Kernel docs are already present in this file, but nothing is instructed
to generate them. Address that.
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Link: https://lore.kernel.org/r/20210913163324.1008564-2-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that the internals of mailbox operations are abstracted from the PCI
specifics a bulk of infrastructure can move to the core.
The CXL_PMEM driver intends to proxy LIBNVDIMM UAPI and driver requests
to the equivalent functionality provided by the CXL hardware mailbox
interface. In support of that intent move the mailbox implementation to
a shared location for the CXL_PCI driver native IOCTL path and CXL_PMEM
nvdimm command proxy path to share.
A unit test framework seeks to implement a unit test backend transport
for mailbox commands to communicate mocked up payloads. It can reuse all
of the mailbox infrastructure minus the PCI specifics, so that also gets
moved to the core.
Finally with the mailbox infrastructure and ioctl handling being
transport generic there is no longer any need to pass file
file_operations to devm_cxl_add_memdev(). That allows all the ioctl
boilerplate to move into the core for unit test reuse.
No functional change intended, just code movement.
Acked-by: Ben Widawsky <ben.widawsky@intel.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/163116435233.2460985.16197340449713287180.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The register mapping infrastructure is large enough to move to its own
compilation unit. This also cleans up an unnecessary include of <mem.h>
core/bus.c.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162800068975.665205.12895551621746585289.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Refactor the pmem / nvdimm-bridge functionality from core/bus.c to
core/pmem.c. Introduce drivers/core/core.h to communicate data
structures and helpers between the core bus and other functionality that
registers devices on the bus.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162792538899.368511.3881663908293411300.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL core is growing, and it's already arguably unmanageable. To support
future growth, move core functionality to a new directory and rename the
file to represent just bus support. Future work will remove non-bus
functionality.
Note that mem.h is renamed to cxlmem.h to avoid a namespace collision
with the global ARCH=um mem.h header.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162792537866.368511.8915631504621088321.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
While CXL builds upon the PCI software model for enumeration and
endpoint control, a static platform component is required to bootstrap
the CXL memory layout. Similar to how ACPI identifies root-level PCI
memory resources, ACPI data enumerates the address space and interleave
configuration for CXL Memory.
In addition to identifying host bridges, ACPI is responsible for
enumerating the CXL memory space that can be addressed by downstream
decoders. This is similar to the requirement for ACPI to publish
resources via the _CRS method for PCI host bridges. Specifically, ACPI
publishes a table, CXL Early Discovery Table (CEDT), which includes a
list of CXL Memory resources, CXL Fixed Memory Window Structures
(CFMWS).
For now, introduce the core infrastructure for a cxl_port hierarchy
starting with a root level anchor represented by the ACPI0017 device.
Follow on changes model support for the configurable decode capabilities
of cxl_port instances, i.e. CXL switch support.
Co-developed-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162325449515.2293126.15303270193010154608.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
As the driver has undergone development, it's become clear that the
majority [entirety?] of the current functionality in mem.c is actually a
layer encapsulating functionality exposed through PCI based
interactions. This layer can be used either in isolation or to provide
functionality for higher level functionality.
CXL capabilities exist in a parallel domain to PCIe. CXL devices are
enumerable and controllable via "legacy" PCIe mechanisms; however, their
CXL capabilities are a superset of PCIe. For example, a CXL device may
be connected to a non-CXL capable PCIe root port, and therefore will not
be able to participate in CXL.mem or CXL.cache operations, but can still
be accessed through PCIe mechanisms for CXL.io operations.
To properly represent the PCI nature of this driver, and in preparation for
introducing a new driver for the CXL.mem / HDM decoder (Host-managed Device
Memory) capabilities of a CXL memory expander, rename mem.c to pci.c so that
mem.c is available for this new driver.
The result of the change is that there is a clear layering distinction
in the driver, and a systems administrator may load only the cxl_pci
module and gain access to such operations as, firmware update, offline
provisioning of devices, and error collection. In addition to freeing up
the file name for another purpose, there are two primary reasons this is
useful,
1. Acting upon devices which don't have full CXL capabilities. This
may happen for instance if the CXL device is connected in a CXL
unaware part of the platform topology.
