mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-04 12:16:41 +00:00
12eb22a5a6
23492 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Kairui Song
|
0ec8bc9e88 |
mm, swap: fix allocation and scanning race with swapoff
There are two flags used to synchronize allocation and scanning with swapoff: SWP_WRITEOK and SWP_SCANNING. SWP_WRITEOK: Swapoff will first unset this flag, at this point any further swap allocation or scanning on this device should just abort so no more new entries will be referencing this device. Swapoff will then unuse all existing swap entries. SWP_SCANNING: This flag is set when device is being scanned. Swapoff will wait for all scanner to stop before the final release of the swap device structures to avoid UAF. Note this flag is the highest used bit of si->flags so it could be added up arithmetically, if there are multiple scanner. commit |
||
Jakub Kicinski
|
a79993b5fc |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR (net-6.12-rc8). Conflicts: tools/testing/selftests/net/.gitignore |
||
Catalin Marinas
|
5a4332062e |
Merge branches 'for-next/gcs', 'for-next/probes', 'for-next/asm-offsets', 'for-next/tlb', 'for-next/misc', 'for-next/mte', 'for-next/sysreg', 'for-next/stacktrace', 'for-next/hwcap3', 'for-next/kselftest', 'for-next/crc32', 'for-next/guest-cca', 'for-next/haft' and 'for-next/scs', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: perf: Switch back to struct platform_driver::remove() perf: arm_pmuv3: Add support for Samsung Mongoose PMU dt-bindings: arm: pmu: Add Samsung Mongoose core compatible perf/dwc_pcie: Fix typos in event names perf/dwc_pcie: Add support for Ampere SoCs ARM: pmuv3: Add missing write_pmuacr() perf/marvell: Marvell PEM performance monitor support perf/arm_pmuv3: Add PMUv3.9 per counter EL0 access control perf/dwc_pcie: Convert the events with mixed case to lowercase perf/cxlpmu: Support missing events in 3.1 spec perf: imx_perf: add support for i.MX91 platform dt-bindings: perf: fsl-imx-ddr: Add i.MX91 compatible drivers perf: remove unused field pmu_node * for-next/gcs: (42 commits) : arm64 Guarded Control Stack user-space support kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c arm64/gcs: Fix outdated ptrace documentation kselftest/arm64: Ensure stable names for GCS stress test results kselftest/arm64: Validate that GCS push and write permissions work kselftest/arm64: Enable GCS for the FP stress tests kselftest/arm64: Add a GCS stress test kselftest/arm64: Add GCS signal tests kselftest/arm64: Add test coverage for GCS mode locking kselftest/arm64: Add a GCS test program built with the system libc kselftest/arm64: Add very basic GCS test program kselftest/arm64: Always run signals tests with GCS enabled kselftest/arm64: Allow signals tests to specify an expected si_code kselftest/arm64: Add framework support for GCS to signal handling tests kselftest/arm64: Add GCS as a detected feature in the signal tests kselftest/arm64: Verify the GCS hwcap arm64: Add Kconfig for Guarded Control Stack (GCS) arm64/ptrace: Expose GCS via ptrace and core files arm64/signal: Expose GCS state in signal frames arm64/signal: Set up and restore the GCS context for signal handlers arm64/mm: Implement map_shadow_stack() ... * for-next/probes: : Various arm64 uprobes/kprobes cleanups arm64: insn: Simulate nop instruction for better uprobe performance arm64: probes: Remove probe_opcode_t arm64: probes: Cleanup kprobes endianness conversions arm64: probes: Move kprobes-specific fields arm64: probes: Fix uprobes for big-endian kernels arm64: probes: Fix simulate_ldr*_literal() arm64: probes: Remove broken LDR (literal) uprobe support * for-next/asm-offsets: : arm64 asm-offsets.c cleanup (remove unused offsets) arm64: asm-offsets: remove PREEMPT_DISABLE_OFFSET arm64: asm-offsets: remove DMA_{TO,FROM}_DEVICE arm64: asm-offsets: remove VM_EXEC and PAGE_SZ arm64: asm-offsets: remove MM_CONTEXT_ID arm64: asm-offsets: remove COMPAT_{RT_,SIGFRAME_REGS_OFFSET arm64: asm-offsets: remove VMA_VM_* arm64: asm-offsets: remove TSK_ACTIVE_MM * for-next/tlb: : TLB flushing optimisations arm64: optimize flush tlb kernel range arm64: tlbflush: add __flush_tlb_range_limit_excess() * for-next/misc: : Miscellaneous patches arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled arm64/ptrace: Clarify documentation of VL configuration via ptrace acpi/arm64: remove unnecessary cast arm64/mm: Change protval as 'pteval_t' in map_range() arm64: uprobes: Optimize cache flushes for xol slot acpi/arm64: Adjust error handling procedure in gtdt_parse_timer_block() arm64: fix .data.rel.ro size assertion when CONFIG_LTO_CLANG arm64/ptdump: Test both PTE_TABLE_BIT and PTE_VALID for block mappings arm64/mm: Sanity check PTE address before runtime P4D/PUD folding arm64/mm: Drop setting PTE_TYPE_PAGE in pte_mkcont() ACPI: GTDT: Tighten the check for the array of platform timer structures arm64/fpsimd: Fix a typo arm64: Expose ID_AA64ISAR1_EL1.XS to sanitised feature consumers arm64: Return early when break handler is found on linked-list arm64/mm: Re-organize arch_make_huge_pte() arm64/mm: Drop _PROT_SECT_DEFAULT arm64: Add command-line override for ID_AA64MMFR0_EL1.ECV arm64: head: Drop SWAPPER_TABLE_SHIFT arm64: cpufeature: add POE to cpucap_is_possible() arm64/mm: Change pgattr_change_is_safe() arguments as pteval_t * for-next/mte: : Various MTE improvements selftests: arm64: add hugetlb mte tests hugetlb: arm64: add mte support * for-next/sysreg: : arm64 sysreg updates arm64/sysreg: Update ID_AA64MMFR1_EL1 to DDI0601 2024-09 * for-next/stacktrace: : arm64 stacktrace improvements arm64: preserve pt_regs::stackframe during exec*() arm64: stacktrace: unwind exception boundaries arm64: stacktrace: split unwind_consume_stack() arm64: stacktrace: report recovered PCs arm64: stacktrace: report source of unwind data arm64: stacktrace: move dump_backtrace() to kunwind_stack_walk() arm64: use a common struct frame_record arm64: pt_regs: swap 'unused' and 'pmr' fields arm64: pt_regs: rename "pmr_save" -> "pmr" arm64: pt_regs: remove stale big-endian layout arm64: pt_regs: assert pt_regs is a multiple of 16 bytes * for-next/hwcap3: : Add AT_HWCAP3 support for arm64 (also wire up AT_HWCAP4) arm64: Support AT_HWCAP3 binfmt_elf: Wire up AT_HWCAP3 at AT_HWCAP4 * for-next/kselftest: (30 commits) : arm64 kselftest fixes/cleanups kselftest/arm64: Try harder to generate different keys during PAC tests kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all() kselftest/arm64: Corrupt P0 in the irritator when testing SSVE kselftest/arm64: Add FPMR coverage to fp-ptrace kselftest/arm64: Expand the set of ZA writes fp-ptrace does kselftets/arm64: Use flag bits for features in fp-ptrace assembler code kselftest/arm64: Enable build of PAC tests with LLVM=1 kselftest/arm64: Check that SVCR is 0 in signal handlers kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests kselftest/arm64: Fix build with stricter assemblers kselftest/arm64: Test signal handler state modification in fp-stress kselftest/arm64: Provide a SIGUSR1 handler in the kernel mode FP stress test kselftest/arm64: Implement irritators for ZA and ZT kselftest/arm64: Remove unused ADRs from irritator handlers kselftest/arm64: Correct misleading comments on fp-stress irritators kselftest/arm64: Poll less often while waiting for fp-stress children kselftest/arm64: Increase frequency of signal delivery in fp-stress kselftest/arm64: Fix encoding for SVE B16B16 test ... * for-next/crc32: : Optimise