This patchset addresses an integer overflow bug that Dave Chinner found
in how fsmap handles figuring out where in the record set we left off
when userspace calls back after the first call filled up all the
designated record space.
v2: add RVB tags
This has been lightly tested with fstests. Enjoy!
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZQChMwAKCRBKO3ySh0YR
prqBAP9Zp2WxwQuNQLqCfXBRLZiJRiW8JFcTNJOjdqIicsOPYgEAxs1GHJU4ozrO
bKyolvNJIjSow7LWYP1GmfCRa9FqwQ4=
=3uSx
-----END PGP SIGNATURE-----
Merge tag 'fix-fsmap-6.6_2023-09-12' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-6.6-fixesA
xfs: fix fsmap cursor handling
This patchset addresses an integer overflow bug that Dave Chinner found
in how fsmap handles figuring out where in the record set we left off
when userspace calls back after the first call filled up all the
designated record space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
* tag 'fix-fsmap-6.6_2023-09-12' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
xfs: fix an agbno overflow in __xfs_getfsmap_datadev
Smatch warning pointed out by Dan Carpenter:
fs/smb/client/smb2pdu.c:105 smb2_hdr_assemble()
warn: variable dereferenced before check 'server' (see line 95)
Fixes: 09ee7a3bf866 ("[SMB3] send channel sequence number in SMB3 requests after reconnects")
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmT/hwAACgkQxWXV+ddt
WDsn7hAAngwEMKEAH9Jvu/BtHgRYcAdsGh5Mxw34aQf1+DAaH03GGsZjN6hfHYo4
FMsnnvoZD5VPfuaFaQVd+mS9mRzikm503W7KfZFAPAQTOjz50RZbohLnZWa3eFbI
46OcpoHusxwoYosEmIAt+dcw/gDlT9fpj+W11dKYtwOEjCqGA/OeKoVenfk38hVJ
r+XhLwZFf4dPIqE3Ht26UtJk87Xs2X0/LQxOX3vM1MZ+l38N4dyo7TQnwfTHlQNw
AK9sK6vp3rpRR96rvTV1dWr9lnmE7wky+Vh36DN/jxpzbW7Wx8IVoobBpcsO4Tyk
Vw/rdjB7g7LfBmjLFhWvvQ73jv0WjIUUzXH17RuxOeyAQJ9tXFztVMh+QoVVC/Ka
NxwA5uqyJKR7DIA+kLL06abUnASUVgP6Krdv9Fk7rYCKWluWk1k9ls9XaFFhytvg
eeno/UB0px1rwps5P5zfaSXLIXEl53Luy5rFhTMCCNQfXyo+Qe6PJyTafR3E0uP8
aXJV1lPG+o7qi9Vwg+20yy//1sE5gR0dLrcTaup3/20RK6eljZ/bNSkl3GJR9mlS
YF+J/Ccia06y8Qo0xaeCofxkoI3J/PK6KPOTt8yZDgYoetYgHhrfBRO0I7ZU4Edq
10512hAeskzPt6+5348+/jOEENASffXKP3FJSdDEzWd33vtlaHE=
=mHTa
-----END PGP SIGNATURE-----
Merge tag 'for-6.6-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- several fixes for handling directory item (inserting, removing,
iteration, error handling)
- fix transaction commit stalls when auto relocation is running and
blocks other tasks that want to commit
- fix a build error when DEBUG is enabled
- fix lockdep warning in inode number lookup ioctl
- fix race when finishing block group creation
- remove link to obsolete wiki in several files
* tag 'for-6.6-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
MAINTAINERS: remove links to obsolete btrfs.wiki.kernel.org
btrfs: assert delayed node locked when removing delayed item
btrfs: remove BUG() after failure to insert delayed dir index item
btrfs: improve error message after failure to add delayed dir index item
btrfs: fix a compilation error if DEBUG is defined in btree_dirty_folio
btrfs: check for BTRFS_FS_ERROR in pending ordered assert
btrfs: fix lockdep splat and potential deadlock after failure running delayed items
btrfs: do not block starts waiting on previous transaction commit
btrfs: release path before inode lookup during the ino lookup ioctl
btrfs: fix race between finishing block group creation and its item update
Harshit Mogalapalli slogged through several reports from our internal
syzbot instance and observed that they all had a common stack trace:
BUG: KASAN: user-memory-access in instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
BUG: KASAN: user-memory-access in atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:1294 [inline]
BUG: KASAN: user-memory-access in queued_spin_lock include/asm-generic/qspinlock.h:111 [inline]
BUG: KASAN: user-memory-access in do_raw_spin_lock include/linux/spinlock.h:187 [inline]
BUG: KASAN: user-memory-access in __raw_spin_lock include/linux/spinlock_api_smp.h:134 [inline]
BUG: KASAN: user-memory-access in _raw_spin_lock+0x76/0xe0 kernel/locking/spinlock.c:154
Write of size 4 at addr 0000001dd87ee280 by task syz-executor365/1543
CPU: 2 PID: 1543 Comm: syz-executor365 Not tainted 6.5.0-syzk #1
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x83/0xb0 lib/dump_stack.c:106
print_report+0x3f8/0x620 mm/kasan/report.c:478
kasan_report+0xb0/0xe0 mm/kasan/report.c:588
check_region_inline mm/kasan/generic.c:181 [inline]
kasan_check_range+0x139/0x1e0 mm/kasan/generic.c:187
instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:1294 [inline]
queued_spin_lock include/asm-generic/qspinlock.h:111 [inline]
do_raw_spin_lock include/linux/spinlock.h:187 [inline]
__raw_spin_lock include/linux/spinlock_api_smp.h:134 [inline]
_raw_spin_lock+0x76/0xe0 kernel/locking/spinlock.c:154
spin_lock include/linux/spinlock.h:351 [inline]
xchk_stats_merge_one.isra.1+0x39/0x650 fs/xfs/scrub/stats.c:191
xchk_stats_merge+0x5f/0xe0 fs/xfs/scrub/stats.c:225
xfs_scrub_metadata+0x252/0x14e0 fs/xfs/scrub/scrub.c:599
xfs_ioc_scrub_metadata+0xc8/0x160 fs/xfs/xfs_ioctl.c:1646
xfs_file_ioctl+0x3fd/0x1870 fs/xfs/xfs_ioctl.c:1955
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl fs/ioctl.c:857 [inline]
__x64_sys_ioctl+0x199/0x220 fs/ioctl.c:857
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3e/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
RIP: 0033:0x7ff155af753d
Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48
RSP: 002b:00007ffc006e2568 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ff155af753d
RDX: 00000000200000c0 RSI: 00000000c040583c RDI: 0000000000000003
RBP: 00000000ffffffff R08: 00000000004010c0 R09: 00000000004010c0
R10: 00000000004010c0 R11: 0000000000000246 R12: 0000000000400cb0
R13: 00007ffc006e2670 R14: 0000000000000000 R15: 0000000000000000
</TASK>
The root cause here is that xchk_stats_merge_one walks off the end of
the xchk_scrub_stats.cs_stats array because it has been fed a garbage
value in sm->sm_type. That occurs because I put the xchk_stats_merge
in the wrong place -- it should have been after the last xchk_teardown
call on our way out of xfs_scrub_metadata because we only call the
teardown function if we called the setup function, and we don't call the
setup functions if the inputs are obviously garbage.
Thanks to Harshit for triaging the bug reports and bringing this to my
attention.
Fixes: d7a74cad8f45 ("xfs: track usage statistics of online fsck")
Reported-by: Harshit Mogalapalli <harshit.m.mogalapalli@oracle.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
While reviewing the FIEXCHANGE code in XFS, I realized that the function
that enables logged xattrs doesn't actually check that the superblock
has a LOG_INCOMPAT feature bit field. Add a check to refuse the
operation if we don't have a V5 filesystem...
