There is a scenario where the file directory is created but the
file memory is not set. In this case, if a user accesses the
file, an error occurs.
So during the creation process of debugfs, memory should be
allocated first before creating the directory. In the release
process, the directory should be deleted first before releasing
the memory to avoid the situation where the memory does not
exist when accessing the directory.
In addition, the directory released by the debugfs is a global
variable. When the debugfs of an accelerator fails to be
initialized, releasing the directory of the global variable
affects the debugfs initialization of other accelerators.
The debugfs root directory released by debugfs init should be a
member of qm, not a global variable.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The cmd type can be extended. Currently, only four types of cmd
can be processed. Therefor, add the default processing branch
to intercept incorrect parameter input.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There is a scenario where the file directory is created but the
file attribute is not set. In this case, if a user accesses the
file, an error occurs.
So adjust the processing logic in the debugfs creation to
prevent the file from being accessed before the file attributes
such as the index are set.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The input parameter check in acc_get_sgl is redundant. The
caller has been verified once. When the check is performed for
multiple times, the performance deteriorates.
So the redundant parameter verification is deleted, and the
index verification is changed to the module entry function for
verification.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
During the zip probe process, the debugfs failure does not stop
the probe. When debugfs initialization fails, jumping to the
error branch will also release regs, in addition to its own
rollback operation.
As a result, it may be released repeatedly during the regs
uninit process. Therefore, the null check needs to be added to
the regs uninit process.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When CONFIG_PCI_IOV is disabled, the SRIOV configuration
function is not required. An error occurs if this function is
incorrectly called.
Consistent with other modules, add the condition for
configuring the sriov function of sec_pci_driver.
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since sha512_transform_rorx() uses ymm registers, execute vzeroupper
before returning from it. This is necessary to avoid reducing the
performance of SSE code.
Fixes: e01d69cb01 ("crypto: sha512 - Optimized SHA512 x86_64 assembly routine using AVX instructions.")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since sha256_transform_rorx() uses ymm registers, execute vzeroupper
before returning from it. This is necessary to avoid reducing the
performance of SSE code.
Fixes: d34a460092 ("crypto: sha256 - Optimized sha256 x86_64 routine using AVX2's RORX instructions")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since nh_avx2() uses ymm registers, execute vzeroupper before returning
from it. This is necessary to avoid reducing the performance of SSE
code.
Fixes: 0f961f9f67 ("crypto: x86/nhpoly1305 - add AVX2 accelerated NHPoly1305")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
If some cpus are offlined, or if the node mask is smaller than
expected, the 'nonexistent cpu' warning in rebalance_wq_table() may be
erroneously triggered.
Use cpumask_weight() to make sure we only iterate over the exact
number of cpus in the mask.
Also use num_possible_cpus() instead of num_online_cpus() to make sure
all slots in the wq table are initialized.
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Enable the x509 parser to accept NIST P521 certificates and add the
OID for ansip521r1, which is the identifier for NIST P521.
Cc: David Howells <dhowells@redhat.com>
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Adjust the calculation of the maximum signature size for support of
NIST P521. While existing curves may prepend a 0 byte to their coordinates
(to make the number positive), NIST P521 will not do this since only the
first bit in the most significant byte is used.
If the encoding of the x & y coordinates requires at least 128 bytes then
an additional byte is needed for the encoding of the length. Take this into
account when calculating the maximum signature size.
Reviewed-by: Lukas Wunner <lukas@wunner.de>
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Register NIST P521 as an akcipher and extend the testmgr with
NIST P521-specific test vectors.
Add a module alias so the module gets automatically loaded by the crypto
subsystem when the curve is needed.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In cases where 'keylen' was referring to the size of the buffer used by
a curve's digits, it does not reflect the purpose of the variable anymore
once NIST P521 is used. What it refers to then is the size of the buffer,
which may be a few bytes larger than the size a coordinate of a key.
Therefore, rename keylen to bufsize where appropriate.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace the usage of ndigits with nbits where precise space calculations
are needed, such as in ecdsa_max_size where the length of a coordinate is
determined.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add the parameters for the NIST P521 curve and define a new curve ID
for it. Make the curve available in ecc_get_curve.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In ecc_point_mult use the number of bits of the NIST P521 curve + 2. The
change is required specifically for NIST P521 to pass mathematical tests
on the public key.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Implement vli_mmod_fast_521 following the description for how to calculate
the modulus for NIST P521 in the NIST publication "Recommendations for
Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters"
section G.1.4.