CRC32 using PMULL instructions arm64/crc32: Implement 4-way interleave using PMULL arm64/crc32: Reorganize bit/byte ordering macros arm64/lib: Handle CRC-32 alternative in C code * for-next/guest-cca: : Support for running Linux as a guest in Arm CCA arm64: Document Arm Confidential Compute virt: arm-cca-guest: TSM_REPORT support for realms arm64: Enable memory encrypt for Realms arm64: mm: Avoid TLBI when marking pages as valid arm64: Enforce bounce buffers for realm DMA efi: arm64: Map Device with Prot Shared arm64: rsi: Map unprotected MMIO as decrypted arm64: rsi: Add support for checking whether an MMIO is protected arm64: realm: Query IPA size from the RMM arm64: Detect if in a realm and set RIPAS RAM arm64: rsi: Add RSI definitions * for-next/haft: : Support for arm64 FEAT_HAFT arm64: pgtable: Warn unexpected pmdp_test_and_clear_young() arm64: Enable ARCH_HAS_NONLEAF_PMD_YOUNG arm64: Add support for FEAT_HAFT arm64: setup: name 'tcr2' register arm64/sysreg: Update ID_AA64MMFR1_EL1 register * for-next/scs: : Dynamic shadow call stack fixes arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux() arm64/scs: Deal with 64-bit relative offsets in FDE frames arm64/scs: Fix handling of DWARF augmentation data in CIE/FDE frames |
||
Alexei Starovoitov
|
8714381703 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Cross-merge bpf fixes after downstream PR. In particular to bring the fix in commit |
||
Linus Torvalds
|
4b49c0ba4e |
10 hotfixes, 7 of which are cc:stable. 7 are MM, 3 are not. All
singletons. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzP1ZAAKCRDdBJ7gKXxA jmBUAP9n2zTKoNeF/WpS0aSg+SpG78mtyMIwSUW2PPfGObYTBwD/bncG9U3fnno1 v6Sey0OjAKwGdV+gTd+5ymWJKPSQbgA= =HxTA -----END PGP SIGNATURE----- Merge tag 'mm-hotfixes-stable-2024-11-12-16-39' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc fixes from Andrew Morton: "10 hotfixes, 7 of which are cc:stable. 7 are MM, 3 are not. All singletons" * tag 'mm-hotfixes-stable-2024-11-12-16-39' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: mm: swapfile: fix cluster reclaim work crash on rotational devices selftests: hugetlb_dio: fixup check for initial conditions to skip in the start mm/thp: fix deferred split queue not partially_mapped: fix mm/gup: avoid an unnecessary allocation call for FOLL_LONGTERM cases nommu: pass NULL argument to vma_iter_prealloc() ocfs2: fix UBSAN warning in ocfs2_verify_volume() nilfs2: fix null-ptr-deref in block_dirty_buffer tracepoint nilfs2: fix null-ptr-deref in block_touch_buffer tracepoint mm: page_alloc: move mlocked flag clearance into free_pages_prepare() mm: count zeromap read and set for swapout and swapin |
||
Brian Foster
|
52aecaee1c |
mm: zero range of eof folio exposed by inode size extension
On some filesystems, it is currently possible to create a transient data inconsistency between pagecache and on-disk state. For example, on a 1k block size ext4 filesystem: $ xfs_io -fc "pwrite 0 2k" -c "mmap 0 4k" -c "mwrite 2k 2k" \ -c "truncate 8k" -c "fiemap -v" -c "pread -v 2k 16" <file> ... EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..3]: 17410..17413 4 0x1 1: [4..15]: hole 12 00000800: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX $ umount <mnt>; mount <dev> <mnt> $ xfs_io -c "pread -v 2k 16" <file> 00000800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ This allocates and writes two 1k blocks, map writes to the post-eof portion of the (4k) eof folio, extends the file, and then shows that the post-eof data is not cleared before the file size is extended. The result is pagecache with a clean and uptodate folio over a hole that returns non-zero data. Once reclaimed, pagecache begins to return valid data. Some filesystems avoid this problem by flushing the EOF folio before inode size extension. This triggers writeback time partial post-eof zeroing. XFS explicitly zeroes newly exposed file ranges via iomap_zero_range(), but this includes a hack to flush dirty but hole-backed folios, which means writeback actually does the zeroing in this particular case as well. bcachefs explicitly flushes the eof folio on truncate extension to the same effect, but doesn't handle the analogous write extension case (i.e., replace "truncate 8k" with "pwrite 4k 4k" in the above example command to reproduce the same problem on bcachefs). btrfs doesn't seem to support subpage block sizes. The two main options to avoid this behavior are to either flush or do the appropriate zeroing during size extending operations. Zeroing is only required when the size change exposes ranges of the file that haven't been directly written, such as a write or truncate that starts beyond the current eof. The pagecache_isize_extended() helper is already used for this particular scenario. It currently cleans any pte's for the eof folio to ensure preexisting mappings fault and allow the filesystem to take action based on the updated inode size. This is required to ensure the folio is fully backed by allocated blocks, for example, but this also happens to be the same scenario zeroing is required. Update pagecache_isize_extended() to zero the post-eof range of the eof folio if it is dirty at the time of the size change, since writeback now won't have the chance. If non-dirty, the folio has either not been written or the post-eof portion was zeroed by writeback. Signed-off-by: Brian Foster <bfoster@redhat.com> Link: https://patch.msgid.link/20240919160741.208162-3-bfoster@redhat.com Signed-off-by: Theodore Ts'o <tytso@mit.edu> |
||
Johannes Weiner
|
dcf32ea7ec |
mm: swapfile: fix cluster reclaim work crash on rotational devices
syzbot and Daan report a NULL pointer crash in the new full swap cluster
reclaim work:
> Oops: general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI
> KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
> CPU: 1 UID: 0 PID: 51 Comm: kworker/1:1 Not tainted 6.12.0-rc6-syzkaller #0
> Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
> Workqueue: events swap_reclaim_work
> RIP: 0010:__list_del_entry_valid_or_report+0x20/0x1c0 lib/list_debug.c:49
> Code: 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 48 89 fe 48 83 c7 08 48 83 ec 18 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 19 01 00 00 48 89 f2 48 8b 4e 08 48 b8 00 00 00
> RSP: 0018:ffffc90000bb7c30 EFLAGS: 00010202
> RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffff88807b9ae078
> RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000008
> RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
> R10: 0000000000000001 R11: 000000000000004f R12: dffffc0000000000
> R13: ffffffffffffffb8 R14: ffff88807b9ae000 R15: ffffc90003af1000
> FS: 0000000000000000(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
> CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
> CR2: 00007fffaca68fb8 CR3: 00000000791c8000 CR4: 00000000003526f0
> DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
> DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
> Call Trace:
> <TASK>
> __list_del_entry_valid include/linux/list.h:124 [inline]
> __list_del_entry include/linux/list.h:215 [inline]
> list_move_tail include/linux/list.h:310 [inline]
> swap_reclaim_full_clusters+0x109/0x460 mm/swapfile.c:748
> swap_reclaim_work+0x2e/0x40 mm/swapfile.c:779
The syzbot console output indicates a virtual environment where swapfile
is on a rotational device. In this case, clusters aren't actually used,
and si->full_clusters is not initialized. Daan's report is from qemu, so
likely rotational too.