...but on second though, let's require either reflink or rmap so that we
only have to deal with LARP mode on relatively /modern/ kernel. 4.14 is
about as far back as I feel like going.
Seeing as LARP is a debugging-only option anyway, this isn't likely to
affect any real users.
Fixes: d9c61ccb3b09 ("xfs: move xfs_attr_use_log_assist out of xfs_log.c")
Really-Fixes: f3f36c893f26 ("xfs: Add xfs_attr_set_deferred and xfs_attr_remove_deferred")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Bill O'Donnell <bodonnel@redhat.com>
Teach quotacheck to reload the unlinked inode lists when walking the
inode table. This requires extra state handling, since it's possible
that a reloaded inode will get inactivated before quotacheck tries to
scan it; in this case, we need to ensure that the reloaded inode does
not have dquots attached when it is freed.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
shrikanth hegde reports that filesystems fail shortly after mount with
the following failure:
WARNING: CPU: 56 PID: 12450 at fs/xfs/xfs_inode.c:1839 xfs_iunlink_lookup+0x58/0x80 [xfs]
This of course is the WARN_ON_ONCE in xfs_iunlink_lookup:
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
if (WARN_ON_ONCE(!ip || !ip->i_ino)) { ... }
From diagnostic data collected by the bug reporters, it would appear
that we cleanly mounted a filesystem that contained unlinked inodes.
Unlinked inodes are only processed as a final step of log recovery,
which means that clean mounts do not process the unlinked list at all.
Prior to the introduction of the incore unlinked lists, this wasn't a
problem because the unlink code would (very expensively) traverse the
entire ondisk metadata iunlink chain to keep things up to date.
However, the incore unlinked list code complains when it realizes that
it is out of sync with the ondisk metadata and shuts down the fs, which
is bad.
Ritesh proposed to solve this problem by unconditionally parsing the
unlinked lists at mount time, but this imposes a mount time cost for
every filesystem to catch something that should be very infrequent.
Instead, let's target the places where we can encounter a next_unlinked
pointer that refers to an inode that is not in cache, and load it into
cache.
Note: This patch does not address the problem of iget loading an inode
from the middle of the iunlink list and needing to set i_prev_unlinked
correctly.
Reported-by: shrikanth hegde <sshegde@linux.vnet.ibm.com>
Triaged-by: Ritesh Harjani <ritesh.list@gmail.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Wengang Wang reports that a customer's system was running a number of
truncate operations on a filesystem with a very small log. Contention
on the reserve heads lead to other threads stalling on smaller updates
(e.g. mtime updates) long enough to result in the node being rebooted
on account of the lack of responsivenes. The node failed to recover
because log recovery of an EFI became stuck waiting for a grant of
reserve space. From Wengang's report:
"For the file deletion, log bytes are reserved basing on
xfs_mount->tr_itruncate which is:
tr_logres = 175488,
tr_logcount = 2,
tr_logflags = XFS_TRANS_PERM_LOG_RES,
"You see it's a permanent log reservation with two log operations (two
transactions in rolling mode). After calculation (xlog_calc_unit_res()
adds space for various log headers), the final log space needed per
transaction changes from 175488 to 180208 bytes. So the total log
space needed is 360416 bytes (180208 * 2). [That quantity] of log space
(360416 bytes) needs to be reserved for both run time inode removing
(xfs_inactive_truncate()) and EFI recover (xfs_efi_item_recover())."
In other words, runtime pre-reserves 360K of space in anticipation of
running a chain of two transactions in which each transaction gets a
180K reservation.
Now that we've allocated the transaction, we delete the bmap mapping,
log an EFI to free the space, and roll the transaction as part of
finishing the deferops chain. Rolling creates a new xfs_trans which
shares its ticket with the old transaction. Next, xfs_trans_roll calls
__xfs_trans_commit with regrant == true, which calls xlog_cil_commit
with the same regrant parameter.
xlog_cil_commit calls xfs_log_ticket_regrant, which decrements t_cnt and
subtracts t_curr_res from the reservation and write heads.
If the filesystem is fresh and the first transaction only used (say)
20K, then t_curr_res will be 160K, and we give that much reservation
back to the reservation head. Or if the file is really fragmented and
the first transaction actually uses 170K, then t_curr_res will be 10K,
and that's what we give back to the reservation.
Having done that, we're now headed into the second transaction with an
EFI and 180K of reservation. Other threads apparently consumed all the
reservation for smaller transactions, such as timestamp updates.
Now let's say the first transaction gets written to disk and we crash
without ever completing the second transaction. Now we remount the fs,
log recovery finds the unfinished EFI, and calls xfs_efi_recover to
finish the EFI. However, xfs_efi_recover starts a new tr_itruncate
tranasction, which asks for 360K log reservation. This is a lot more
than the 180K that we had reserved at the time of the crash. If the
first EFI to be recovered is also pinning the tail of the log, we will
be unable to free any space in the log, and recovery livelocks.
Wengang confirmed this:
"Now we have the second transaction which has 180208 log bytes reserved
too. The second transaction is supposed to process intents including
extent freeing. With my hacking patch, I blocked the extent freeing 5
hours. So in that 5 hours, 180208 (NOT 360416) log bytes are reserved.
"With my test case, other transactions (update timestamps) then happen.
As my hacking patch pins the journal tail, those timestamp-updating
transactions finally use up (almost) all the left available log space
(in memory in on disk). And finally the on disk (and in memory)
available log space goes down near to 180208 bytes. Those 180208 bytes
are reserved by [the] second (extent-free) transaction [in the chain]."
Wengang and I noticed that EFI recovery starts a transaction, completes
one step of the chain, and commits the transaction without completing
any other steps of the chain. Those subsequent steps are completed by
xlog_finish_defer_ops, which allocates yet another transaction to
finish the rest of the chain. That transaction gets the same tr_logres
as the head transaction, but with tr_logcount = 1 to force regranting
with every roll to avoid livelocks.
In other words, we already figured this out in commit 929b92f64048d
("xfs: xfs_defer_capture should absorb remaining transaction
reservation"), but should have applied that logic to each intent item's
recovery function. For Wengang's case, the xfs_trans_alloc call in the
EFI recovery function should only be asking for a single transaction's
worth of log reservation -- 180K, not 360K.
Quoting Wengang again:
"With log recovery, during EFI recovery, we use tr_itruncate again to
reserve two transactions that needs 360416 log bytes. Reserving 360416
bytes fails [stalls] because we now only have about 180208 available.
"Actually during the EFI recover, we only need one transaction to free
the extents just like the 2nd transaction at RUNTIME. So it only needs
to reserve 180208 rather than 360416 bytes. We have (a bit) more than
180208 available log bytes on disk, so [if we decrease the reservation
to 180K] the reservation goes and the recovery [finishes]. That is to
say: we can fix the log recover part to fix the issue. We can introduce
a new xfs_trans_res xfs_mount->tr_ext_free
{
tr_logres = 175488,
tr_logcount = 0,
tr_logflags = 0,
}
"and use tr_ext_free instead of tr_itruncate in EFI recover."
However, I don't think it quite makes sense to create an entirely new
transaction reservation type to handle single-stepping during log
recovery. Instead, we should copy the transaction reservation
information in the xfs_mount, change tr_logcount to 1, and pass that
into xfs_trans_alloc. We know this won't risk changing the min log size
computation since we always ask for a fraction of the reservation for
all known transaction types.
This looks like it's been lurking in the codebase since commit
3d3c8b5222b92, which changed the xfs_trans_reserve call in
xlog_recover_process_efi to use the tr_logcount in tr_itruncate.