2. Userspace-first provisioning for devices without kernel driver
interference. This may be useful when provisioning a new device
in a specific manner that might otherwise be blocked or prevented
by the real CXL mem driver.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Link: https://lore.kernel.org/r/20210526174413.802913-1-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for more generic shared functionality across endpoint
consumers of core cxl resources, and platform-firmware producers of
those resources, rename bus.c to core.c. In addition to the central
rendezvous for interleave coordination, the core will also define common
routines like CXL register block mapping.
Acked-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162096972018.1865304.11079951161445408423.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add a straightforward IOCTL that provides a mechanism for userspace to
query the supported memory device commands. CXL commands as they appear
to userspace are described as part of the UAPI kerneldoc. The command
list returned via this IOCTL will contain the full set of commands that
the driver supports, however, some of those commands may not be
available for use by userspace.
Memory device commands first appear in the CXL 2.0 specification. They
are submitted through a mailbox mechanism specified in the CXL 2.0
specification.
The send command allows userspace to issue mailbox commands directly to
the hardware. The list of available commands to send are the output of
the query command. The driver verifies basic properties of the command
and possibly inspect the input (or output) payload to determine whether
or not the command is allowed (or might taint the kernel).
Reported-by: kernel test robot <lkp@intel.com> # bug in earlier revision
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com> (v2)
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lore.kernel.org/r/20210217040958.1354670-5-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Create the /sys/bus/cxl hierarchy to enumerate:
* Memory Devices (per-endpoint control devices)
* Memory Address Space Devices (platform address ranges with
interleaving, performance, and persistence attributes)
* Memory Regions (active provisioned memory from an address space device
that is in use as System RAM or delegated to libnvdimm as Persistent
Memory regions).
For now, only the per-endpoint control devices are registered on the
'cxl' bus. However, going forward it will provide a mechanism to
coordinate cross-device interleave.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> (v2)
Link: https://lore.kernel.org/r/20210217040958.1354670-4-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Provide enough functionality to utilize the mailbox of a memory device.
The mailbox is used to interact with the firmware running on the memory
device. The flow is proven with one implemented command, "identify".
Because the class code has already told the driver this is a memory
device and the identify command is mandatory.
CXL devices contain an array of capabilities that describe the
interactions software can have with the device or firmware running on
the device. A CXL compliant device must implement the device status and
the mailbox capability. Additionally, a CXL compliant memory device must
implement the memory device capability. Each of the capabilities can
[will] provide an offset within the MMIO region for interacting with the
CXL device.
The capabilities tell the driver how to find and map the register space
for CXL Memory Devices. The registers are required to utilize the CXL
spec defined mailbox interface. The spec outlines two mailboxes, primary
and secondary. The secondary mailbox is earmarked for system firmware,
and not handled in this driver.
Primary mailboxes are capable of generating an interrupt when submitting
a background command. That implementation is saved for a later time.
Reported-by: Colin Ian King <colin.king@canonical.com> (coverity)
Reported-by: Dan Carpenter <dan.carpenter@oracle.com> (smatch)
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com> (v2)
Link: https://www.computeexpresslink.org/download-the-specification
Link: https://lore.kernel.org/r/20210217040958.1354670-3-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The CXL.mem protocol allows a device to act as a provider of "System
RAM" and/or "Persistent Memory" that is fully coherent as if the memory
was attached to the typical CPU memory controller.
With the CXL-2.0 specification a PCI endpoint can implement a "Type-3"
device interface and give the operating system control over "Host
Managed Device Memory". See section 2.3 Type 3 CXL Device.
The memory range exported by the device may optionally be described by
the platform firmware memory map, or by infrastructure like LIBNVDIMM to
provision persistent memory capacity from one, or more, CXL.mem devices.
A pre-requisite for Linux-managed memory-capacity provisioning is this
cxl_mem driver that can speak the mailbox protocol defined in section
8.2.8.4 Mailbox Registers.
For now just land the initial driver boiler-plate and Documentation/
infrastructure.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: David Rientjes <rientjes@google.com> (v1)
Cc: Jonathan Corbet <corbet@lwn.net>
Link: https://www.computeexpresslink.org/download-the-specification
Link: https://lore.kernel.org/r/20210217040958.1354670-2-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>