Make sure to only schedule the cluster reclaim work when clusters are
actually in use.
Link: https://lkml.kernel.org/r/20241107142335.GB1172372@cmpxchg.org
Link: https://lore.kernel.org/lkml/672ac50b.050a0220.2edce.1517.GAE@google.com/
Link: https://github.com/systemd/systemd/issues/35044
Fixes:
|
||
Hugh Dickins
|
a3477c9e02 |
mm/thp: fix deferred split queue not partially_mapped: fix
Though even more elusive than before, list_del corruption has still been seen on THP's deferred split queue. The idea in commit |
||
John Hubbard
|
94efde1d15 |
mm/gup: avoid an unnecessary allocation call for FOLL_LONGTERM cases
commit |
||
Jason Gunthorpe
|
4e6bd13aa3 |
Merge branch 'iommufd/arm-smmuv3-nested' of iommu/linux into iommufd for-next
Common SMMUv3 patches for the following patches adding nesting, shared branch with the iommu tree. * 'iommufd/arm-smmuv3-nested' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/iommu/linux: iommu/arm-smmu-v3: Expose the arm_smmu_attach interface iommu/arm-smmu-v3: Implement IOMMU_HWPT_ALLOC_NEST_PARENT iommu/arm-smmu-v3: Support IOMMU_GET_HW_INFO via struct arm_smmu_hw_info iommu/arm-smmu-v3: Report IOMMU_CAP_ENFORCE_CACHE_COHERENCY for CANWBS ACPI/IORT: Support CANWBS memory access flag ACPICA: IORT: Update for revision E.f vfio: Remove VFIO_TYPE1_NESTING_IOMMU ... Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> |
||
Vlastimil Babka
|
9b5c87d479 |
mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount
Since
|
||
Bibo Mao
|
7269ed4af3 |
mm: define general function pXd_init()
pud_init(), pmd_init() and kernel_pte_init() are duplicated defined in file kasan.c and sparse-vmemmap.c as weak functions. Move them to generic header file pgtable.h, architecture can redefine them. Link: https://lkml.kernel.org/r/20241104070712.52902-1-maobibo@loongson.cn Signed-off-by: Bibo Mao <maobibo@loongson.cn> Reviewed-by: Huacai Chen <chenhuacai@loongson.cn> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: WANG Xuerui <kernel@xen0n.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Catalin Marinas
|
7591c127f3 |
kmemleak: iommu/iova: fix transient kmemleak false positive
The introduction of iova_depot_pop() in
|
||
Kairui Song
|
da0c02516c |
mm/list_lru: simplify the list_lru walk callback function
Now isolation no longer takes the list_lru global node lock, only use the per-cgroup lock instead. And this lock is inside the list_lru_one being walked, no longer needed to pass the lock explicitly. Link: https://lkml.kernel.org/r/20241104175257.60853-7-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Cc: Chengming Zhou <zhouchengming@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kairui Song
|
fb56fdf8b9 |
mm/list_lru: split the lock to per-cgroup scope
Currently, every list_lru has a per-node lock that protects adding, deletion, isolation, and reparenting of all list_lru_one instances belonging to this list_lru on this node. This lock contention is heavy when multiple cgroups modify the same list_lru. This lock can be split into per-cgroup scope to reduce contention. To achieve this, we need a stable list_lru_one for every cgroup. This commit adds a lock to each list_lru_one and introduced a helper function lock_list_lru_of_memcg, making it possible to pin the list_lru of a memcg. Then reworked the reparenting process. Reparenting will switch the list_lru_one instances one by one. By locking each instance and marking it dead using the nr_items counter, reparenting ensures that all items in the corresponding cgroup (on-list or not, because items have a stable cgroup, see below) will see the list_lru_one switch synchronously. Objcg reparent is also moved after list_lru reparent so items will have a stable mem cgroup until all list_lru_one instances are drained. The only caller that doesn't work the *_obj interfaces are direct calls to list_lru_{add,del}. But it's only used by zswap and that's also based on objcg, so it's fine. This also changes the bahaviour of the isolation function when LRU_RETRY or LRU_REMOVED_RETRY is returned, because now releasing the lock could unblock reparenting and free the list_lru_one, isolation function will have to return withoug re-lock the lru. prepare() { mkdir /tmp/test-fs modprobe brd rd_nr=1 rd_size=33554432 mkfs.xfs -f /dev/ram0 mount -t xfs /dev/ram0 /tmp/test-fs for i in $(seq 1 512); do mkdir "/tmp/test-fs/$i" for j in $(seq 1 10240); do echo TEST-CONTENT > "/tmp/test-fs/$i/$j" done & done; wait } do_test() { read_worker() { sleep 1 tar -cv "$1" &>/dev/null } read_in_all() { cd "/tmp/test-fs" && ls for i in $(seq 1 512); do (exec sh -c 'echo "$PPID"') > "/sys/fs/cgroup/benchmark/$i/cgroup.procs" read_worker "$i" & done; wait } for i in $(seq 1 512); do mkdir -p "/sys/fs/cgroup/benchmark/$i" done echo +memory > /sys/fs/cgroup/benchmark/cgroup.subtree_control echo 512M > /sys/fs/cgroup/benchmark/memory.max echo 3 > /proc/sys/vm/drop_caches time read_in_all } Above script simulates compression of small files in multiple cgroups with memory pressure. Run prepare() then do_test for 6 times: Before: real 0m7.762s user 0m11.340s sys 3m11.224s real 0m8.123s user 0m11.548s sys 3m2.549s real 0m7.736s user 0m11.515s sys 3m11.171s real 0m8.539s user 0m11.508s sys 3m7.618s real 0m7.928s user 0m11.349s sys 3m13.063s real 0m8.105s user 0m11.128s sys 3m14.313s After this commit (about ~15% faster): real 0m6.953s user 0m11.327s sys 2m42.912s real 0m7.453s user 0m11.343s sys 2m51.942s real 0m6.916s user 0m11.269s sys 2m43.957s real 0m6.894s user 0m11.528s sys 2m45.346s real 0m6.911s user 0m11.095s sys 2m43.168s real 0m6.773s user 0m11.518s sys 2m40.774s Link: https://lkml.kernel.org/r/20241104175257.60853-6-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Cc: Chengming Zhou <zhouchengming@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kairui Song
|
28e98022b3 |
mm/list_lru: simplify reparenting and initial allocation