That changed the EFI recovery transaction from making a
non-XFS_TRANS_PERM_LOG_RES request for one transaction's worth of log
space to a XFS_TRANS_PERM_LOG_RES request for two transactions worth.
Fixes: 3d3c8b5222b92 ("xfs: refactor xfs_trans_reserve() interface")
Complements: 929b92f64048d ("xfs: xfs_defer_capture should absorb remaining transaction reservation")
Suggested-by: Wengang Wang <wen.gang.wang@oracle.com>
Cc: Srikanth C S <srikanth.c.s@oracle.com>
[djwong: apply the same transformation to all log intent recovery]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Log recovery has always run on read only mounts, even where the primary
superblock advertises unknown rocompat bits. Due to a misunderstanding
between Eric and Darrick back in 2018, we accidentally changed the
superblock write verifier to shutdown the fs over that exact scenario.
As a result, the log cleaning that occurs at the end of the mounting
process fails if there are unknown rocompat bits set.
As we now allow writing of the superblock if there are unknown rocompat
bits set on a RO mount, we no longer want to turn off RO state to allow
log recovery to succeed on a RO mount. Hence we also remove all the
(now unnecessary) RO state toggling from the log recovery path.
Fixes: 9e037cb7972f ("xfs: check for unknown v5 feature bits in superblock write verifier"
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The previous patch to reload unrecovered unlinked inodes when adding a
newly created inode to the unlinked list is missing a key piece of
functionality. It doesn't handle the case that someone calls xfs_iget
on an inode that is not the last item in the incore list. For example,
if at mount time the ondisk iunlink bucket looks like this:
AGI -> 7 -> 22 -> 3 -> NULL
None of these three inodes are cached in memory. Now let's say that
someone tries to open inode 3 by handle. We need to walk the list to
make sure that inodes 7 and 22 get loaded cold, and that the
i_prev_unlinked of inode 3 gets set to 22.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In the next patch, we're going to prohibit log recovery if the primary
superblock contains an unrecognized rocompat feature bit even on
readonly mounts. This requires removing all the code in the log
mounting process that temporarily disables the readonly state.
Unfortunately, inode inactivation disables itself on readonly mounts.
Clearing the iunlinked lists after log recovery needs inactivation to
run to free the unreferenced inodes, which (AFAICT) is the only reason
why log mounting plays games with the readonly state in the first place.
Therefore, change the inactivation predicates to allow inactivation
during log recovery of a readonly mount.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Alter the definition of i_prev_unlinked slightly to make it more obvious
when an inode with 0 link count is not part of the iunlink bucket lists
rooted in the AGI. This distinction is necessary because it is not
sufficient to check inode.i_nlink to decide if an inode is on the
unlinked list. Updates to i_nlink can happen while holding only
ILOCK_EXCL, but updates to an inode's position in the AGI unlinked list
(which happen after the nlink update) requires both ILOCK_EXCL and the
AGI buffer lock.
The next few patches will make it possible to reload an entire unlinked
bucket list when we're walking the inode table or performing handle
operations and need more than the ability to iget the last inode in the
chain.
The upcoming directory repair code also needs to be able to make this
distinction to decide if a zero link count directory should be moved to
the orphanage or allowed to inactivate. An upcoming enhancement to the
online AGI fsck code will need this distinction to check and rebuild the
AGI unlinked buckets.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
iomap_to_bh currently BUG()s when the passed in block number is not
in the iomap. For file systems that have proper synchronization this
should never happen and so far hasn't in mainline, but for block devices
size changes aren't fully synchronized against ongoing I/O. Instead
of BUG()ing in this case, return -EIO to the caller, which already has
proper error handling. While we're at it, also return -EIO for an
unknown iomap state instead of returning garbage.
Fixes: 487c607df790 ("block: use iomap for writes to block devices")
Reported-by: syzbot+4a08ffdf3667b36650a1@syzkaller.appspotmail.com
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE9zuTYTs0RXF+Ke33EVvVyTe/1WoFAmT+s8AACgkQEVvVyTe/
1Wr3GA/+IiTHYJSqHOjKvAWs8pVX3rcmJxoodPidOFAncPKzw5GlD7Lo0C8Qgmie
CEzg8kSfMPg0n7VpywOCiA1n37gBJbmHdQ0108OxJA65IRna4K6qcyBQvfOGXq9u
Qx360cTCJFGBITkkRmg8RZQKF+Dj3nd0vHn3feGkPftL113fhZTZ1uWFxyXIGsuu
eki8wW3WgZFvS71Pp9nZEVFd/HPJukd03LKHQlSnQQBnCJJjZhvM6O2Y4o4lFznj
aWTIHQdowz00Mj1kFEM46cGFDg3SwFtdOizpRrWxL0oOVnElIo8mRAxtf3gz4081
fvvhvYG5QEgSUrq7VfuGxaxlh2tyHgc8gh7lNXC0JCGSjc2lHGosvniFcRo6ecgU
7UwT+rX0odWzbSDH6TrMHPZsBSS/siKWreii63HUlMOo0mSorTzA20EK7f9qoXTA
dgvMD7cbFiEOjwlS9SbIjMMuvYM5VykCyWuniBqicA5UzUj2/K5DG6apkMK/MGbn
DU/r0HYROqdggk920i/Yyv4GoS6uERfELpkoJr9q7Lx1+wAkRGbNUpUe408Wp411
I66Ynie48oBmlDfU3LiyW9b3OPbFMPKE3WTPIngJurWRoHFXunxdkArfQi+rAUpx
cmC5CovFAaVSL3HyhWAXh5lMbe1KjUasQM8ywTyhki2wZzrAI7U=
=F/OX
-----END PGP SIGNATURE-----
Merge tag 'ovl-fixes-6.6-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/overlayfs/vfs
Pull overlayfs fixes from Amir Goldstein:
"Two fixes for pretty old regressions"
* tag 'ovl-fixes-6.6-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/overlayfs/vfs:
ovl: fix incorrect fdput() on aio completion
ovl: fix failed copyup of fileattr on a symlink
If /proc/fs/nfsd/pool_stats is open when the last nfsd thread exits, then
when the file is closed a NULL pointer is dereferenced.
This is because nfsd_pool_stats_release() assumes that the
pointer to the svc_serv cannot become NULL while a reference is held.
This used to be the case but a recent patch split nfsd_last_thread() out
from nfsd_put(), and clearing the pointer is done in nfsd_last_thread().
This is easily reproduced by running
rpc.nfsd 8 ; ( rpc.nfsd 0;true) < /proc/fs/nfsd/pool_stats
Fortunately nfsd_pool_stats_release() has easy access to the svc_serv
pointer, and so can call svc_put() on it directly.
Fixes: 9f28a971ee9f ("nfsd: separate nfsd_last_thread() from nfsd_put()")
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The eventfs files list is protected by SRCU. In earlier iterations it was
protected with just RCU, but because it needed to also call sleepable
code, it had to be switch to SRCU. The dcache_dir_open_wrapper()
list_for_each_rcu() was missed and did not get converted over to
list_for_each_srcu(). That needs to be fixed.
Link: https://lore.kernel.org/linux-trace-kernel/20230911120053.ca82f545e7f46ea753deda18@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20230911200654.71ce927c@gandalf.local.home
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ajay Kaher <akaher@vmware.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Reported-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: 63940449555e7 ("eventfs: Implement eventfs lookup, read, open functions")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
There are no users of the cpu hotplug hooks in xfs now, so remove it.
This reverts f1653c2e2831e ("xfs: introduce CPU hotplug
infrastructure").
