In the GICv3 redistributor there are the PENDBASER and PROPBASER
registers which we did not emulate so far, as they only make sense
when having an ITS. In preparation for that emulate those MMIO
accesses by storing the 64-bit data written into it into a variable
which we later read in the ITS emulation.
We also sanitise the registers, making sure RES0 regions are respected
and checking for valid memory attributes.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In the moment our struct vgic_irq's are statically allocated at guest
creation time. So getting a pointer to an IRQ structure is trivial and
safe. LPIs are more dynamic, they can be mapped and unmapped at any time
during the guest's _runtime_.
In preparation for supporting LPIs we introduce reference counting for
those structures using the kernel's kref infrastructure.
Since private IRQs and SPIs are statically allocated, we avoid actually
refcounting them, since they would never be released anyway.
But we take provisions to increase the refcount when an IRQ gets onto a
VCPU list and decrease it when it gets removed. Also this introduces
vgic_put_irq(), which wraps kref_put and hides the release function from
the callers.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Logically a GICv3 redistributor is assigned to a (v)CPU, so we should
aim to keep redistributor related variables out of our struct vgic_dist.
Let's start by replacing the redistributor related kvm_io_device array
with two members in our existing struct vgic_cpu, which are naturally
per-VCPU and thus don't require any allocation / freeing.
So apart from the better fit with the redistributor design this saves
some code as well.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
I don't think any single piece of the KVM/ARM code ever generated
as much hatred as the GIC emulation.
It was written by someone who had zero experience in modeling
hardware (me), was riddled with design flaws, should have been
scrapped and rewritten from scratch long before having a remote
chance of reaching mainline, and yet we supported it for a good
three years. No need to mention the names of those who suffered,
the git log is singing their praises.
Thankfully, we now have a much more maintainable implementation,
and we can safely put the grumpy old GIC to rest.
Fellow hackers, please raise your glass in memory of the GIC:
The GIC is dead, long live the GIC!
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Add a new header file for the new and improved GIC implementation.
The big change is that we now have a struct vgic_irq per IRQ instead
of spreading all the information over various bitmaps.
We include this new header conditionally from within the old header
file for the time being to avoid touching all the users.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Currently the PMU uses a member of the struct vgic_dist directly,
which not only breaks abstraction, but will fail with the new VGIC.
Abstract this access in the VGIC header file and refactor the validity
check in the PMU code.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
The number of list registers is a property of the underlying system, not
of emulated VGIC CPU interface.
As we are about to move this variable to global state in the new vgic
for clarity, move it from the legacy implementation as well to make the
merge of the new code easier.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Now that the virtual arch timer does not care about the irq_phys_map
anymore, let's rework kvm_vgic_map_phys_irq() to return an error
value instead. Any reference to that mapping can later be done by
passing the correct combination of VCPU and virtual IRQ number.
This makes the irq_phys_map handling completely private to the
VGIC code.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
The communication of a Linux IRQ number from outside the VGIC to the
vgic was a leftover from the day when the vgic code cared about how a
particular device injects virtual interrupts mapped to a physical
interrupt.
We can safely remove this notion, leaving all physical IRQ handling to
be done in the device driver (the arch timer in this case), which makes
room for a saner API for the new VGIC.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
kvm_vgic_unmap_phys_irq() only needs the virtual IRQ number, so let's
just pass that between the arch timer and the VGIC to get rid of
the irq_phys_map pointer.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
For getting the active state of a mapped IRQ, we actually only need
the virtual IRQ number, not the pointer to the mapping entry.
Pass the virtual IRQ number from the arch timer to the VGIC directly.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
When we want to inject a hardware mapped IRQ into a guest, we actually
only need the virtual IRQ number from the irq_phys_map.
So let's pass this number directly from the arch timer to the VGIC
to avoid using the map as a parameter.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently, the firmware tables are parsed 2 times: once in the GIC
drivers, the other time when initializing the vGIC. It means code
duplication and make more tedious to add the support for another
firmware table (like ACPI).
Use the recently introduced helper gic_get_kvm_info() to get
information about the virtual GIC.
With this change, the virtual GIC becomes agnostic to the firmware
table and KVM will be able to initialize the vGIC on ACPI.
Signed-off-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Just like on GICv2, we're a bit hammer-happy with GICv3, and access
them more often than we should.