NIST p521 requires 9 64bit digits, so increase the ECC_MAX_DIGITS so that
the vli digit array provides enough elements to fit the larger integers
required by this curve.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add the number of bits a curve has to the ecc_curve definition to be able
to derive the number of bytes a curve requires for its coordinates from it.
It also allows one to identify a curve by its particular size. Set the
number of bits on all curve definitions.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
res.x has been calculated by ecc_point_mult_shamir, which uses
'mod curve_prime' on res.x and therefore p > res.x with 'p' being the
curve_prime. Further, it is true that for the NIST curves p > n with 'n'
being the 'curve_order' and therefore the following may be true as well:
p > res.x >= n.
If res.x >= n then res.x mod n can be calculated by iteratively sub-
tracting n from res.x until res.x < n. For NIST P192/256/384 this can be
done in a single subtraction. This can also be done in a single
subtraction for NIST P521.
The mathematical reason why a single subtraction is sufficient is due to
the values of 'p' and 'n' of the NIST curves where the following holds
true:
note: max(res.x) = p - 1
max(res.x) - n < n
p - 1 - n < n
p - 1 < 2n => holds true for the NIST curves
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In preparation for support of NIST P521, adjust the basic tests on the
length of the provided key parameters to only ensure that the length of the
x plus y coordinates parameter array is not an odd number and that each
coordinate fits into an array of 'ndigits' digits. Mathematical tests on
the key's parameters are then done in ecc_is_pubkey_valid_full rejecting
invalid keys.
The change is necessary since NIST P521 keys do not have keys with
coordinates that each require 'full' digits (= all bits in u64 used).
NIST P521 only requires 2 bytes (9 bits) in the most significant digit
unlike NIST P192/256/384 that each require multiple 'full' digits.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
For NIST P192/256/384 the public key's x and y parameters could be copied
directly from a given array since both parameters filled 'ndigits' of
digits (a 'digit' is a u64). For support of NIST P521 the key parameters
need to have leading zeros prepended to the most significant digit since
only 2 bytes of the most significant digit are provided.
Therefore, implement ecc_digits_from_bytes to convert a byte array into an
array of digits and use this function in ecdsa_set_pub_key where an input
byte array needs to be converted into digits.
Suggested-by: Lukas Wunner <lukas@wunner.de>
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace hard-coded numbers with ECC_CURVE_NIST_P192/256/384_DIGITS where
possible.
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for Tegra Security Engine which can accelerate various
crypto algorithms. The Engine has two separate instances within for
AES and HASH algorithms respectively.
The driver registers two crypto engines - one for AES and another for
HASH algorithms and these operate independently and both uses the host1x
bus. Additionally, it provides hardware-assisted key protection for up
to 15 symmetric keys which it can use for the cipher operations.
Signed-off-by: Akhil R <akhilrajeev@nvidia.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add Tegra Security Engine details to the SID table in host1x driver.
These entries are required to be in place to configure the stream ID
for SE. Register writes to stream ID registers fail otherwise.
Signed-off-by: Akhil R <akhilrajeev@nvidia.com>
Acked-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add DT binding document for Tegra Security Engine.
The AES and HASH algorithms are handled independently by separate
engines within the Security Engine. These engines are registered
as two separate crypto engine drivers.
Signed-off-by: Akhil R <akhilrajeev@nvidia.com>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As the old padata code can execute in softirq context, disable
softirqs for the new padata_do_mutithreaded code too as otherwise
lockdep will get antsy.
Reported-by: syzbot+0cb5bb0f4bf9e79db3b3@syzkaller.appspotmail.com
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When both ACPI and OF are disabled, the dev_vdata variable is unused:
drivers/crypto/ccp/sp-platform.c:33:34: error: unused variable 'dev_vdata' [-Werror,-Wunused-const-variable]
This is not a useful configuration, and there is not much point in saving
a few bytes when only one of the two is enabled, so just remove all
these ifdef checks and rely on of_match_node() and acpi_match_device()
returning NULL when these subsystems are disabled.