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Revert commit 0ed17f01c8540 ("xfs: introduce all-mounts list for cpu
hotplug notifications") because the cpu hotplug hooks are now pointless,
so we don't need this list anymore.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Directly track which CPUs have contributed to the inodegc percpu lists
instead of trusting the cpu online mask. This eliminates a theoretical
problem where the inodegc flush functions might fail to flush a CPU's
inodes if that CPU happened to be dying at exactly the same time. Most
likely nobody's noticed this because the CPU dead hook moves the percpu
inodegc list to another CPU and schedules that worker immediately. But
it's quite possible that this is a subtle race leading to UAF if the
inodegc flush were part of an unmount.
Further benefits: This reduces the overhead of the inodegc flush code
slightly by allowing us to ignore CPUs that have empty lists. Better
yet, it reduces our dependence on the cpu online masks, which have been
the cause of confusion and drama lately.
Fixes: ab23a7768739 ("xfs: per-cpu deferred inode inactivation queues")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Dave Chinner reported that xfs/273 fails if the AG size happens to be an
exact power of two. I traced this to an agbno integer overflow when the
current GETFSMAP call is a continuation of a previous GETFSMAP call, and
the last record returned was non-shareable space at the end of an AG.
__xfs_getfsmap_datadev sets up a data device query by converting the
incoming fmr_physical into an xfs_fsblock_t and cracking it into an agno
and agbno pair. In the (failing) case of where fmr_blockcount of the
low key is nonzero and the record was for a non-shareable extent, it
will add fmr_blockcount to start_fsb and info->low.rm_startblock.
If the low key was actually the last record for that AG, then this
addition causes info->low.rm_startblock to point beyond EOAG. When the
rmapbt range query starts, it'll return an empty set, and fsmap moves on
to the next AG.
Or so I thought. Remember how we added to start_fsb?
If agsize < 1<<agblklog, start_fsb points to the same AG as the original
fmr_physical from the low key. We run the rmapbt query, which returns
nothing, so getfsmap zeroes info->low and moves on to the next AG.
If agsize == 1<<agblklog, start_fsb now points to the next AG. We run
the rmapbt query on the next AG with the excessively large
rm_startblock. If this next AG is actually the last AG, we'll set
info->high to EOFS (which is now has a lower rm_startblock than
info->low), and the ranged btree query code will return -EINVAL. If
it's not the last AG, we ignore all records for the intermediate AGs.
Oops.
Fix this by decoding start_fsb into agno and agbno only after making
adjustments to start_fsb. This means that info->low.rm_startblock will
always be set to a valid agbno, and we always start the rmapbt iteration
in the correct AG.
While we're at it, fix the predicate for determining if an fsmap record
represents non-shareable space to include file data on pre-reflink
filesystems.
Reported-by: Dave Chinner <david@fromorbit.com>
Fixes: 63ef7a35912dd ("xfs: fix interval filtering in multi-step fsmap queries")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In commit 7c8ade2121200 ("xfs: implement percpu cil space used
calculation"), the XFS committed (log) item list code was converted to
use per-cpu lists and space tracking to reduce cpu contention when
multiple threads are modifying different parts of the filesystem and
hence end up contending on the log structures during transaction commit.
Each CPU tracks its own commit items and space usage, and these do not
have to be merged into the main CIL until either someone wants to push
the CIL items, or we run over a soft threshold and switch to slower (but
more accurate) accounting with atomics.
Unfortunately, the for_each_cpu iteration suffers from the same race
with cpu dying problem that was identified in commit 8b57b11cca88f
("pcpcntrs: fix dying cpu summation race") -- CPUs are removed from
cpu_online_mask before the CPUHP_XFS_DEAD callback gets called. As a
result, both CIL percpu structure aggregation functions fail to collect
the items and accounted space usage at the correct point in time.
If we're lucky, the items that are collected from the online cpus exceed
the space given to those cpus, and the log immediately shuts down in
xlog_cil_insert_items due to the (apparent) log reservation overrun.
This happens periodically with generic/650, which exercises cpu hotplug
vs. the filesystem code:
smpboot: CPU 3 is now offline
XFS (sda3): ctx ticket reservation ran out. Need to up reservation
XFS (sda3): ticket reservation summary:
XFS (sda3): unit res = 9268 bytes
XFS (sda3): current res = -40 bytes
XFS (sda3): original count = 1
XFS (sda3): remaining count = 1
XFS (sda3): Filesystem has been shut down due to log error (0x2).
Applying the same sort of fix from 8b57b11cca88f to the CIL code seems
to make the generic/650 problem go away, but I've been told that tglx
was not happy when he saw:
"...the only thing we actually need to care about is that
percpu_counter_sum() iterates dying CPUs. That's trivial to do, and when
there are no CPUs dying, it has no addition overhead except for a
cpumask_or() operation."
The CPU hotplug code is rather complex and difficult to understand and I
don't want to try to understand the cpu hotplug locking well enough to
use cpu_dying mask. Furthermore, there's a performance improvement that
could be had here. Attach a private cpu mask to the CIL structure so
that we can track exactly which cpus have accessed the percpu data at
all. It doesn't matter if the cpu has since gone offline; log item
aggregation will still find the items. Better yet, we skip cpus that
have not recently logged anything.
Worse yet, Ritesh Harjani and Eric Sandeen both reported today that CPU
hot remove racing with an xfs mount can crash if the cpu_dead notifier
tries to access the log but the mount hasn't yet set up the log.
Link: https://lore.kernel.org/linux-xfs/ZOLzgBOuyWHapOyZ@dread.disaster.area/T/
Link: https://lore.kernel.org/lkml/877cuj1mt1.ffs@tglx/
Link: https://lore.kernel.org/lkml/20230414162755.281993820@linutronix.de/
Link: https://lore.kernel.org/linux-xfs/ZOVkjxWZq0YmjrJu@dread.disaster.area/T/
Cc: tglx@linutronix.de
Cc: peterz@infradead.org
Reported-by: ritesh.list@gmail.com
Reported-by: sandeen@sandeen.net
Fixes: af1c2146a50b ("xfs: introduce per-cpu CIL tracking structure")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
If we fail to schedule a request for transmission, there are 2
possibilities:
1) Either we hit a fatal error, and we just want to drop the remaining
requests on the floor.
2) We were asked to try again, in which case we should allow the
outstanding RPC calls to complete, so that we can recoalesce requests
and try again.
Fixes: d600ad1f2bdb ("NFS41: pop some layoutget errors to application")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
UBSAN found the following issue:
================================================================================
UBSAN: array-index-out-of-bounds in fs/reiserfs/journal.c:4166:22
index 1 is out of range for type '__le32 [1]'
This is because struct reiserfs_journal_desc uses 1-element array for
dynamically sized array member, j_realblock.
This patch fixes this issue by replacing the 1-element array member with C99
style flex-array. This patch also fixes the same issue in struct
reiserfs_journal_commit as the same manner.
Fixes: f466c6fdb3b1 ("move private bits of reiserfs_fs.h to fs/reiserfs/reiserfs.h")
Signed-off-by: Shigeru Yoshida <syoshida@redhat.com>
Message-Id: <20230821043312.1444068-1-syoshida@redhat.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Commit d7a74cad8f45 ("xfs: track usage statistics of online fsck")
introduces config XFS_ONLINE_SCRUB_STATS, which selects the non-existing
config FS_DEBUG. It is probably intended to select the existing config
XFS_DEBUG.
Fix the select in config XFS_ONLINE_SCRUB_STATS.
Fixes: d7a74cad8f45 ("xfs: track usage statistics of online fsck")
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Some firmware (notably U-Boot) provides GetVariable() and
GetNextVariableName() but not QueryVariableInfo().
With commit d86ff3333cb1 ("efivarfs: expose used and total size") the
statfs syscall was broken for such firmware.
If QueryVariableInfo() does not exist or returns EFI_UNSUPPORTED, just
report the file system size as 0 as statfs_simple() previously did.