Adopt a policy similar to what we do for GICv2, only save/restoring
the minimal set of registers. As we don't access the registers
linearly anymore (we may skip some), the convoluted accessors become
slightly simpler, and we can drop the ugly indexing macro that
tended to confuse the reviewers.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
GICv2 registers are *slow*. As in "terrifyingly slow". Which is bad.
But we're equaly bad, as we make a point in accessing them even if
we don't have any interrupt in flight.
A good solution is to first find out if we have anything useful to
write into the GIC, and if we don't, to simply not do it. This
involves tracking which LRs actually have something valid there.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We store GICv3 LRs in reverse order so that the CPU can save/restore
them in rever order as well (don't ask why, the design is crazy),
and yet generate memory traffic that doesn't completely suck.
We need this macro to be available to the C version of save/restore.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We were incorrectly removing the active state from the physical
distributor on the timer interrupt when the timer output level was
deasserted. We shouldn't be doing this without considering the virtual
interrupt's active state, because the architecture requires that when an
LR has the HW bit set and the pending or active bits set, then the
physical interrupt must also have the corresponding bits set.
This addresses an issue where we have been observing an inconsistency
between the LR state and the physical distributor state where the LR
state was active and the physical distributor was not active, which
shouldn't happen.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
handling.
PPC: Mostly bug fixes.
ARM: No big features, but many small fixes and prerequisites including:
- a number of fixes for the arch-timer
- introducing proper level-triggered semantics for the arch-timers
- a series of patches to synchronously halt a guest (prerequisite for
IRQ forwarding)
- some tracepoint improvements
- a tweak for the EL2 panic handlers
- some more VGIC cleanups getting rid of redundant state
x86: quite a few changes:
- support for VT-d posted interrupts (i.e. PCI devices can inject
interrupts directly into vCPUs). This introduces a new component (in
virt/lib/) that connects VFIO and KVM together. The same infrastructure
will be used for ARM interrupt forwarding as well.
- more Hyper-V features, though the main one Hyper-V synthetic interrupt
controller will have to wait for 4.5. These will let KVM expose Hyper-V
devices.
- nested virtualization now supports VPID (same as PCID but for vCPUs)
which makes it quite a bit faster
- for future hardware that supports NVDIMM, there is support for clflushopt,
clwb, pcommit
- support for "split irqchip", i.e. LAPIC in kernel + IOAPIC/PIC/PIT in
userspace, which reduces the attack surface of the hypervisor
- obligatory smattering of SMM fixes
- on the guest side, stable scheduler clock support was rewritten to not
require help from the hypervisor.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJWO2IQAAoJEL/70l94x66D/K0H/3AovAgYmJQToZlimsktMk6a
f2xhdIqfU5lIQQh5uNBCfL3o9o8H9Py1ym7aEw3fmztPHHJYc91oTatt2UEKhmEw
VtZHp/dFHt3hwaIdXmjRPEXiYctraKCyrhaUYdWmUYkoKi7lW5OL5h+S7frG2U6u
p/hFKnHRZfXHr6NSgIqvYkKqtnc+C0FWY696IZMzgCksOO8jB1xrxoSN3tANW3oJ
PDV+4og0fN/Fr1capJUFEc/fejREHneANvlKrLaa8ht0qJQutoczNADUiSFLcMPG
iHljXeDsv5eyjMtUuIL8+MPzcrIt/y4rY41ZPiKggxULrXc6H+JJL/e/zThZpXc=
=iv2z
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"First batch of KVM changes for 4.4.
s390:
A bunch of fixes and optimizations for interrupt and time handling.
PPC:
Mostly bug fixes.
ARM:
No big features, but many small fixes and prerequisites including:
- a number of fixes for the arch-timer
- introducing proper level-triggered semantics for the arch-timers
- a series of patches to synchronously halt a guest (prerequisite
for IRQ forwarding)
- some tracepoint improvements
- a tweak for the EL2 panic handlers
- some more VGIC cleanups getting rid of redundant state
x86:
Quite a few changes:
- support for VT-d posted interrupts (i.e. PCI devices can inject
interrupts directly into vCPUs). This introduces a new
component (in virt/lib/) that connects VFIO and KVM together.
The same infrastructure will be used for ARM interrupt
forwarding as well.