Fixes: 6c50634340 ("crypto: ccp - Add ACPI support")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There is a spelling mistake in a dev_err message. Fix it.
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Acked-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The for loop will be executed at least once, so i > 0. If the loop
is interrupted before i is incremented (e.g., when checking len for NULL),
i will not be checked.
Found by Linux Verification Center (linuxtesting.org) with Svace.
Signed-off-by: Roman Smirnov <r.smirnov@omp.ru>
Reviewed-by: Sergey Shtylyov <s.shtylyov@omp.ru>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
With the current state of the code, ecc_get_curve() cannot return
NULL in crypto_ecdh_shared_secret() and ecc_make_pub_key(). This is
conditioned by the fact that they are only called from ecdh_compute_value(),
which implements the kpp_alg::{generate_public_key,compute_shared_secret}()
methods. Also ecdh implements the kpp_alg::init() method, which is called
before the other methods and sets ecdh_ctx::curve_id to a valid value.
Signed-off-by: Roman Smirnov <r.smirnov@omp.ru>
Reviewed-by: Sergey Shtylyov <s.shtylyov@omp.ru>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add an AES-XTS implementation "xts-aes-vaes-avx10_512" for x86_64 CPUs
with the VAES, VPCLMULQDQ, and either AVX10/512 or AVX512BW + AVX512VL
extensions. This implementation uses zmm registers to operate on four
AES blocks at a time. The assembly code is instantiated using a macro
so that most of the source code is shared with other implementations.
To avoid downclocking on older Intel CPU models, an exclusion list is
used to prevent this 512-bit implementation from being used by default
on some CPU models. They will use xts-aes-vaes-avx10_256 instead. For
now, this exclusion list is simply coded into aesni-intel_glue.c. It
may make sense to eventually move it into a more central location.
xts-aes-vaes-avx10_512 is slightly faster than xts-aes-vaes-avx10_256 on
some current CPUs. E.g., on AMD Zen 4, AES-256-XTS decryption
throughput increases by 13% with 4096-byte inputs, or 14% with 512-byte
inputs. On Intel Sapphire Rapids, AES-256-XTS decryption throughput
increases by 2% with 4096-byte inputs, or 3% with 512-byte inputs.
Future CPUs may provide stronger 512-bit support, in which case a larger
benefit should be seen.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add an AES-XTS implementation "xts-aes-vaes-avx10_256" for x86_64 CPUs
with the VAES, VPCLMULQDQ, and either AVX10/256 or AVX512BW + AVX512VL
extensions. This implementation avoids using zmm registers, instead
using ymm registers to operate on two AES blocks at a time. The
assembly code is instantiated using a macro so that most of the source
code is shared with other implementations.
This is the optimal implementation on CPUs that support VAES and AVX512
but where the zmm registers should not be used due to downclocking
effects, for example Intel's Ice Lake. It should also be the optimal
implementation on future CPUs that support AVX10/256 but not AVX10/512.
The performance is slightly better than that of xts-aes-vaes-avx2, which
uses the same 256-bit vector length, due to factors such as being able
to use ymm16-ymm31 to cache the AES round keys, and being able to use
the vpternlogd instruction to do XORs more efficiently. For example, on
Ice Lake, the throughput of decrypting 4096-byte messages with
AES-256-XTS is 6.6% higher with xts-aes-vaes-avx10_256 than with
xts-aes-vaes-avx2. While this is a small improvement, it is
straightforward to provide this implementation (xts-aes-vaes-avx10_256)
as long as we are providing xts-aes-vaes-avx2 and xts-aes-vaes-avx10_512
anyway, due to the way the _aes_xts_crypt macro is structured.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add an AES-XTS implementation "xts-aes-vaes-avx2" for x86_64 CPUs with
the VAES, VPCLMULQDQ, and AVX2 extensions, but not AVX512 or AVX10.
This implementation uses ymm registers to operate on two AES blocks at a
time. The assembly code is instantiated using a macro so that most of
the source code is shared with other implementations.