Fixes: d86ff3333cb1 ("efivarfs: expose used and total size")
Link: https://lore.kernel.org/all/20230910045445.41632-1-heinrich.schuchardt@canonical.com/
Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
[ardb: log warning on QueryVariableInfo() failure]
Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
When stressing microLZMA EROFS images with the new global compressed
deduplication feature enabled (`-Ededupe`), I found some short-lived
temporary pages weren't properly released, which could slowly cause
unexpected OOMs hours later.
Let's fix it now (LZ4 and DEFLATE don't have this issue.)
Fixes: 5c2a64252c5d ("erofs: introduce partial-referenced pclusters")
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/20230907050542.97152-1-hsiangkao@linux.alibaba.com
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE6fsu8pdIjtWE/DpLiiy9cAdyT1EFAmT8qQwACgkQiiy9cAdy
T1Hjzgv/dCmqowHN9fI1gP/SpkbyZt0/GrlhpRMELQ2THAYuJmWQ9i/vR7VFMMv7
C7vfx3nYTQfQAcsshA+bfOkABr02A9HD5HuBEhWldEFQD/qIPrPMyU53DJ6m4QOb
81/8ox6XJMDNHWJUPJVfhAyHoKBxYyNcqqkITnBcSpqENbm7IZ8UhUJe1l75nkBi
IYR28e4Aci5uGPuMB7NAuKmJM0IKi1ipMy4MCXkSD/vQZStz76mhzx200Wm6ObuX
jqPzIb32simsVY7q/Hbkxt2MPDUbsn6kBhOSe8oJVxEgrMy56pZCOByPjc0ZFzE6
SziZ0JanrfjlGdBg5qjmcUamEMV44Oi1QQ6PpkHRA2zDyXMpv8ulwy/3Z40O7zbb
WBBar0HsJE5osCL0jiwLbNorctEnmtSKWcyXOI924Bli4eesE/ojq2u4H4KrlXzA
gDqPwAhhw/PrbuEmgRy9maYE8KwutZh2HCRvxgFB1NgbcNLvKgkQrly4QP29hKQy
+HViqKAe
=6QhY
-----END PGP SIGNATURE-----
Merge tag '6.6-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
Pull smb client fixes from Steve French:
- six smb3 client fixes including ones to allow controlling smb3
directory caching timeout and limits, and one debugging improvement
- one fix for nls Kconfig (don't need to expose NLS_UCS2_UTILS option)
- one minor spnego registry update
* tag '6.6-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6:
spnego: add missing OID to oid registry
smb3: fix minor typo in SMB2_GLOBAL_CAP_LARGE_MTU
cifs: update internal module version number for cifs.ko
smb3: allow controlling maximum number of cached directories
smb3: add trace point for queryfs (statfs)
nls: Hide new NLS_UCS2_UTILS
smb3: allow controlling length of time directory entries are cached with dir leases
smb: propagate error code of extract_sharename()
nfsd sends the transposed directory change info in the RENAME reply. The
source directory is in save_fh and the target is in current_fh.
Reported-by: Zhi Li <yieli@redhat.com>
Reported-by: Benjamin Coddington <bcodding@redhat.com>
Closes: https://bugzilla.redhat.com/show_bug.cgi?id=2218844
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE6fsu8pdIjtWE/DpLiiy9cAdyT1EFAmT7eEwACgkQiiy9cAdy
T1EY1Qv+OIgraDJ23wl4FX17dEQLKqcVH5wCWhU9IEq9oIhKSMngDE4kAKu/unEJ
GOKy9QfY2eshPWHCoZjh9lI1Xg776nC3GeAtekOFHXX9FXRZfWP0+Sp6HRNk1TxD
iTrRUDGnGA20QF7tgxNo5EJb2yvxBmEmhiSTwlFUuV+oOjvbQw0eB2EheEEzhPJF
7qrlvC0GvvgUOrVVg6YEMCNFb9bvrns06Rwrl3Hq86gaauXIg4pBIF/AHiwh7jCo
+upXo1vgfWp29XMwX79LqCOx9u96q0i5AZonXTN2W/AxsgsWA6RQnGyZmL+Q/2/4
w4jN76NaLspoVE8grbzcSJq8b3Rlx2HUlzBaZgqAbuB8zx/59RXf559Aewt+Y9Pt
anGsTTpp6a9nc9YYlAGSmaA97y5fnHO47sHpKHVhR9vKbQgvnqGzvmqgNUeRbDzb
wgUjOma6SPfZL6JNqNb+SrktI410MjS11/+mP4NlTrVVomYyKZXslcvpnMuoiHMH
U4RpYB84
=9Rd7
-----END PGP SIGNATURE-----
Merge tag '6.6-rc-ksmbd' of git://git.samba.org/ksmbd
Pull smb server update from Steve French:
"After two years, many fixes and much testing, ksmbd is no longer
experimental"
* tag '6.6-rc-ksmbd' of git://git.samba.org/ksmbd:
ksmbd: remove experimental warning
There was a minor typo in the define for SMB2_GLOBAL_CAP_LARGE_MTU
0X00000004 instead of 0x00000004
make it consistent
Acked-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
The wiki has been archived and is not updated anymore. Remove or replace
the links in files that contain it (MAINTAINERS, Kconfig, docs).
Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When removing a delayed item, or releasing which will remove it as well,
we will modify one of the delayed node's rbtrees and item counter if the
delayed item is in one of the rbtrees. This require having the delayed
node's mutex locked, otherwise we will race with other tasks modifying
the rbtrees and the counter.
This is motivated by a previous version of another patch actually calling
btrfs_release_delayed_item() after unlocking the delayed node's mutex and
against a delayed item that is in a rbtree.
So assert at __btrfs_remove_delayed_item() that the delayed node's mutex
is locked.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of calling BUG() when we fail to insert a delayed dir index item
into the delayed node's tree, we can just release all the resources we
have allocated/acquired before and return the error to the caller. This is
fine because all existing call chains undo anything they have done before
calling btrfs_insert_delayed_dir_index() or BUG_ON (when creating pending
snapshots in the transaction commit path).
So remove the BUG() call and do proper error handling.
This relates to a syzbot report linked below, but does not fix it because
it only prevents hitting a BUG(), it does not fix the issue where somehow
we attempt to use twice the same index number for different index items.
Link: https://lore.kernel.org/linux-btrfs/00000000000036e1290603e097e0@google.com/
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fail to add a delayed dir index item because there's already another
item with the same index number, we print an error message (and then BUG).
However that message isn't very helpful to debug anything because we don't
know what's the index number and what are the values of index counters in
the inode and its delayed inode (index_cnt fields of struct btrfs_inode
and struct btrfs_delayed_node).
So update the error message to include the index number and counters.
We actually had a recent case where this issue was hit by a syzbot report
(see the link below).
Link: https://lore.kernel.org/linux-btrfs/00000000000036e1290603e097e0@google.com/
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
After commit 72a69cd03082 ("btrfs: subpage: pack all subpage bitmaps
into a larger bitmap"), the DEBUG section of btree_dirty_folio() would
no longer compile.
[CAUSE]
If DEBUG is defined, we would do extra checks for btree_dirty_folio(),
mostly to make sure the range we marked dirty has an extent buffer and
that extent buffer is dirty.
For subpage, we need to iterate through all the extent buffers covered
by that page range, and make sure they all matches the criteria.
However commit 72a69cd03082 ("btrfs: subpage: pack all subpage bitmaps
into a larger bitmap") changes how we store the bitmap, we pack all the
16 bits bitmaps into a larger bitmap, which would save some space.
This means we no longer have btrfs_subpage::dirty_bitmap, instead the
dirty bitmap is starting at btrfs_subpage_info::dirty_offset, and has a
length of btrfs_subpage_info::bitmap_nr_bits.
[FIX]
Although I'm not sure if it still makes sense to maintain such code, at
least let it compile.
