu, then the tool
converts guest TSC values to host TSC values for each vcpu.
TSC offset is stored in the VMCS by vmx_write_tsc_offset() or
vmx_adjust_tsc_offset(). KVM executes the former function when a guest boots.
The latter function is executed when kvm clock is updated. Only host can read
TSC offset value from VMCS, so a host needs to output TSC offset value
when TSC offset is changed.
Since the TSC offset is not often changed, it could be overwritten by other
frequent events while tracing. To avoid that, I recommend to use a special
instance for getting this event:
1. set a instance before booting a guest
# cd /sys/kernel/debug/tracing/instances
# mkdir tsc_offset
# cd tsc_offset
# echo x86-tsc > trace_clock
# echo 1 > events/kvm/kvm_write_tsc_offset/enable
2. boot a guest
Signed-off-by: Yoshihiro YUNOMAE <yoshihiro.yunomae.ez@hitachi.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Without this information, users will just see unexpected performance
problems and there is little chance we will get good reports from them:
note that mmio generation is increased even when we just start, or stop,
dirty logging for some memory slot, in which case users cannot expect
all shadow pages to be zapped.
printk_ratelimited() is used for this taking into account the problems
that we can see the information many times when we start multiple VMs
and guests can trigger this by reading ROM in a loop for example.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document it to Documentation/virtual/kvm/mmu.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_mmu_zap_mmio_sptes and use kvm_mmu_invalidate_zap_all_pages
instead to handle mmio generation number overflow
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Then it has the chance to trigger mmio generation number wrap-around
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
[Change from MMIO_MAX_GEN - 13 to MMIO_MAX_GEN - 150, because 13 is
very close to the number of calls to KVM_SET_USER_MEMORY_REGION
before the guest is started and there is any chance to create any
spte. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch tries to introduce a very simple and scale way to invalidate
all mmio sptes - it need not walk any shadow pages and hold mmu-lock
KVM maintains a global mmio valid generation-number which is stored in
kvm->memslots.generation and every mmio spte stores the current global
generation-number into his available bits when it is created
When KVM need zap all mmio sptes, it just simply increase the global
generation-number. When guests do mmio access, KVM intercepts a MMIO #PF
then it walks the shadow page table and get the mmio spte. If the
generation-number on the spte does not equal the global generation-number,
it will go to the normal #PF handler to update the mmio spte
Since 19 bits are used to store generation-number on mmio spte, we zap all
mmio sptes when the number is round
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Store the generation-number into bit3 ~ bit11 and bit52 ~ bit61, totally
19 bits can be used, it should be enough for nearly all most common cases
In this patch, the generation-number is always 0, it will be changed in
the later patch
[Gleb: masking generation bits from spte in get_mmio_spte_gfn() and
get_mmio_spte_access()]
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bit 1 in the x86 EFLAGS is always set. Name the macro something that
actually tries to explain what it is all about, rather than being a
tautology.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/n/tip-f10rx5vjjm6tfnt8o1wseb3v@git.kernel.org
Let mmio spte only use bit62 and bit63 on upper 32 bits, then bit 52 ~ bit 61
can be used for other purposes
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
__kvm_set_xcr function does the CPL check when set xcr. __kvm_set_xcr is
called in two flows, one is invoked by guest, call stack shown as below,
handle_xsetbv(or xsetbv_interception)
kvm_set_xcr
__kvm_set_xcr
the other one is invoked by host, for example during system reset:
kvm_arch_vcpu_ioctl
kvm_vcpu_ioctl_x86_set_xcrs
__kvm_set_xcr
The former does need the CPL check, but the latter does not.
Cc: stable@vger.kernel.org
Signed-off-by: Zhang Haoyu <haoyu.zhang@huawei.com>
[Tweaks to commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Its possible that idivl overflows (due to large delta stored in usdiff,
valid scenario).
Create an exception handler to catch the overflow exception (division by zero
is protected by vcpu->arch.virtual_tsc_khz check), and interpret it accordingly
(delta is larger than USEC_PER_SEC).
Fixes https://bugzilla.redhat.com/show_bug.cgi?id=969644
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Quote Gleb's mail:
| why don't we check for sp->role.invalid in
| kvm_mmu_prepare_zap_page before calling kvm_reload_remote_mmus()?
and
| Actually we can add check for is_obsolete_sp() there too since
| kvm_mmu_invalidate_all_pages() already calls kvm_reload_remote_mmus()
| after incrementing mmu_valid_gen.
[ Xiao: add some comments and the check of is_obsolete_sp() ]
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
As Marcelo pointed out that
| "(retention of large number of pages while zapping)
| can be fatal, it can lead to OOM and host crash"
We introduce a list, kvm->arch.zapped_obsolete_pages, to link all
the pages which are deleted from the mmu cache but not actually
freed. When page reclaiming is needed, we always zap this kind of
pages first.
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
kvm_zap_obsolete_pages uses lock-break technique to zap pages,
it will flush tlb every time when it does lock-break
We can reload mmu on all vcpus after updating the generation
number so that the obsolete pages are not used on any vcpus,
after that we do not need to flush tlb when obsolete pages
are zapped
It will do kvm_mmu_prepare_zap_page many times and use one
kvm_mmu_commit_zap_page to collapse tlb flush, the side-effects
is that causes obsolete pages unlinked from active_list but leave
on hash-list, so we add the comment around the hash list walker
Note: kvm_mmu_commit_zap_page is still needed before free
the pages since other vcpus may be doing locklessly shadow
page walking
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Zap at lease 10 pages before releasing mmu-lock to reduce the overload
caused by requiring lock
After the patch, kvm_zap_obsolete_pages can forward progress anyway,
so update the comments
[ It improves the case 0.6% ~ 1% that do kernel building meanwhile read
PCI ROM. ]
Note: i am not sure that "10" is the best speculative value, i just
guessed that '10' can make vcpu do not spend long time on
kvm_zap_obsolete_pages and do not cause mmu-lock too hungry.