Currently, there is a lot of code for detecting reparent racing using kmemcg_id as the synchronization flag. And an intermediate table is required to record and compare the kmemcg_id. We can simplify this by just checking the cgroup css status, skip if cgroup is being offlined. On the reparenting side, ensure no more allocation is on going and no further allocation will occur by using the XArray lock as barrier. Combined with a O(n^2) top-down walk for the allocation, we get rid of the intermediate table allocation completely. Despite being O(n^2), it should be actually faster because it's not practical to have a very deep cgroup level, and in most cases the parent cgroup should have been allocated already. This also avoided changing kmemcg_id before reparenting, making cgroups have a stable index for list_lru_memcg. After this change it's possible that a dying cgroup will see a NULL value in XArray corresponding to the kmemcg_id, because the kmemcg_id will point to an empty slot. In such case, just fallback to use its parent. As a result the code is simpler, following test also showed a very slight performance gain (12 test runs): prepare() { mkdir /tmp/test-fs modprobe brd rd_nr=1 rd_size=16777216 mkfs.xfs -f /dev/ram0 mount -t xfs /dev/ram0 /tmp/test-fs for i in $(seq 10000); do seq 8000 > "/tmp/test-fs/$i" done mkdir -p /sys/fs/cgroup/system.slice/bench/test/1 echo +memory > /sys/fs/cgroup/system.slice/bench/cgroup.subtree_control echo +memory > /sys/fs/cgroup/system.slice/bench/test/cgroup.subtree_control echo +memory > /sys/fs/cgroup/system.slice/bench/test/1/cgroup.subtree_control echo 768M > /sys/fs/cgroup/system.slice/bench/memory.max } do_test() { read_worker() { mkdir -p "/sys/fs/cgroup/system.slice/bench/test/1/$1" echo $BASHPID > "/sys/fs/cgroup/system.slice/bench/test/1/$1/cgroup.procs" read -r __TMP < "/tmp/test-fs/$1"; } read_in_all() { for i in $(seq 10000); do read_worker "$i" & done; wait } echo 3 > /proc/sys/vm/drop_caches time read_in_all for i in $(seq 1 10000); do rmdir "/sys/fs/cgroup/system.slice/bench/test/1/$i" &>/dev/null done } Before: real 0m3.498s user 0m11.037s sys 0m35.872s real 1m33.860s user 0m11.593s sys 3m1.169s real 1m31.883s user 0m11.265s sys 2m59.198s real 1m32.394s user 0m11.294s sys 3m1.616s real 1m31.017s user 0m11.379s sys 3m1.349s real 1m31.931s user 0m11.295s sys 2m59.863s real 1m32.758s user 0m11.254s sys 2m59.538s real 1m35.198s user 0m11.145s sys 3m1.123s real 1m30.531s user 0m11.393s sys 2m58.089s real 1m31.142s user 0m11.333s sys 3m0.549s After: real 0m3.489s user 0m10.943s sys 0m36.036s real 1m10.893s user 0m11.495s sys 2m38.545s real 1m29.129s user 0m11.382s sys 3m1.601s real 1m29.944s user 0m11.494s sys 3m1.575s real 1m31.208s user 0m11.451s sys 2m59.693s real 1m25.944s user 0m11.327s sys 2m56.394s real 1m28.599s user 0m11.312s sys 3m0.162s real 1m26.746s user 0m11.538s sys 2m55.462s real 1m30.668s user 0m11.475s sys 3m2.075s real 1m29.258s user 0m11.292s sys 3m0.780s Which is slightly faster in real time. Link: https://lkml.kernel.org/r/20241104175257.60853-5-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Cc: Chengming Zhou <zhouchengming@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kairui Song
|
8d42abbfa4 |
mm/list_lru: code clean up for reparenting
No feature change, just change of code structure and fix comment. The list lrus are not empty until memcg_reparent_list_lru_node() calls are all done, so the comments in memcg_offline_kmem were slightly inaccurate. Link: https://lkml.kernel.org/r/20241104175257.60853-4-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Chengming Zhou <zhouchengming@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kairui Song
|
78c0ed0913 |
mm/list_lru: don't export list_lru_add
It's no longer used by any module, just remove it. Link: https://lkml.kernel.org/r/20241104175257.60853-3-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Chengming Zhou <zhouchengming@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kairui Song
|
3f28bbe56c |
mm/list_lru: don't pass unnecessary key parameters
Patch series "mm/list_lru: Split list_lru lock into per-cgroup scope". When LOCKDEP is not enabled, lock_class_key is an empty struct that is never used. But the list_lru initialization function still takes a placeholder pointer as parameter, and the compiler cannot optimize it because the function is not static and exported. Remove this parameter and move it inside the list_lru struct. Only use it when LOCKDEP is enabled. Kernel builds with LOCKDEP will be slightly larger, while !LOCKDEP builds without it will be slightly smaller (the common case). Link: https://lkml.kernel.org/r/20241104175257.60853-1-ryncsn@gmail.com Link: https://lkml.kernel.org/r/20241104175257.60853-2-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Chengming Zhou <zhouchengming@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Nihar Chaithanya
|
3738290bfc |
kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller
The Kunit tests for kmalloc_track_caller and kmalloc_node_track_caller were missing in kasan_test_c.c, which check that these functions poison the memory properly. Add a Kunit test: -> kmalloc_tracker_caller_oob_right(): This includes out-of-bounds access test for kmalloc_track_caller and kmalloc_node_track_caller. Link: https://lkml.kernel.org/r/20241014190128.442059-1-niharchaithanya@gmail.com Link: https://bugzilla.kernel.org/show_bug.cgi?id=216509 Signed-off-by: Nihar Chaithanya <niharchaithanya@gmail.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Shuah Khan <skhan@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Hajime Tazaki
|
247d720b2c |
nommu: pass NULL argument to vma_iter_prealloc()
When deleting a vma entry from a maple tree, it has to pass NULL to
vma_iter_prealloc() in order to calculate internal state of the tree, but
it passed a wrong argument. As a result, nommu kernels crashed upon
accessing a vma iterator, such as acct_collect() reading the size of vma
entries after do_munmap().
This commit fixes this issue by passing a right argument to the
preallocation call.