This is the optimal implementation on AMD Zen 3. It should also be the
optimal implementation on Intel Alder Lake, which similarly supports
VAES but not AVX512. Comparing to xts-aes-aesni-avx on Zen 3,
xts-aes-vaes-avx2 provides 70% higher AES-256-XTS decryption throughput
with 4096-byte messages, or 23% higher with 512-byte messages.
A large improvement is also seen with CPUs that do support AVX512 (e.g.,
98% higher AES-256-XTS decryption throughput on Ice Lake with 4096-byte
messages), though the following patches add AVX512 optimized
implementations to get a bit more performance on those CPUs.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add an AES-XTS implementation "xts-aes-aesni-avx" for x86_64 CPUs that
have the AES-NI and AVX extensions but not VAES. It's similar to the
existing xts-aes-aesni in that uses xmm registers to operate on one AES
block at a time. It differs from xts-aes-aesni in the following ways:
- It uses the VEX-coded (non-destructive) instructions from AVX.
This improves performance slightly.
- It incorporates some additional optimizations such as interleaving the
tweak computation with AES en/decryption, handling single-page
messages more efficiently, and caching the first round key.
- It supports only 64-bit (x86_64).
- It's generated by an assembly macro that will also be used to generate
VAES-based implementations.
The performance improvement over xts-aes-aesni varies from small to
large, depending on the CPU and other factors such as the size of the
messages en/decrypted. For example, the following increases in
AES-256-XTS decryption throughput are seen on the following CPUs:
| 4096-byte messages | 512-byte messages |
----------------------+--------------------+-------------------+
Intel Skylake | 6% | 31% |
Intel Cascade Lake | 4% | 26% |
AMD Zen 1 | 61% | 73% |
AMD Zen 2 | 36% | 59% |
(The above CPUs don't support VAES, so they can't use VAES instead.)
While this isn't as large an improvement as what VAES provides, this
still seems worthwhile. This implementation is fairly easy to provide
based on the assembly macro that's needed for VAES anyway, and it will
be the best implementation on a large number of CPUs (very roughly, the
CPUs launched by Intel and AMD from 2011 to 2018).
This makes the existing xts-aes-aesni *mostly* obsolete. For now, leave
it in place to support 32-bit kernels and also CPUs like Intel Westmere
that support AES-NI but not AVX. (We could potentially remove it anyway
and just rely on the indirect acceleration via ecb-aes-aesni in those
cases, but that change will need to be considered separately.)
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add an assembly file aes-xts-avx-x86_64.S which contains a macro that
expands into AES-XTS implementations for x86_64 CPUs that support at
least AES-NI and AVX, optionally also taking advantage of VAES,
VPCLMULQDQ, and AVX512 or AVX10.
This patch doesn't expand the macro at all. Later patches will do so,
adding each implementation individually so that the motivation and use
case for each individual implementation can be fully presented.
The file also provides a function aes_xts_encrypt_iv() which handles the
encryption of the IV (tweak), using AES-NI and AVX.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add config symbols AS_VAES and AS_VPCLMULQDQ that expose whether the
assembler supports the vector AES and carryless multiplication
cryptographic extensions.
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
private_key is overwritten with the key parameter passed in by the
caller (if present), or alternatively a newly generated private key.
However, it is possible that the caller provides a key (or the newly
generated key) which is shorter than the previous key. In that
scenario, some key material from the previous key would not be
overwritten. The easiest solution is to explicitly zeroize the entire
private_key array first.
Note that this patch slightly changes the behavior of this function:
previously, if the ecc_gen_privkey failed, the old private_key would
remain. Now, the private_key is always zeroized. This behavior is
consistent with the case where params.key is set and ecc_is_key_valid
fails.
Signed-off-by: Joachim Vandersmissen <git@jvdsn.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which will
reduce the overall build time size of the kernel and run time memory
bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)
Remove sentinel from crypto_sysctl_table
Signed-off-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace memzero_explicit() and kvfree() with kvfree_sensitive() to fix
the following Coccinelle/coccicheck warning reported by
kfree_sensitive.cocci:
WARNING opportunity for kfree_sensitive/kvfree_sensitive
Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-Wflex-array-member-not-at-end is coming in GCC-14, and we are getting
ready to enable it globally.
Use the `__struct_group()` helper to separate the flexible array
from the rest of the members in flexible `struct qat_alg_buf_list`,
through tagged `struct qat_alg_buf_list_hdr`, and avoid embedding the
flexible-array member in the middle of `struct qat_alg_fixed_buf_list`.