- more Hyper-V features, though the main one Hyper-V synthetic
interrupt controller will have to wait for 4.5. These will let
KVM expose Hyper-V devices.
- nested virtualization now supports VPID (same as PCID but for
vCPUs) which makes it quite a bit faster
- for future hardware that supports NVDIMM, there is support for
clflushopt, clwb, pcommit
- support for "split irqchip", i.e. LAPIC in kernel +
IOAPIC/PIC/PIT in userspace, which reduces the attack surface of
the hypervisor
- obligatory smattering of SMM fixes
- on the guest side, stable scheduler clock support was rewritten
to not require help from the hypervisor"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (123 commits)
KVM: VMX: Fix commit which broke PML
KVM: x86: obey KVM_X86_QUIRK_CD_NW_CLEARED in kvm_set_cr0()
KVM: x86: allow RSM from 64-bit mode
KVM: VMX: fix SMEP and SMAP without EPT
KVM: x86: move kvm_set_irq_inatomic to legacy device assignment
KVM: device assignment: remove pointless #ifdefs
KVM: x86: merge kvm_arch_set_irq with kvm_set_msi_inatomic
KVM: x86: zero apic_arb_prio on reset
drivers/hv: share Hyper-V SynIC constants with userspace
KVM: x86: handle SMBASE as physical address in RSM
KVM: x86: add read_phys to x86_emulate_ops
KVM: x86: removing unused variable
KVM: don't pointlessly leave KVM_COMPAT=y in non-KVM configs
KVM: arm/arm64: Merge vgic_set_lr() and vgic_sync_lr_elrsr()
KVM: arm/arm64: Clean up vgic_retire_lr() and surroundings
KVM: arm/arm64: Optimize away redundant LR tracking
KVM: s390: use simple switch statement as multiplexer
KVM: s390: drop useless newline in debugging data
KVM: s390: SCA must not cross page boundaries
KVM: arm: Do not indent the arguments of DECLARE_BITMAP
...
Now we see that vgic_set_lr() and vgic_sync_lr_elrsr() are always used
together. Merge them into one function, saving from second vgic_ops
dereferencing every time.
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently we use vgic_irq_lr_map in order to track which LRs hold which
IRQs, and lr_used bitmap in order to track which LRs are used or free.
vgic_irq_lr_map is actually used only for piggy-back optimization, and
can be easily replaced by iteration over lr_used. This is good because in
future, when LPI support is introduced, number of IRQs will grow up to at
least 16384, while numbers from 1024 to 8192 are never going to be used.
This would be a huge memory waste.
In its turn, lr_used is also completely redundant since
ae705930fc ("arm/arm64: KVM: Keep elrsr/aisr
in sync with software model"), because together with lr_used we also update
elrsr. This allows to easily replace lr_used with elrsr, inverting all
conditions (because in elrsr '1' means 'free').
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Besides being a coding style issue, it confuses make tags:
ctags: Warning: include/kvm/arm_vgic.h:307: null expansion of name pattern "\1"
ctags: Warning: include/kvm/arm_vgic.h:308: null expansion of name pattern "\1"
ctags: Warning: include/kvm/arm_vgic.h:309: null expansion of name pattern "\1"
ctags: Warning: include/kvm/arm_vgic.h:317: null expansion of name pattern "\1"
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Michal Marek <mmarek@suse.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The arch timer currently uses edge-triggered semantics in the sense that
the line is never sampled by the vgic and lowering the line from the
timer to the vgic doesn't have any effect on the pending state of
virtual interrupts in the vgic. This means that we do not support a
guest with the otherwise valid behavior of (1) disable interrupts (2)
enable the timer (3) disable the timer (4) enable interrupts. Such a
guest would validly not expect to see any interrupts on real hardware,
but will see interrupts on KVM.
This patch fixes this shortcoming through the following series of
changes.
First, we change the flow of the timer/vgic sync/flush operations. Now
the timer is always flushed/synced before the vgic, because the vgic
samples the state of the timer output. This has the implication that we
move the timer operations in to non-preempible sections, but that is
fine after the previous commit getting rid of hrtimer schedules on every
entry/exit.