Link: https://lkml.kernel.org/r/20241108222834.3625217-1-thehajime@gmail.com
Fixes:
|
||
Roman Gushchin
|
66edc3a589 |
mm: page_alloc: move mlocked flag clearance into free_pages_prepare()
Syzbot reported a bad page state problem caused by a page being freed using free_page() still having a mlocked flag at free_pages_prepare() stage: BUG: Bad page state in process syz.5.504 pfn:61f45 page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x61f45 flags: 0xfff00000080204(referenced|workingset|mlocked|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000080204 0000000000000000 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x400dc0(GFP_KERNEL_ACCOUNT|__GFP_ZERO), pid 8443, tgid 8442 (syz.5.504), ts 201884660643, free_ts 201499827394 set_page_owner include/linux/page_owner.h:32 [inline] post_alloc_hook+0x1f3/0x230 mm/page_alloc.c:1537 prep_new_page mm/page_alloc.c:1545 [inline] get_page_from_freelist+0x303f/0x3190 mm/page_alloc.c:3457 __alloc_pages_noprof+0x292/0x710 mm/page_alloc.c:4733 alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265 kvm_coalesced_mmio_init+0x1f/0xf0 virt/kvm/coalesced_mmio.c:99 kvm_create_vm virt/kvm/kvm_main.c:1235 [inline] kvm_dev_ioctl_create_vm virt/kvm/kvm_main.c:5488 [inline] kvm_dev_ioctl+0x12dc/0x2240 virt/kvm/kvm_main.c:5530 __do_compat_sys_ioctl fs/ioctl.c:1007 [inline] __se_compat_sys_ioctl+0x510/0xc90 fs/ioctl.c:950 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0xb4/0x110 arch/x86/entry/common.c:386 do_fast_syscall_32+0x34/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e page last free pid 8399 tgid 8399 stack trace: reset_page_owner include/linux/page_owner.h:25 [inline] free_pages_prepare mm/page_alloc.c:1108 [inline] free_unref_folios+0xf12/0x18d0 mm/page_alloc.c:2686 folios_put_refs+0x76c/0x860 mm/swap.c:1007 free_pages_and_swap_cache+0x5c8/0x690 mm/swap_state.c:335 __tlb_batch_free_encoded_pages mm/mmu_gather.c:136 [inline] tlb_batch_pages_flush mm/mmu_gather.c:149 [inline] tlb_flush_mmu_free mm/mmu_gather.c:366 [inline] tlb_flush_mmu+0x3a3/0x680 mm/mmu_gather.c:373 tlb_finish_mmu+0xd4/0x200 mm/mmu_gather.c:465 exit_mmap+0x496/0xc40 mm/mmap.c:1926 __mmput+0x115/0x390 kernel/fork.c:1348 exit_mm+0x220/0x310 kernel/exit.c:571 do_exit+0x9b2/0x28e0 kernel/exit.c:926 do_group_exit+0x207/0x2c0 kernel/exit.c:1088 __do_sys_exit_group kernel/exit.c:1099 [inline] __se_sys_exit_group kernel/exit.c:1097 [inline] __x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1097 x64_sys_call+0x2634/0x2640 arch/x86/include/generated/asm/syscalls_64.h:232 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Modules linked in: CPU: 0 UID: 0 PID: 8442 Comm: syz.5.504 Not tainted 6.12.0-rc6-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 bad_page+0x176/0x1d0 mm/page_alloc.c:501 free_page_is_bad mm/page_alloc.c:918 [inline] free_pages_prepare mm/page_alloc.c:1100 [inline] free_unref_page+0xed0/0xf20 mm/page_alloc.c:2638 kvm_destroy_vm virt/kvm/kvm_main.c:1327 [inline] kvm_put_kvm+0xc75/0x1350 virt/kvm/kvm_main.c:1386 kvm_vcpu_release+0x54/0x60 virt/kvm/kvm_main.c:4143 __fput+0x23f/0x880 fs/file_table.c:431 task_work_run+0x24f/0x310 kernel/task_work.c:239 exit_task_work include/linux/task_work.h:43 [inline] do_exit+0xa2f/0x28e0 kernel/exit.c:939 do_group_exit+0x207/0x2c0 kernel/exit.c:1088 __do_sys_exit_group kernel/exit.c:1099 [inline] __se_sys_exit_group kernel/exit.c:1097 [inline] __ia32_sys_exit_group+0x3f/0x40 kernel/exit.c:1097 ia32_sys_call+0x2624/0x2630 arch/x86/include/generated/asm/syscalls_32.h:253 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0xb4/0x110 arch/x86/entry/common.c:386 do_fast_syscall_32+0x34/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e RIP: 0023:0xf745d579 Code: Unable to access opcode bytes at 0xf745d54f. RSP: 002b:00000000f75afd6c EFLAGS: 00000206 ORIG_RAX: 00000000000000fc RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 00000000ffffff9c RDI: 00000000f744cff4 RBP: 00000000f717ae61 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000206 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 </TASK> The problem was originally introduced by commit |
||
Sabyrzhan Tasbolatov
|
1857099c18 |
kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW
During running KASAN Kunit tests with CONFIG_KASAN enabled, the following "warning" is reported by kunit framework: # kasan_atomics: Test should be marked slow (runtime: 2.604703115s) It took 2.6 seconds on my PC (Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz), apparently, due to multiple atomic checks in kasan_atomics_helper(). Let's mark it with KUNIT_CASE_SLOW which reports now as: # kasan_atomics.speed: slow Link: https://lkml.kernel.org/r/20241101184011.3369247-3-snovitoll@gmail.com Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Sabyrzhan Tasbolatov
|
c28432acf6 |
kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols
Patch series "kasan: few improvements on kunit tests". This patch series addresses the issue [1] with KASAN symbols used in the Kunit test, but exported as EXPORT_SYMBOL_GPL. Also a small tweak of marking kasan_atomics() as KUNIT_CASE_SLOW to avoid kunit report that the test should be marked as slow. This patch (of 2): Replace EXPORT_SYMBOL_GPL with EXPORT_SYMBOL_IF_KUNIT to mark the symbols as visible only if CONFIG_KUNIT is enabled. KASAN Kunit test should import the namespace EXPORTED_FOR_KUNIT_TESTING to use these marked symbols. Link: https://lkml.kernel.org/r/20241101184011.3369247-1-snovitoll@gmail.com Link: https://lkml.kernel.org/r/20241101184011.3369247-2-snovitoll@gmail.com Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com> Reported-by: Andrey Konovalov <andreyknvl@gmail.com> Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218315 Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
ad2bc8812f |
mm: remove unnecessary page_table_lock on stack expansion
Ever since commit
|
||
Maíra Canal
|
93c1e57ade |
mm: huge_memory: use strscpy() instead of strcpy()
Replace strcpy() with strscpy() in mm/huge_memory.c strcpy() has been deprecated because it is generally unsafe, so help to eliminate it from the kernel source. Link: https://github.com/KSPP/linux/issues/88 Link: https://lkml.kernel.org/r/20241101165719.1074234-7-mcanal@igalia.com Signed-off-by: Maíra Canal <mcanal@igalia.com> Reviewed-by: Lance Yang <ioworker0@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Barry Song <baohua@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Maíra Canal
|
24f9cd195f |
mm: shmem: override mTHP shmem default with a kernel parameter
Add the ``thp_shmem=`` kernel command line to allow specifying the default policy of each supported shmem hugepage size. The kernel parameter accepts the following format: thp_shmem=<size>[KMG],<size>[KMG]:<policy>;<size>[KMG]-<size>[KMG]:<policy> For example, thp_shmem=16K-64K:always;128K,512K:inherit;256K:advise;1M-2M:never;4M-8M:within_size Some GPUs may benefit from using huge pages. Since DRM GEM uses shmem to allocate anonymous pageable memory, it's essential to control the huge page allocation policy for the internal shmem mount. This control can be achieved through the ``transparent_hugepage_shmem=`` parameter. Beyond just setting the allocation policy, it's crucial to have granular control over the size of huge pages that can be allocated. The GPU may support only specific huge page sizes, and allocating pages larger/smaller than those sizes would be ineffective. Link: https://lkml.kernel.org/r/20241101165719.1074234-6-mcanal@igalia.com Signed-off-by: Maíra Canal <mcanal@igalia.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Barry Song <baohua@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Lance Yang <ioworker0@gmail.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Maíra Canal
|
1c8d484975 |
mm: move `get_order_from_str() ` to internal.h
In order to implement a kernel parameter similar to ``thp_anon=`` for shmem, we'll need the function ``get_order_from_str()``. Instead of duplicating the function, move the function to a shared header, in which both mm/shmem.c and mm/huge_memory.c will be able to use it. Link: https://lkml.kernel.org/r/20241101165719.1074234-5-mcanal@igalia.com Signed-off-by: Maíra Canal <mcanal@igalia.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Barry Song <baohua@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Lance Yang <ioworker0@gmail.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Maíra Canal
|
9490428111 |
mm: shmem: control THP support through the kernel command line