Also, use `container_of()` whenever we need to retrieve a pointer to
the flexible structure.
So, with these changes, fix the following warnings:
drivers/crypto/intel/qat/qat_common/qat_bl.h:25:33: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end]
drivers/crypto/intel/qat/qat_common/qat_bl.h:25:33: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end]
drivers/crypto/intel/qat/qat_common/qat_bl.h:25:33: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end]
drivers/crypto/intel/qat/qat_common/qat_bl.h:25:33: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end]
drivers/crypto/intel/qat/qat_common/qat_bl.h:25:33: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end]
drivers/crypto/intel/qat/qat_common/qat_bl.h:25:33: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end]
drivers/crypto/intel/qat/qat_common/qat_bl.h:25:33: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end]
drivers/crypto/intel/qat/qat_common/qat_bl.h:25:33: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end]
Link: https://github.com/KSPP/linux/issues/202
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Acked-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There are considerations to drop platform_driver_probe() as a concept
that isn't relevant any more today. It comes with an added complexity
that makes many users hold it wrong. (E.g. this driver should have mark
the driver struct with __refdata.)
Convert the driver to the more usual module_platform_driver().
This fixes a W=1 build warning:
WARNING: modpost: drivers/char/hw_random/mxc-rnga: section mismatch in reference: mxc_rnga_driver+0x10 (section: .data) -> mxc_rnga_remove (section: .exit.text)
with CONFIG_HW_RANDOM_MXC_RNGA=m.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The aesni_set_key() implementation has no error case, yet its prototype
specifies to return an error code.
Modify the function prototype to return void and adjust the related code.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: linux-crypto@vger.kernel.org
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
aes_expandkey() already includes an AES key size check. If AES-NI is
unusable, invoke the function without the size check.
Also, use aes_check_keylen() instead of open code.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: linux-crypto@vger.kernel.org
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In spu2_dump_omd() value of ptr is increased by ciph_key_len
instead of hash_iv_len which could lead to going beyond the
buffer boundaries.
Fix this bug by changing ciph_key_len to hash_iv_len.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Fixes: 9d12ba86f8 ("crypto: brcm - Add Broadcom SPU driver")
Signed-off-by: Aleksandr Mishin <amishin@t-argos.ru>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This cleans up the following issues I ran into when trying to use the
scripts and commands in the iaa-crypto.rst document.
- Fix incorrect arguments being passed to accel-config
config-wq.
- Replace --device_name with --driver-name.
- Replace --driver_name with --driver-name.
- Replace --size with --wq-size.
- Add missing --priority argument.
- Add missing accel-config config-engine command after the
config-wq commands.
- Fix wq name passed to accel-config config-wq.
- Add rmmod/modprobe of iaa_crypto to script that disables,
then enables all devices and workqueues to avoid enable-wq
failing with -EEXIST when trying to register to compression
algorithm.
- Fix device name in cases where iaa was used instead of iax.
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-crypto@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Signed-off-by: Jerry Snitselaar <jsnitsel@redhat.com>
Reviewed-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add module alias with the algorithm cra_name similar to what we have for
RSA-related and other algorithms.
The kernel attempts to modprobe asymmetric algorithms using the names
"crypto-$cra_name" and "crypto-$cra_name-all." However, since these
aliases are currently missing, the modules are not loaded. For instance,
when using the `add_key` function, the hash algorithm is typically
loaded automatically, but the asymmetric algorithm is not.
Steps to test:
1. Create certificate
openssl req -x509 -sha256 -newkey ec \
-pkeyopt "ec_paramgen_curve:secp384r1" -keyout key.pem -days 365 \
-subj '/CN=test' -nodes -outform der -out nist-p384.der
2. Optionally, trace module requests with: trace-cmd stream -e module &
3. Trigger add_key call for the cert:
# keyctl padd asymmetric "" @u < nist-p384.der
641069229
# lsmod | head -2
Module Size Used by
ecdsa_generic 16384 0
Fixes: c12d448ba9 ("crypto: ecdsa - Register NIST P384 and extend test suite")
Cc: stable@vger.kernel.org
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>