Second, we change the internal behavior of the timer, letting the timer
keep track of its previous output state, and only lower/raise the line
to the vgic when the state changes. Note that in theory this could have
been accomplished more simply by signalling the vgic every time the
state *potentially* changed, but we don't want to be hitting the vgic
more often than necessary.
Third, we get rid of the use of the map->active field in the vgic and
instead simply set the interrupt as active on the physical distributor
whenever the input to the GIC is asserted and conversely clear the
physical active state when the input to the GIC is deasserted.
Fourth, and finally, we now initialize the timer PPIs (and all the other
unused PPIs for now), to be level-triggered, and modify the sync code to
sample the line state on HW sync and re-inject a new interrupt if it is
still pending at that time.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Hardware virtualisation of GICv3 is only supported by 64bit hosts for
the moment. Some VGICv3 bits are missing from the 32bit side, and this
patch allows to still be able to build 32bit hosts when CONFIG_ARM_GIC_V3
is selected.
To this end, we introduce a new option, CONFIG_KVM_ARM_VGIC_V3, that is
only enabled on the 64bit side. The selection is done unconditionally
because CONFIG_ARM_GIC_V3 is always enabled on arm64.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch removes config option of KVM_ARM_MAX_VCPUS,
and like other ARCHs, just choose the maximum allowed
value from hardware, and follows the reasons:
1) from distribution view, the option has to be
defined as the max allowed value because it need to
meet all kinds of virtulization applications and
need to support most of SoCs;
2) using a bigger value doesn't introduce extra memory
consumption, and the help text in Kconfig isn't accurate
because kvm_vpu structure isn't allocated until request
of creating VCPU is sent from QEMU;
3) the main effect is that the field of vcpus[] in 'struct kvm'
becomes a bit bigger(sizeof(void *) per vcpu) and need more cache
lines to hold the structure, but 'struct kvm' is one generic struct,
and it has worked well on other ARCHs already in this way. Also,
the world switch frequecy is often low, for example, it is ~2000
when running kernel building load in VM from APM xgene KVM host,
so the effect is very small, and the difference can't be observed
in my test at all.
Cc: Dann Frazier <dann.frazier@canonical.com>
Signed-off-by: Ming Lei <ming.lei@canonical.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Virtual interrupts mapped to a HW interrupt should only be triggered
from inside the kernel. Otherwise, you could end up confusing the
kernel (and the GIC's) state machine.
Rearrange the injection path so that kvm_vgic_inject_irq is
used for non-mapped interrupts, and kvm_vgic_inject_mapped_irq is
used for mapped interrupts. The latter should only be called from
inside the kernel (timer, irqfd).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to control the active state of an interrupt, introduce
a pair of accessors allowing the state to be set/queried.
This only affects the logical state, and the HW state will only be
applied at world-switch time.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to be able to feed physical interrupts to a guest, we need
to be able to establish the virtual-physical mapping between the two
worlds.
The mappings are kept in a set of RCU lists, indexed by virtual interrupts.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we're about to cram more information in the vgic_lr structure
(HW interrupt number and additional state information), we switch
to a layout similar to the HW's:
- use bitfields to save space (we don't need more than 10 bits
to represent the irq numbers)
- source CPU and HW interrupt can share the same field, as
a SGI doesn't have a physical line.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently we have struct kvm_exit_mmio for encapsulating MMIO abort
data to be passed on from syndrome decoding all the way down to the
VGIC register handlers. Now as we switch the MMIO handling to be
routed through the KVM MMIO bus, it does not make sense anymore to
use that structure already from the beginning. So we keep the data in
local variables until we put them into the kvm_io_bus framework.
Then we fill kvm_exit_mmio in the VGIC only, making it a VGIC private
structure. On that way we replace the data buffer in that structure
with a pointer pointing to a single location in a local variable, so
we get rid of some copying on the way.
With all of the virtual GIC emulation code now being registered with
the kvm_io_bus, we can remove all of the old MMIO handling code and
its dispatching functionality.
I didn't bother to rename kvm_exit_mmio (to vgic_mmio or something),
because that touches a lot of code lines without any good reason.
This is based on an original patch by Nikolay.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Cc: Nikolay Nikolaev <n.nikolaev@virtualopensystems.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Using the framework provided by the recent vgic.c changes, we
register a kvm_io_bus device on mapping the virtual GICv3 resources.