Patch series "mm: add more kernel parameters to control mTHP", v5. This series introduces four patches related to the kernel parameters controlling mTHP and a fifth patch replacing `strcpy()` for `strscpy()` in the file `mm/huge_memory.c`. The first patch is a straightforward documentation update, correcting the format of the kernel parameter ``thp_anon=``. The second, third, and fourth patches focus on controlling THP support for shmem via the kernel command line. The second patch introduces a parameter to control the global default huge page allocation policy for the internal shmem mount. The third patch moves a piece of code to a shared header to ease the implementation of the fourth patch. Finally, the fourth patch implements a parameter similar to ``thp_anon=``, but for shmem. The goal of these changes is to simplify the configuration of systems that rely on mTHP support for shmem. For instance, a platform with a GPU that benefits from huge pages may want to enable huge pages for shmem. Having these kernel parameters streamlines the configuration process and ensures consistency across setups. This patch (of 4): Add a new kernel command line to control the hugepage allocation policy for the internal shmem mount, ``transparent_hugepage_shmem``. The parameter is similar to ``transparent_hugepage`` and has the following format: transparent_hugepage_shmem=<policy> where ``<policy>`` is one of the seven valid policies available for shmem. Configuring the default huge page allocation policy for the internal shmem mount can be beneficial for DRM GPU drivers. Just as CPU architectures, GPUs can also take advantage of huge pages, but this is possible only if DRM GEM objects are backed by huge pages. Since GEM uses shmem to allocate anonymous pageable memory, having control over the default huge page allocation policy allows for the exploration of huge pages use on GPUs that rely on GEM objects backed by shmem. Link: https://lkml.kernel.org/r/20241101165719.1074234-2-mcanal@igalia.com Link: https://lkml.kernel.org/r/20241101165719.1074234-4-mcanal@igalia.com Signed-off-by: Maíra Canal <mcanal@igalia.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Barry Song <baohua@kernel.org> Cc: dri-devel@lists.freedesktop.org Cc: Hugh Dickins <hughd@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kernel-dev@igalia.com Cc: Lance Yang <ioworker0@gmail.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Liam R. Howlett
|
8e1817b6ba |
vma: detect infinite loop in vma tree
There have been no reported infinite loops in the tree, but checking the detection of an infinite loop during validation is simple enough. Add the detection to the validate_mm() function so that error reports are clear and don't just report stalls. This does not protect against internal maple tree issues, but it does detect too many vmas being returned from the tree. The variance of +10 is to allow for the debugging output to be more useful for nearly correct counts. In the event of more than 10 over the map_count, the count will be set to -1 for easier identification of a potential infinite loop. Note that the mmap lock is held to ensure a consistent tree state during the validation process. [akpm@linux-foundation.org: add comment] Link: https://lkml.kernel.org/r/20241031193608.1965366-1-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yunsheng Lin
|
ec397ea00c |
mm: page_frag: use __alloc_pages() to replace alloc_pages_node()
It seems there is about 24Bytes binary size increase for __page_frag_cache_refill() after refactoring in arm64 system with 64K PAGE_SIZE. By doing the gdb disassembling, It seems we can have more than 100Bytes decrease for the binary size by using __alloc_pages() to replace alloc_pages_node(), as there seems to be some unnecessary checking for nid being NUMA_NO_NODE, especially when page_frag is part of the mm system. CC: Andrew Morton <akpm@linux-foundation.org> CC: Linux-MM <linux-mm@kvack.org> Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Link: https://patch.msgid.link/20241028115343.3405838-8-linyunsheng@huawei.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Yunsheng Lin
|
0c3ce2f502 |
mm: page_frag: reuse existing space for 'size' and 'pfmemalloc'
Currently there is one 'struct page_frag' for every 'struct sock' and 'struct task_struct', we are about to replace the 'struct page_frag' with 'struct page_frag_cache' for them. Before begin the replacing, we need to ensure the size of 'struct page_frag_cache' is not bigger than the size of 'struct page_frag', as there may be tens of thousands of 'struct sock' and 'struct task_struct' instances in the system. By or'ing the page order & pfmemalloc with lower bits of 'va' instead of using 'u16' or 'u32' for page size and 'u8' for pfmemalloc, we are able to avoid 3 or 5 bytes space waste. And page address & pfmemalloc & order is unchanged for the same page in the same 'page_frag_cache' instance, it makes sense to fit them together. After this patch, the size of 'struct page_frag_cache' should be the same as the size of 'struct page_frag'. CC: Andrew Morton <akpm@linux-foundation.org> CC: Linux-MM <linux-mm@kvack.org> Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Link: https://patch.msgid.link/20241028115343.3405838-7-linyunsheng@huawei.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Yunsheng Lin
|
8218f62c9c |
mm: page_frag: use initial zero offset for page_frag_alloc_align()
We are about to use page_frag_alloc_*() API to not just allocate memory for skb->data, but also use them to do the memory allocation for skb frag too. Currently the implementation of page_frag in mm subsystem is running the offset as a countdown rather than count-up value, there may have several advantages to that as mentioned in [1], but it may have some disadvantages, for example, it may disable skb frag coalescing and more correct cache prefetching We have a trade-off to make in order to have a unified implementation and API for page_frag, so use a initial zero offset in this patch, and the following patch will try to make some optimization to avoid the disadvantages as much as possible. 1. https://lore.kernel.org/all/f4abe71b3439b39d17a6fb2d410180f367cadf5c.camel@gmail.com/ CC: Andrew Morton <akpm@linux-foundation.org> CC: Linux-MM <linux-mm@kvack.org> Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Link: https://patch.msgid.link/20241028115343.3405838-4-linyunsheng@huawei.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Yunsheng Lin
|
65941f10ca |
mm: move the page fragment allocator from page_alloc into its own file
Inspired by [1], move the page fragment allocator from page_alloc into its own c file and header file, as we are about to make more change for it to replace another page_frag implementation in sock.c As this patchset is going to replace 'struct page_frag' with 'struct page_frag_cache' in sched.h, including page_frag_cache.h in sched.h has a compiler error caused by interdependence between mm_types.h and mm.h for asm-offsets.c, see [2]. So avoid the compiler error by moving 'struct page_frag_cache' to mm_types_task.h as suggested by Alexander, see [3]. 1. https://lore.kernel.org/all/20230411160902.4134381-3-dhowells@redhat.com/ 2. https://lore.kernel.org/all/15623dac-9358-4597-b3ee-3694a5956920@gmail.com/ 3. https://lore.kernel.org/all/CAKgT0UdH1yD=LSCXFJ=YM_aiA4OomD-2wXykO42bizaWMt_HOA@mail.gmail.com/ CC: David Howells <dhowells@redhat.com> CC: Linux-MM <linux-mm@kvack.org> Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Link: https://patch.msgid.link/20241028115343.3405838-3-linyunsheng@huawei.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
zhangguopeng
|
408a8dc623 |
mm/memory-failure: replace sprintf() with sysfs_emit()
As Documentation/filesystems/sysfs.rst suggested, show() should only use sysfs_emit() or sysfs_emit_at() when formatting the value to be returned to user space. Link: https://lkml.kernel.org/r/20241029101853.37890-1-zhangguopeng@kylinos.cn Signed-off-by: zhangguopeng <zhangguopeng@kylinos.cn> Acked-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
JP Kobryn
|
f914ac96ee |
memcg: add flush tracepoint
This tracepoint gives visibility on how often the flushing of memcg stats occurs and contains info on whether it was forced, skipped, and the value of stats updated. It can help with understanding how readers are affected by having to perform the flush, and the effectiveness of the flush by inspecting the number of stats updated. Paired with the recently added tracepoints for tracing rstat updates, it can also help show correlation where stats exceed thresholds frequently. Link: https://lkml.kernel.org/r/20241029021106.25587-3-inwardvessel@gmail.com Signed-off-by: JP Kobryn <inwardvessel@gmail.com> Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
JP Kobryn
|
e1479b880c |
memcg: rename do_flush_stats and add force flag