This patch would let us test the bits one by one through the bitmaps.
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we do fast tree logging we increment a counter on the current
transaction for every ordered extent we need to wait for. This means we
expect the transaction to still be there when we clear pending on the
ordered extent. However if we happen to abort the transaction and clean
it up, there could be no running transaction, and thus we'll trip the
"ASSERT(trans)" check. This is obviously incorrect, and the code
properly deals with the case that the transaction doesn't exist. Fix
this ASSERT() to only fire if there's no trans and we don't have
BTRFS_FS_ERROR() set on the file system.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Internally I got a report of very long stalls on normal operations like
creating a new file when auto relocation was running. The reporter used
the 'bpf offcputime' tracer to show that we would get stuck in
start_transaction for 5 to 30 seconds, and were always being woken up by
the transaction commit.
Using my timing-everything script, which times how long a function takes
and what percentage of that total time is taken up by its children, I
saw several traces like this
1083 took 32812902424 ns
29929002926 ns 91.2110% wait_for_commit_duration
25568 ns 7.7920e-05% commit_fs_roots_duration
1007751 ns 0.00307% commit_cowonly_roots_duration
446855602 ns 1.36182% btrfs_run_delayed_refs_duration
271980 ns 0.00082% btrfs_run_delayed_items_duration
2008 ns 6.1195e-06% btrfs_apply_pending_changes_duration
9656 ns 2.9427e-05% switch_commit_roots_duration
1598 ns 4.8700e-06% btrfs_commit_device_sizes_duration
4314 ns 1.3147e-05% btrfs_free_log_root_tree_duration
Here I was only tracing functions that happen where we are between
START_COMMIT and UNBLOCKED in order to see what would be keeping us
blocked for so long. The wait_for_commit() we do is where we wait for a
previous transaction that hasn't completed it's commit. This can
include all of the unpin work and other cleanups, which tends to be the
longest part of our transaction commit.
There is no reason we should be blocking new things from entering the
transaction at this point, it just adds to random latency spikes for no
reason.
Fix this by adding a PREP stage. This allows us to properly deal with
multiple committers coming in at the same time, we retain the behavior
that the winner waits on the previous transaction and the losers all
wait for this transaction commit to occur. Nothing else is blocked
during the PREP stage, and then once the wait is complete we switch to
COMMIT_START and all of the same behavior as before is maintained.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During the ino lookup ioctl we can end up calling btrfs_iget() to get an
inode reference while we are holding on a root's btree. If btrfs_iget()
needs to lookup the inode from the root's btree, because it's not
currently loaded in memory, then it will need to lock another or the
same path in the same root btree. This may result in a deadlock and
trigger the following lockdep splat:
WARNING: possible circular locking dependency detected
6.5.0-rc7-syzkaller-00004-gf7757129e3de #0 Not tainted
------------------------------------------------------
syz-executor277/5012 is trying to acquire lock:
ffff88802df41710 (btrfs-tree-01){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
but task is already holding lock:
ffff88802df418e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (btrfs-tree-00){++++}-{3:3}:
down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645
__btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
btrfs_search_slot+0x13a4/0x2f80 fs/btrfs/ctree.c:2302
btrfs_init_root_free_objectid+0x148/0x320 fs/btrfs/disk-io.c:4955
btrfs_init_fs_root fs/btrfs/disk-io.c:1128 [inline]
btrfs_get_root_ref+0x5ae/0xae0 fs/btrfs/disk-io.c:1338
btrfs_get_fs_root fs/btrfs/disk-io.c:1390 [inline]
open_ctree+0x29c8/0x3030 fs/btrfs/disk-io.c:3494
btrfs_fill_super+0x1c7/0x2f0 fs/btrfs/super.c:1154
btrfs_mount_root+0x7e0/0x910 fs/btrfs/super.c:1519
legacy_get_tree+0xef/0x190 fs/fs_context.c:611
vfs_get_tree+0x8c/0x270 fs/super.c:1519
fc_mount fs/namespace.c:1112 [inline]
vfs_kern_mount+0xbc/0x150 fs/namespace.c:1142
btrfs_mount+0x39f/0xb50 fs/btrfs/super.c:1579
legacy_get_tree+0xef/0x190 fs/fs_context.c:611
vfs_get_tree+0x8c/0x270 fs/super.c:1519
do_new_mount+0x28f/0xae0 fs/namespace.c:3335
do_mount fs/namespace.c:3675 [inline]
__do_sys_mount fs/namespace.c:3884 [inline]
__se_sys_mount+0x2d9/0x3c0 fs/namespace.c:3861
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-> #0 (btrfs-tree-01){++++}-{3:3}:
check_prev_add kernel/locking/lockdep.c:3142 [inline]
check_prevs_add kernel/locking/lockdep.c:3261 [inline]
validate_chain kernel/locking/lockdep.c:3876 [inline]
__lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761
down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645
__btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
btrfs_tree_read_lock fs/btrfs/locking.c:142 [inline]
btrfs_read_lock_root_node+0x292/0x3c0 fs/btrfs/locking.c:281
btrfs_search_slot_get_root fs/btrfs/ctree.c:1832 [inline]
btrfs_search_slot+0x4ff/0x2f80 fs/btrfs/ctree.c:2154
btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:412
btrfs_read_locked_inode fs/btrfs/inode.c:3892 [inline]
btrfs_iget_path+0x2d9/0x1520 fs/btrfs/inode.c:5716
btrfs_search_path_in_tree_user fs/btrfs/ioctl.c:1961 [inline]
btrfs_ioctl_ino_lookup_user+0x77a/0xf50 fs/btrfs/ioctl.c:2105
btrfs_ioctl+0xb0b/0xd40 fs/btrfs/ioctl.c:4683
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
rlock(btrfs-tree-00);
lock(btrfs-tree-01);
lock(btrfs-tree-00);
rlock(btrfs-tree-01);
*** DEADLOCK ***
1 lock held by syz-executor277/5012:
#0: ffff88802df418e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
stack backtrace:
CPU: 1 PID: 5012 Comm: syz-executor277 Not tainted 6.5.0-rc7-syzkaller-00004-gf7757129e3de #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
check_noncircular+0x375/0x4a0 kernel/locking/lockdep.c:2195
check_prev_add kernel/locking/lockdep.c:3142 [inline]
check_prevs_add kernel/locking/lockdep.c:3261 [inline]
validate_chain kernel/locking/lockdep.c:3876 [inline]
__lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761
down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645
__btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
btrfs_tree_read_lock fs/btrfs/locking.c:142 [inline]
btrfs_read_lock_root_node+0x292/0x3c0 fs/btrfs/locking.c:281
btrfs_search_slot_get_root fs/btrfs/ctree.c:1832 [inline]
btrfs_search_slot+0x4ff/0x2f80 fs/btrfs/ctree.c:2154
btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:412
btrfs_read_locked_inode fs/btrfs/inode.c:3892 [inline]
btrfs_iget_path+0x2d9/0x1520 fs/btrfs/inode.c:5716
btrfs_search_path_in_tree_user fs/btrfs/ioctl.c:1961 [inline]
btrfs_ioctl_ino_lookup_user+0x77a/0xf50 fs/btrfs/ioctl.c:2105
btrfs_ioctl+0xb0b/0xd40 fs/btrfs/ioctl.c:4683
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f0bec94ea39
Fix this simply by releasing the path before calling btrfs_iget() as at
point we don't need the path anymore.
Reported-by: syzbot+bf66ad948981797d2f1d@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/00000000000045fa140603c4a969@google.com/
Fixes: 23d0b79dfaed ("btrfs: Add unprivileged version of ino_lookup ioctl")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 675dfe1223a6 ("btrfs: fix block group item corruption after
inserting new block group") fixed one race that resulted in not persisting
a block group's item when its "used" bytes field decreases to zero.