The distributor mapping is pretty straight forward, but the
redistributors need some more love, since they need to be tagged with
the respective redistributor (read: VCPU) they are connected with.
We use the kvm_io_bus framework to register one devices per VCPU.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Using the framework provided by the recent vgic.c changes we register
a kvm_io_bus device when initializing the virtual GICv2.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently we use a lot of VGIC specific code to do the MMIO
dispatching.
Use the previous reworks to add kvm_io_bus style MMIO handlers.
Those are not yet called by the MMIO abort handler, also the actual
VGIC emulator function do not make use of it yet, but will be enabled
with the following patches.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Migrating active interrupts causes the active state to be lost
completely. This implements some additional bitmaps to track the active
state on the distributor and export this to user space.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
There is an interesting bug in the vgic code, which manifests itself
when the KVM run loop has a signal pending or needs a vmid generation
rollover after having disabled interrupts but before actually switching
to the guest.
In this case, we flush the vgic as usual, but we sync back the vgic
state and exit to userspace before entering the guest. The consequence
is that we will be syncing the list registers back to the software model
using the GICH_ELRSR and GICH_EISR from the last execution of the guest,
potentially overwriting a list register containing an interrupt.
This showed up during migration testing where we would capture a state
where the VM has masked the arch timer but there were no interrupts,
resulting in a hung test.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reported-by: Alex Bennee <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We can definitely decide at run-time whether to use the GIC and timers
or not, and the extra code and data structures that we allocate space
for is really negligable with this config option, so I don't think it's
worth the extra complexity of always having to define stub static
inlines. The !CONFIG_KVM_ARM_VGIC/TIMER case is pretty much an untested
code path anyway, so we're better off just getting rid of it.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
With all of the GICv3 code in place now we allow userland to ask the
kernel for using a virtual GICv3 in the guest.
Also we provide the necessary support for guests setting the memory
addresses for the virtual distributor and redistributors.
This requires some userland code to make use of that feature and
explicitly ask for a virtual GICv3.
Document that KVM_CREATE_IRQCHIP only works for GICv2, but is
considered legacy and using KVM_CREATE_DEVICE is preferred.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
With all the necessary GICv3 emulation code in place, we can now
connect the code to the GICv3 backend in the kernel.
The LR register handling is different depending on the emulated GIC
model, so provide different implementations for each.
Also allow non-v2-compatible GICv3 implementations (which don't
provide MMIO regions for the virtual CPU interface in the DT), but
restrict those hosts to support GICv3 guests only.
If the device tree provides a GICv2 compatible GICV resource entry,
but that one is faulty, just disable the GICv2 emulation and let the
user use at least the GICv3 emulation for guests.
To provide proper support for the legacy KVM_CREATE_IRQCHIP ioctl,
note virtual GICv2 compatibility in struct vgic_params and use it
on creating a VGICv2.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
While the generation of a (virtual) inter-processor interrupt (SGI)
on a GICv2 works by writing to a MMIO register, GICv3 uses the system
register ICC_SGI1R_EL1 to trigger them.
Add a trap handler function that calls the new SGI register handler
in the GICv3 code. As ICC_SRE_EL1.SRE at this point is still always 0,
this will not trap yet, but will only be used later when all the data
structures have been initialized properly.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
With everything separated and prepared, we implement a model of a
GICv3 distributor and redistributors by using the existing framework
to provide handler functions for each register group.
Currently we limit the emulation to a model enforcing a single
security state, with SRE==1 (forcing system register access) and
ARE==1 (allowing more than 8 VCPUs).
We share some of the functions provided for GICv2 emulation, but take
the different ways of addressing (v)CPUs into account.
Save and restore is currently not implemented.
Similar to the split-off of the GICv2 specific code, the new emulation
code goes into a new file (vgic-v3-emul.c).
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
ICC_SRE_EL1 is a system register allowing msr/mrs accesses to the
GIC CPU interface for EL1 (guests). Currently we force it to 0, but
for proper GICv3 support we have to allow guests to use it (depending
on their selected virtual GIC model).
So add ICC_SRE_EL1 to the list of saved/restored registers on a
world switch, but actually disallow a guest to change it by only
restoring a fixed, once-initialized value.
This value depends on the GIC model userland has chosen for a guest.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently the maximum number of vCPUs supported is a global value
limited by the used GIC model. GICv3 will lift this limit, but we
still need to observe it for guests using GICv2.