Patch series "memcg: tracepoint for flushing stats", v3. This series adds new capability for understanding frequency and circumstances behind flushing memcg stats. This patch (of 2): Change the name to something more consistent with others in the file and use double unders to signify it is associated with the mem_cgroup_flush_stats() API call. Additionally include a new flag that call sites use to indicate a forced flush; skipping checks and flushing unconditionally. There are no changes in functionality. Link: https://lkml.kernel.org/r/20241029021106.25587-1-inwardvessel@gmail.com Link: https://lkml.kernel.org/r/20241029021106.25587-2-inwardvessel@gmail.com Signed-off-by: JP Kobryn <inwardvessel@gmail.com> Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Hugh Dickins
|
ab6e8e74e4 |
mm: delete the unused put_pages_list()
The last user of put_pages_list() converted away from it in 6.10 commit
|
||
Lorenzo Stoakes
|
662df3e5c3 |
mm: madvise: implement lightweight guard page mechanism
Implement a new lightweight guard page feature, that is regions of userland virtual memory that, when accessed, cause a fatal signal to arise. Currently users must establish PROT_NONE ranges to achieve this. However this is very costly memory-wise - we need a VMA for each and every one of these regions AND they become unmergeable with surrounding VMAs. In addition repeated mmap() calls require repeated kernel context switches and contention of the mmap lock to install these ranges, potentially also having to unmap memory if installed over existing ranges. The lightweight guard approach eliminates the VMA cost altogether - rather than establishing a PROT_NONE VMA, it operates at the level of page table entries - establishing PTE markers such that accesses to them cause a fault followed by a SIGSGEV signal being raised. This is achieved through the PTE marker mechanism, which we have already extended to provide PTE_MARKER_GUARD, which we installed via the generic page walking logic which we have extended for this purpose. These guard ranges are established with MADV_GUARD_INSTALL. If the range in which they are installed contain any existing mappings, they will be zapped, i.e. free the range and unmap memory (thus mimicking the behaviour of MADV_DONTNEED in this respect). Any existing guard entries will be left untouched. There is therefore no nesting of guarded pages. Guarded ranges are NOT cleared by MADV_DONTNEED nor MADV_FREE (in both instances the memory range may be reused at which point a user would expect guards to still be in place), but they are cleared via MADV_GUARD_REMOVE, process teardown or unmapping of memory ranges. The guard property can be removed from ranges via MADV_GUARD_REMOVE. The ranges over which this is applied, should they contain non-guard entries, will be untouched, with only guard entries being cleared. We permit this operation on anonymous memory only, and only VMAs which are non-special, non-huge and not mlock()'d (if we permitted this we'd have to drop locked pages which would be rather counterintuitive). Racing page faults can cause repeated attempts to install guard pages that are interrupted, result in a zap, and this process can end up being repeated. If this happens more than would be expected in normal operation, we rescind locks and retry the whole thing, which avoids lock contention in this scenario. Link: https://lkml.kernel.org/r/6aafb5821bf209f277dfae0787abb2ef87a37542.1730123433.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Jann Horn <jannh@google.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Jann Horn <jannh@google.com> Suggested-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Arnd Bergmann <arnd@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Chris Zankel <chris@zankel.net> Cc: Helge Deller <deller@gmx.de> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jeff Xu <jeffxu@chromium.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
7c53dfbdb0 |
mm: add PTE_MARKER_GUARD PTE marker
Add a new PTE marker that results in any access causing the accessing process to segfault. This is preferable to PTE_MARKER_POISONED, which results in the same handling as hardware poisoned memory, and is thus undesirable for cases where we simply wish to 'soft' poison a range. This is in preparation for implementing the ability to specify guard pages at the page table level, i.e. ranges that, when accessed, should cause process termination. Additionally, rename zap_drop_file_uffd_wp() to zap_drop_markers() - the function checks the ZAP_FLAG_DROP_MARKER flag so naming it for this single purpose was simply incorrect. We then reuse the same logic to determine whether a zap should clear a guard entry - this should only be performed on teardown and never on MADV_DONTNEED or MADV_FREE. We additionally add a WARN_ON_ONCE() in hugetlb logic should a guard marker be encountered there, as we explicitly do not support this operation and this should not occur. Link: https://lkml.kernel.org/r/f47f3d5acca2dcf9bbf655b6d33f3dc713e4a4a0.1730123433.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Acked-by: Vlastimil Babka <vbabkba@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Jann Horn <jannh@google.com> Suggested-by: David Hildenbrand <david@redhat.com> Cc: Arnd Bergmann <arnd@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Chris Zankel <chris@zankel.net> Cc: Helge Deller <deller@gmx.de> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jeff Xu <jeffxu@chromium.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
5f6170a469 |
mm: pagewalk: add the ability to install PTEs
Patch series "implement lightweight guard pages", v4. Userland library functions such as allocators and threading implementations often require regions of memory to act as 'guard pages' - mappings which, when accessed, result in a fatal signal being sent to the accessing process. The current means by which these are implemented is via a PROT_NONE mmap() mapping, which provides the required semantics however incur an overhead of a VMA for each such region. With a great many processes and threads, this can rapidly add up and incur a significant memory penalty. It also has the added problem of preventing merges that might otherwise be permitted. This series takes a different approach - an idea suggested by Vlastimil Babka (and before him David Hildenbrand and Jann Horn - perhaps more - the provenance becomes a little tricky to ascertain after this - please forgive any omissions!) - rather than locating the guard pages at the VMA layer, instead placing them in page tables mapping the required ranges. Early testing of the prototype version of this code suggests a 5 times speed up in memory mapping invocations (in conjunction with use of process_madvise()) and a 13% reduction in VMAs on an entirely idle android system and unoptimised code. We expect with optimisation and a loaded system with a larger number of guard pages this could significantly increase, but in any case these numbers are encouraging. This way, rather than having separate VMAs specifying which parts of a range are guard pages, instead we have a VMA spanning the entire range of memory a user is permitted to access and including ranges which are to be 'guarded'. After mapping this, a user can specify which parts of the range should result in a fatal signal when accessed. By restricting the ability to specify guard pages to memory mapped by existing VMAs, we can rely on the mappings being torn down when the mappings are ultimately unmapped and everything works simply as if the memory were not faulted in, from the point of view of the containing VMAs. This mechanism in effect poisons memory ranges similar to hardware memory poisoning, only it is an entirely software-controlled form of poisoning. The mechanism is implemented via madvise() behaviour - MADV_GUARD_INSTALL which installs page table-level guard page markers - and MADV_GUARD_REMOVE - which clears them. Guard markers can be installed across multiple VMAs and any existing mappings will be cleared, that is zapped, before installing the guard page markers in the page tables. There is no concept of 'nested' guard markers, multiple attempts to install guard markers in a range will, after the first attempt, have no effect. Importantly, removing guard markers over a range that contains both guard markers and ordinary backed memory has no effect on anything but the guard markers (including leaving huge pages un-split), so a user can safely remove guard markers over a range of memory leaving the rest intact. The actual mechanism by which the page table entries are specified makes use of existing logic - PTE markers, which are used