However there's another race that can happen in a much shorter time window
that results in the same problem. The following sequence of steps explains
how it can happen:
1) Task A creates a metadata block group X, its "used" and "commit_used"
fields are initialized to 0;
2) Two extents are allocated from block group X, so its "used" field is
updated to 32K, and its "commit_used" field remains as 0;
3) Transaction commit starts, by some task B, and it enters
btrfs_start_dirty_block_groups(). There it tries to update the block
group item for block group X, which currently has its "used" field with
a value of 32K and its "commit_used" field with a value of 0. However
that fails since the block group item was not yet inserted, so at
update_block_group_item(), the btrfs_search_slot() call returns 1, and
then we set 'ret' to -ENOENT. Before jumping to the label 'fail'...
4) The block group item is inserted by task A, when for example
btrfs_create_pending_block_groups() is called when releasing its
transaction handle. This results in insert_block_group_item() inserting
the block group item in the extent tree (or block group tree), with a
"used" field having a value of 32K and setting "commit_used", in struct
btrfs_block_group, to the same value (32K);
5) Task B jumps to the 'fail' label and then resets the "commit_used"
field to 0. At btrfs_start_dirty_block_groups(), because -ENOENT was
returned from update_block_group_item(), we add the block group again
to the list of dirty block groups, so that we will try again in the
critical section of the transaction commit when calling
btrfs_write_dirty_block_groups();
6) Later the two extents from block group X are freed, so its "used" field
becomes 0;
7) If no more extents are allocated from block group X before we get into
btrfs_write_dirty_block_groups(), then when we call
update_block_group_item() again for block group X, we will not update
the block group item to reflect that it has 0 bytes used, because the
"used" and "commit_used" fields in struct btrfs_block_group have the
same value, a value of 0.
As a result after committing the transaction we have an empty block
group with its block group item having a 32K value for its "used" field.
This will trigger errors from fsck ("btrfs check" command) and after
mounting again the fs, the cleaner kthread will not automatically delete
the empty block group, since its "used" field is not 0. Possibly there
are other issues due to this inconsistency.
When this issue happens, the error reported by fsck is like this:
[1/7] checking root items
[2/7] checking extents
block group [1104150528 1073741824] used 39796736 but extent items used 0
ERROR: errors found in extent allocation tree or chunk allocation
(...)
So fix this by not resetting the "commit_used" field of a block group when
we don't find the block group item at update_block_group_item().
Fixes: 7248e0cebbef ("btrfs: skip update of block group item if used bytes are the same")
CC: stable@vger.kernel.org # 6.2+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently when rmdir on an instance is done, eventfs_remove_events_dir()
is called and it does a dput on the dentry and then frees the
eventfs_inode that represents the events directory.
But there's no protection against a reader reading the top level events
directory at the same time and we can get a use after free error. Instead,
use the dput() associated to the dentry to also free the eventfs_inode
associated to the events directory, as that will get called when the last
reference to the directory is released.
This issue triggered the following KASAN report:
==================================================================
BUG: KASAN: slab-use-after-free in eventfs_root_lookup+0x88/0x1b0
Read of size 8 at addr ffff888120130ca0 by task ftracetest/1201
CPU: 4 PID: 1201 Comm: ftracetest Not tainted 6.5.0-test-10737-g469e0a8194e7 #13
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x57/0x90
print_report+0xcf/0x670
? __pfx_ring_buffer_record_off+0x10/0x10
? _raw_spin_lock_irqsave+0x2b/0x70
? __virt_addr_valid+0xd9/0x160
kasan_report+0xd4/0x110
? eventfs_root_lookup+0x88/0x1b0
? eventfs_root_lookup+0x88/0x1b0
eventfs_root_lookup+0x88/0x1b0
? eventfs_root_lookup+0x33/0x1b0
__lookup_slow+0x194/0x2a0
? __pfx___lookup_slow+0x10/0x10
? down_read+0x11c/0x330
walk_component+0x166/0x220
link_path_walk.part.0.constprop.0+0x3a3/0x5a0
? seqcount_lockdep_reader_access+0x82/0x90
? __pfx_link_path_walk.part.0.constprop.0+0x10/0x10
path_openat+0x143/0x11f0
? __lock_acquire+0xa1a/0x3220
? __pfx_path_openat+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
do_filp_open+0x166/0x290
? __pfx_do_filp_open+0x10/0x10
? lock_is_held_type+0xce/0x120
? preempt_count_sub+0xb7/0x100
? _raw_spin_unlock+0x29/0x50
? alloc_fd+0x1a0/0x320
do_sys_openat2+0x126/0x160
? rcu_is_watching+0x34/0x60
? __pfx_do_sys_openat2+0x10/0x10
? __might_resched+0x2cf/0x3b0
? __fget_light+0xdf/0x100
__x64_sys_openat+0xcd/0x140
? __pfx___x64_sys_openat+0x10/0x10
? syscall_enter_from_user_mode+0x22/0x90
? lockdep_hardirqs_on+0x7d/0x100
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
RIP: 0033:0x7f1dceef5e51
Code: 75 57 89 f0 25 00 00 41 00 3d 00 00 41 00 74 49 80 3d 9a 27 0e 00 00 74 6d 89 da 48 89 ee bf 9c ff ff ff b8 01 01 00 00 0f 05 <48> 3d 00 f0 ff ff 0f 87 93 00 00 00 48 8b 54 24 28 64 48 2b 14 25
RSP: 002b:00007fff2cddf380 EFLAGS: 00000202 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 0000000000000241 RCX: 00007f1dceef5e51
RDX: 0000000000000241 RSI: 000055d7520677d0 RDI: 00000000ffffff9c
RBP: 000055d7520677d0 R08: 000000000000001e R09: 0000000000000001
R10: 00000000000001b6 R11: 0000000000000202 R12: 0000000000000000
R13: 0000000000000003 R14: 000055d752035678 R15: 000055d752067788
</TASK>
Allocated by task 1200:
kasan_save_stack+0x2f/0x50
kasan_set_track+0x21/0x30
__kasan_kmalloc+0x8b/0x90
eventfs_create_events_dir+0x54/0x220
create_event_toplevel_files+0x42/0x130
event_trace_add_tracer+0x33/0x180
trace_array_create_dir+0x52/0xf0
trace_array_create+0x361/0x410
instance_mkdir+0x6b/0xb0
tracefs_syscall_mkdir+0x57/0x80
vfs_mkdir+0x275/0x380
do_mkdirat+0x1da/0x210
__x64_sys_mkdir+0x74/0xa0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Freed by task 1251:
kasan_save_stack+0x2f/0x50
kasan_set_track+0x21/0x30
kasan_save_free_info+0x27/0x40
__kasan_slab_free+0x106/0x180
__kmem_cache_free+0x149/0x2e0
event_trace_del_tracer+0xcb/0x120
__remove_instance+0x16a/0x340
instance_rmdir+0x77/0xa0
tracefs_syscall_rmdir+0x77/0xc0
vfs_rmdir+0xed/0x2d0
do_rmdir+0x235/0x280
__x64_sys_rmdir+0x5f/0x90
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
The buggy address belongs to the object at ffff888120130ca0
which belongs to the cache kmalloc-16 of size 16
The buggy address is located 0 bytes inside of
freed 16-byte region [ffff888120130ca0, ffff888120130cb0)
The buggy address belongs to the physical page:
page:000000004dbddbb0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x120130
flags: 0x17ffffc0000800(slab|node=0|zone=2|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 0017ffffc0000800 ffff8881000423c0 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000800080 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888120130b80: 00 00 fc fc 00 05 fc fc 00 00 fc fc 00 02 fc fc
ffff888120130c00: 00 07 fc fc 00 00 fc fc 00 00 fc fc fa fb fc fc
>ffff888120130c80: 00 00 fc fc fa fb fc fc 00 00 fc fc 00 00 fc fc
^
ffff888120130d00: 00 00 fc fc 00 00 fc fc 00 00 fc fc fa fb fc fc
ffff888120130d80: 00 00 fc fc 00 00 fc fc 00 00 fc fc 00 00 fc fc
==================================================================
Link: https://lkml.kernel.org/r/20230907024803.250873643@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: Ajay Kaher <akaher@vmware.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 5bdcd5f5331a2 eventfs: ("Implement removal of meta data from eventfs")
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reported-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
jbd2_alloc() allocates a buffer from slab when the block size is smaller
than PAGE_SIZE, and slab may be using a compound page. Before commit
8147c4c4546f, we set b_page to the precise page containing the buffer
and this code worked well. Now we set b_page to the head page of the
allocation, so we can no longer use offset_in_page(). While we could
do a 1:1 replacement with offset_in_folio(), use the more idiomatic
bh_offset() and the folio APIs to map the buffer.