So the maximum number of vCPUs is per-VM value, depending on the
GIC model the guest uses.
Store and check the value in struct kvm_arch, but keep it down to
8 for now.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently we only have one virtual GIC model supported, so all guests
use the same emulation code. With the addition of another model we
end up with different guests using potentially different vGIC models,
so we have to split up some functions to be per VM.
Introduce a vgic_vm_ops struct to hold function pointers for those
functions that are different and provide the necessary code to
initialize them.
Also split up the vgic_init() function to separate out VGIC model
specific functionality into a separate function, which will later be
different for a GICv3 model.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
With the introduction of a second emulated GIC model we need to let
userspace specify the GIC model to use for each VM. Pass the
userspace provided value down into the vGIC code and store it there
to differentiate later.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Some code paths will need to check to see if the internal state of the
vgic has been initialized (such as when creating new VCPUs), so
introduce such a macro that checks the nr_cpus field which is set when
the vgic has been initialized.
Also set nr_cpus = 0 in kvm_vgic_destroy, because the error path in
vgic_init() will call this function, and code should never errornously
assume the vgic to be properly initialized after an error.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The vgic_initialized() macro currently returns the state of the
vgic->ready flag, which indicates if the vgic is ready to be used when
running a VM, not specifically if its internal state has been
initialized.
Rename the macro accordingly in preparation for a more nuanced
initialization flow.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
VGIC initialization currently happens in three phases:
(1) kvm_vgic_create() (triggered by userspace GIC creation)
(2) vgic_init_maps() (triggered by userspace GIC register read/write
requests, or from kvm_vgic_init() if not already run)
(3) kvm_vgic_init() (triggered by first VM run)
We were doing initialization of some state to correspond with the
state of a freshly-reset GIC in kvm_vgic_init(); this is too late,
since it will overwrite changes made by userspace using the
register access APIs before the VM is run. Move this initialization
earlier, into the vgic_init_maps() phase.
This fixes a bug where QEMU could successfully restore a saved
VM state snapshot into a VM that had already been run, but could
not restore it "from cold" using the -loadvm command line option
(the symptoms being that the restored VM would run but interrupts
were ignored).
Finally rename vgic_init_maps to vgic_init and renamed kvm_vgic_init to
kvm_vgic_map_resources.
[ This patch is originally written by Peter Maydell, but I have
modified it somewhat heavily, renaming various bits and moving code
around. If something is broken, I am to be blamed. - Christoffer ]
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The EIRSR and ELRSR registers are 32-bit registers on GICv2, and we
store these as an array of two such registers on the vgic vcpu struct.
However, we access them as a single 64-bit value or as a bitmap pointer
in the generic vgic code, which breaks BE support.
Instead, store them as u64 values on the vgic structure and do the
word-swapping in the assembly code, which already handles the byte order
for BE systems.
Tested-by: Victor Kamensky <victor.kamensky@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The vgic code can be disabled in Kconfig and there are dummy implementations
of most of the provided API functions for the disabled case.
However, the newly introduced kvm_vgic_destroy/kvm_vgic_vcpu_destroy
functions are lacking those dummies, resulting in this build error:
arch/arm/kvm/arm.c: In function 'kvm_arch_destroy_vm':
arch/arm/kvm/arm.c:165:2: error: implicit declaration of function 'kvm_vgic_destroy' [-Werror=implicit-function-declaration]
kvm_vgic_destroy(kvm);
^
arch/arm/kvm/arm.c: In function 'kvm_arch_vcpu_free':
arch/arm/kvm/arm.c:248:2: error: implicit declaration of function 'kvm_vgic_vcpu_destroy' [-Werror=implicit-function-declaration]
kvm_vgic_vcpu_destroy(vcpu);
^
This adds two inline helpers to get it to build again in this configuration.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: c1bfb577ad ("arm/arm64: KVM: vgic: switch to dynamic allocation")
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
It is now quite easy to delay the allocation of the vgic tables
until we actually require it to be up and running (when the first
vcpu is kicking around, or someones tries to access the GIC registers).
This allow us to allocate memory for the exact number of CPUs we
have. As nobody configures the number of interrupts just yet,
use a fallback to VGIC_NR_IRQS_LEGACY.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>