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The obsolete page will be zapped soon, do not reuse it to
reduce future page fault
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
It is good for debug and development
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The current kvm_mmu_zap_all is really slow - it is holding mmu-lock to
walk and zap all shadow pages one by one, also it need to zap all guest
page's rmap and all shadow page's parent spte list. Particularly, things
become worse if guest uses more memory or vcpus. It is not good for
scalability
In this patch, we introduce a faster way to invalidate all shadow pages.
KVM maintains a global mmu invalid generation-number which is stored in
kvm->arch.mmu_valid_gen and every shadow page stores the current global
generation-number into sp->mmu_valid_gen when it is created
When KVM need zap all shadow pages sptes, it just simply increase the
global generation-number then reload root shadow pages on all vcpus.
Vcpu will create a new shadow page table according to current kvm's
generation-number. It ensures the old pages are not used any more.
Then the obsolete pages (sp->mmu_valid_gen != kvm->arch.mmu_valid_gen)
are zapped by using lock-break technique
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
It is the responsibility of kvm_mmu_zap_all that keeps the
consistent of mmu and tlbs. And it is also unnecessary after
zap all mmio sptes since no mmio spte exists on root shadow
page and it can not be cached into tlb
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Quote Gleb's mail:
| Back then kvm->lock protected memslot access so code like:
|
| mutex_lock(&vcpu->kvm->lock);
| kvm_mmu_zap_all(vcpu->kvm);
| mutex_unlock(&vcpu->kvm->lock);
|
| which is what 7aa81cc0 does was enough to guaranty that no vcpu will
| run while code is patched. This is no longer the case and
| mutex_lock(&vcpu->kvm->lock); is gone from that code path long time ago,
| so now kvm_mmu_zap_all() there is useless and the code is incorrect.
So we drop it and it will be fixed later
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
apic->pending_events processing has a race that may cause INIT and
SIPI
processing to be reordered:
vpu0: vcpu1:
set INIT
test_and_clear_bit(KVM_APIC_INIT)
process INIT
set INIT
set SIPI
test_and_clear_bit(KVM_APIC_SIPI)
process SIPI
At the end INIT is left pending in pending_events. The following patch
fixes this by latching pending event before processing them.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The x86-64 extended low-byte registers were fetched correctly from reg,
but not from mod/rm.
This fixes another bug in the boot of RHEL5.9 64-bit, but it is still
not enough.
Cc: <stable@vger.kernel.org> # 3.9
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
This is encountered when booting RHEL5.9 64-bit. There is another bug
after this one that is not a simple emulation failure, but this one lets
the boot proceed a bit.
Cc: <stable@vger.kernel.org> # 3.9
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Since DIV and IDIV can generate exceptions, we need an additional output
parameter indicating whether an execption has occured. To avoid increasing
register pressure on i386, we use %rsi, which is already allocated for
the fastop code pointer.
Gleb: added comment about fop usage as exception indication.
Signed-off-by: Avi Kivity <avi.kivity@gmail.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Single-operand MUL and DIV access an extended accumulator: AX for byte
instructions, and DX:AX, EDX:EAX, or RDX:RAX for larger-sized instructions.
Add support for fetching the extended accumulator.
In order not to change things too much, RDX is loaded into Src2, which is
already loaded by fastop(). This avoids increasing register pressure on
i386.
Gleb: disable src writeback for ByteOp div/mul.
Signed-off-by: Avi Kivity <avi.kivity@gmail.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Some instructions write back the source operand, not just the destination.
Add support for doing this via the decode flags.
Gleb: add BUG_ON() to prevent source to be memory operand.
Signed-off-by: Avi Kivity <avi.kivity@gmail.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
As requested by the KVM maintainers, remove the addprefix used to
refer to the main KVM code from the arch code, and replace it with
a KVM variable that does the same thing.
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Christoffer Dall <cdall@cs.columbia.edu>
Acked-by: Xiantao Zhang <xiantao.zhang@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Alexander Graf <agraf@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Do locking around each case separately instead of having one lock and two
unlocks. Move root_hpa assignment out of the lock.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
kvmclock updates which are isolated to a given vcpu, such as vcpu->cpu
migration, should not allow system_timestamp from the rest of the vcpus
to remain static. Otherwise ntp frequency correction applies to one
vcpu's system_timestamp but not the others.
So in those cases, request a kvmclock update for all vcpus. The worst
case for a remote vcpu to update its kvmclock is then bounded by maximum
nohz sleep latency.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Since the arrival of posted interrupt support we can no longer guarantee
that coalesced IRQs are always reported to the IRQ source. Moreover,
accumulated APIC timer events could cause a busy loop when a VCPU should
rather be halted. The consensus is to remove coalesced tracking from the
LAPIC.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
No need to open-code this function.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
This is an almost-undocumented instruction available in 32-bit mode.
I say "almost" undocumented because AMD documents it in their opcode
maps just to say that it is unavailable in 64-bit mode (sections
"A.2.1 One-Byte Opcodes" and "B.3 Invalid and Reassigned Instructions
in 64-Bit Mode").
It is roughly equivalent to "sbb %al, %al" except it does not
set the flags. Use fastop to emulate it, but do not use the opcode
directly because it would fail if the host is 64-bit!
Reported-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: stable@vger.kernel.org # 3.9
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>