This isn't enough to support a b_size larger than PAGE_SIZE on HIGHMEM
machines, but this is good enough to fix the actual bug we're seeing.
Fixes: 8147c4c4546f ("jbd2: use a folio in jbd2_journal_write_metadata_buffer()")
Reported-by: Zorro Lang <zlang@kernel.org>
Signed-off-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
[converted to be more folio]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Recently we moved most cleanup from ntfs_put_super() into
ntfs3_kill_sb() as part of a bigger cleanup. This accidently also moved
dropping inode references stashed in ntfs3's sb->s_fs_info from
@sb->put_super() to @sb->kill_sb(). But generic_shutdown_super()
verifies that there are no busy inodes past sb->put_super(). Fix this
and disentangle dropping inode references from freeing @sb->s_fs_info.
Fixes: a4f64a300a29 ("ntfs3: free the sbi in ->kill_sb") # mainline only
Reported-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mateusz reports that glibc turns 'fstat()' calls into 'fstatat()', and
that seems to have been going on for quite a long time due to glibc
having tried to simplify its stat logic into just one point.
This turns out to cause completely unnecessary overhead, where we then
go off and allocate the kernel side pathname, and actually look up the
empty path. Sure, our path lookup is quite optimized, but it still
causes a fair bit of allocation overhead and a couple of completely
unnecessary rounds of lockref accesses etc.
This is all hopefully getting fixed in user space, and there is a patch
floating around for just having glibc use the native fstat() system
call. But even with the current situation we can at least improve on
things by catching the situation and short-circuiting it.
Note that this is still measurably slower than just a plain 'fstat()',
since just checking that the filename is actually empty is somewhat
expensive due to inevitable user space access overhead from the kernel
(ie verifying pointers, and SMAP on x86). But it's still quite a bit
faster than actually looking up the path for real.
To quote numers from Mateusz:
"Sapphire Rapids, will-it-scale, ops/s
stock fstat 5088199
patched fstat 7625244 (+49%)
real fstat 8540383 (+67% / +12%)"
where that 'stock fstat' is the glibc translation of fstat into
fstatat() with an empty path, the 'patched fstat' is with this short
circuiting of the path lookup, and the 'real fstat' is the actual native
fstat() system call with none of this overhead.
Link: https://lore.kernel.org/lkml/20230903204858.lv7i3kqvw6eamhgz@f/
Reported-by: Mateusz Guzik <mjguzik@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow adjusting the maximum number of cached directories per share
(defaults to 16) via mount parm "max_cached_dirs"
Signed-off-by: Steve French <stfrench@microsoft.com>
In debugging a recent performance problem with statfs, it would have
been helpful to be able to trace the smb3 query fs info request
more narrowly. Add a trace point "smb3_qfs_done"
Which displays:
stat-68950 [008] ..... 1472.360598: smb3_qfs_done: xid=14 sid=0xaa9765e4 tid=0x95a76f54 unc_name=\\localhost\test rc=0
Reviewed-by: Shyam Prasad N <sprasad@microsoft.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
fscrypt support to CephFS! The list of things which don't work with
encryption should be fairly short, mostly around the edges: fallocate
(not supported well in CephFS to begin with), copy_file_range (requires
re-encryption), non-default striping patterns.
This was a multi-year effort principally by Jeff Layton with assistance
from Xiubo Li, Luís Henriques and others, including several dependant
changes in the MDS, netfs helper library and fscrypt framework itself.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEydHwtzie9C7TfviiSn/eOAIR84sFAmT4pl4THGlkcnlvbW92
QGdtYWlsLmNvbQAKCRBKf944AhHzi5kzB/4sMgzZyUa3T1vA/G2pPvEkyy1qDxsW
y+o4dDMWA9twcrBVpNuGd54wbXpmO/LAekHEdorjayH+f0zf10MsnP1ePz9WB3NG
jr7RRujb+Gpd2OFYJXGSEbd3faTg8M2kpGCCrVe7SFNoyu8z9NwFItwWMog5aBjX
ODGQrq+kA4ARA6xIqwzF5gP0zr+baT9rWhQdm7Xo9itWdosnbyDLJx1dpEfLuqBX
te3SmifDzedn3Gw73hdNo/+ybw0kHARoK+RmXCTsoDDQw+JsoO9KxZF5Q8QcDELq
2woPNp0Hl+Dm4MkzGnPxv56Qj8ZDViS59syXC0CfGRmu4nzF1Rw+0qn5
=/WlE
-----END PGP SIGNATURE-----
Merge tag 'ceph-for-6.6-rc1' of https://github.com/ceph/ceph-client
Pull ceph updates from Ilya Dryomov:
"Mixed with some fixes and cleanups, this brings in reasonably complete
fscrypt support to CephFS! The list of things which don't work with
encryption should be fairly short, mostly around the edges: fallocate
(not supported well in CephFS to begin with), copy_file_range
(requires re-encryption), non-default striping patterns.
This was a multi-year effort principally by Jeff Layton with
assistance from Xiubo Li, Luís Henriques and others, including several
dependant changes in the MDS, netfs helper library and fscrypt
framework itself"
* tag 'ceph-for-6.6-rc1' of https://github.com/ceph/ceph-client: (53 commits)
ceph: make num_fwd and num_retry to __u32
ceph: make members in struct ceph_mds_request_args_ext a union
rbd: use list_for_each_entry() helper
libceph: do not include crypto/algapi.h
ceph: switch ceph_lookup/atomic_open() to use new fscrypt helper
ceph: fix updating i_truncate_pagecache_size for fscrypt
ceph: wait for OSD requests' callbacks to finish when unmounting
ceph: drop messages from MDS when unmounting
ceph: update documentation regarding snapshot naming limitations
ceph: prevent snapshot creation in encrypted locked directories
ceph: add support for encrypted snapshot names
ceph: invalidate pages when doing direct/sync writes
ceph: plumb in decryption during reads
ceph: add encryption support to writepage and writepages
ceph: add read/modify/write to ceph_sync_write
ceph: align data in pages in ceph_sync_write
ceph: don't use special DIO path for encrypted inodes
ceph: add truncate size handling support for fscrypt
ceph: add object version support for sync read
libceph: allow ceph_osdc_new_request to accept a multi-op read
...
All the eventfs external functions do not check if TRACEFS_LOCKDOWN was
set or not. This can caused some functions to return success while others
fail, which can trigger unexpected errors.
Add the missing lockdown checks.
Link: https://lkml.kernel.org/r/20230905182711.899724045@goodmis.org
Link: https://lore.kernel.org/all/202309050916.58201dc6-oliver.sang@intel.com/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Cc: Ching-lin Yu <chinglinyu@google.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>