for the userfaultfd UFFDIO_POISON mechanism. Unfortunately PTE_MARKER_POISONED is not suited for the guard page mechanism as it results in VM_FAULT_HWPOISON semantics in the fault handler, so we add our own specific PTE_MARKER_GUARD and adapt existing logic to handle it. We also extend the generic page walk mechanism to allow for installation of PTEs (carefully restricted to memory management logic only to prevent unwanted abuse). We ensure that zapping performed by MADV_DONTNEED and MADV_FREE do not remove guard markers, nor does forking (except when VM_WIPEONFORK is specified for a VMA which implies a total removal of memory characteristics). It's important to note that the guard page implementation is emphatically NOT a security feature, so a user can remove the markers if they wish. We simply implement it in such a way as to provide the least surprising behaviour. An extensive set of self-tests are provided which ensure behaviour is as expected and additionally self-documents expected behaviour of guard ranges. This patch (of 5): The existing generic pagewalk logic permits the walking of page tables, invoking callbacks at individual page table levels via user-provided mm_walk_ops callbacks. This is useful for traversing existing page table entries, but precludes the ability to establish new ones. Existing mechanism for performing a walk which also installs page table entries if necessary are heavily duplicated throughout the kernel, each with semantic differences from one another and largely unavailable for use elsewhere. Rather than add yet another implementation, we extend the generic pagewalk logic to enable the installation of page table entries by adding a new install_pte() callback in mm_walk_ops. If this is specified, then upon encountering a missing page table entry, we allocate and install a new one and continue the traversal. If a THP huge page is encountered at either the PMD or PUD level we split it only if there are ops->pte_entry() (or ops->pmd_entry at PUD level), otherwise if there is only an ops->install_pte(), we avoid the unnecessary split. We do not support hugetlb at this stage. If this function returns an error, or an allocation fails during the operation, we abort the operation altogether. It is up to the caller to deal appropriately with partially populated page table ranges. If install_pte() is defined, the semantics of pte_entry() change - this callback is then only invoked if the entry already exists. This is a useful property, as it allows a caller to handle existing PTEs while installing new ones where necessary in the specified range. If install_pte() is not defined, then there is no functional difference to this patch, so all existing logic will work precisely as it did before. As we only permit the installation of PTEs where a mapping does not already exist there is no need for TLB management, however we do invoke update_mmu_cache() for architectures which require manual maintenance of mappings for other CPUs. We explicitly do not allow the existing page walk API to expose this feature as it is dangerous and intended for internal mm use only. Therefore we provide a new walk_page_range_mm() function exposed only to mm/internal.h. We take the opportunity to additionally clean up the page walker logic to be a little easier to follow. Link: https://lkml.kernel.org/r/cover.1730123433.git.lorenzo.stoakes@oracle.com Link: https://lkml.kernel.org/r/51b432ebef013e3fdf9f92101533435de1bffadf.1730123433.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Jann Horn <jannh@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Jann Horn <jannh@google.com> Suggested-by: David Hildenbrand <david@redhat.com> Cc: Arnd Bergmann <arnd@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Chris Zankel <chris@zankel.net> Cc: Helge Deller <deller@gmx.de> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jeff Xu <jeffxu@chromium.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Vlastimil Babka <vbabkba@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Sabyrzhan Tasbolatov
|
4e4d9c72c9 |
kasan: delete CONFIG_KASAN_MODULE_TEST
Since we've migrated all tests to the KUnit framework, we can delete CONFIG_KASAN_MODULE_TEST and mentioning of it in the documentation as well. I've used the online translator to modify the non-English documentation. [snovitoll@gmail.com: fix indentation in translation] Link: https://lkml.kernel.org/r/20241020042813.3223449-1-snovitoll@gmail.com Link: https://lkml.kernel.org/r/20241016131802.3115788-4-snovitoll@gmail.com Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alex Shi <alexs@kernel.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Hu Haowen <2023002089@link.tyut.edu.cn> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yanteng Si <siyanteng@loongson.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Sabyrzhan Tasbolatov
|
ca79a00bb9 |
kasan: migrate copy_user_test to kunit
Migrate the copy_user_test to the KUnit framework to verify out-of-bound detection via KASAN reports in copy_from_user(), copy_to_user() and their static functions. This is the last migrated test in kasan_test_module.c, therefore delete the file. [arnd@arndb.de: export copy_to_kernel_nofault] Link: https://lkml.kernel.org/r/20241018151112.3533820-1-arnd@kernel.org Link: https://lkml.kernel.org/r/20241016131802.3115788-3-snovitoll@gmail.com Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alex Shi <alexs@kernel.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Hu Haowen <2023002089@link.tyut.edu.cn> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yanteng Si <siyanteng@loongson.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Barry Song
|
aaf2914aec |
mm: add per-order mTHP swpin counters
This helps profile the sizes of folios being swapped in. Currently, only mTHP swap-out is being counted. The new interface can be found at: /sys/kernel/mm/transparent_hugepage/hugepages-<size>/stats swpin For example, cat /sys/kernel/mm/transparent_hugepage/hugepages-64kB/stats/swpin 12809 cat /sys/kernel/mm/transparent_hugepage/hugepages-32kB/stats/swpin 4763 [v-songbaohua@oppo.com: add a blank line in doc] Link: https://lkml.kernel.org/r/20241030233423.80759-1-21cnbao@gmail.com Link: https://lkml.kernel.org/r/20241026082423.26298-1-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Chris Li <chrisl@kernel.org> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kairui Song <kasong@tencent.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Cc: Usama Arif <usamaarif642@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kanchana P Sridhar
|
ed882add6d |
mm: zswap: zswap_store_page() will initialize entry after adding to xarray.
This incorporates Yosry's suggestions in [1] for further simplifying zswap_store_page(). If the page is successfully compressed and added to the xarray, we get the pool/objcg refs, and initialize all the entry's members. Only after this, we add it to the zswap LRU. In the time between the entry's addition to the xarray and it's member initialization, we are protected against concurrent stores/loads/swapoff through the folio lock, and are protected against writeback because the entry is not on the LRU yet. This way, we don't have to drop the pool/objcg refs, now that the entry initialization is centralized to the successful page store code path. zswap_compress() is modified to take a zswap_pool parameter in keeping with this simplification (as against obtaining this from entry->pool). [1]: https://lore.kernel.org/all/CAJD7tkZh6ufHQef5HjXf_F5b5LC1EATexgseD=4WvrO+a6Ni6w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20241002173329.213722-1-kanchana.p.sridhar@intel.com Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Cc: Chengming Zhou <chengming.zhou@linux.dev> Cc: Huang Ying <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Wajdi Feghali <wajdi.k.feghali@intel.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kanchana P Sridhar
|
0c560dd860 |
mm: swap: count successful large folio zswap stores in hugepage zswpout stats
Added a new MTHP_STAT_ZSWPOUT entry to the sysfs transparent_hugepage stats so that successful large folio zswap stores can be accounted under the per-order sysfs "zswpout" stats: /sys/kernel/mm/transparent_hugepage/hugepages-*kB/stats/zswpout Other non-zswap swap device swap-out events will be counted under the existing sysfs "swpout" stats: /sys/kernel/mm/transparent_hugepage/hugepages-*kB/stats/swpout Also, added documentation for the newly added sysfs per-order hugepage "zswpout" stats. The documentation clarifies that only non-zswap swapouts will be accounted in the existing "swpout" stats. Link: https://lkml.kernel.org/r/20241001053222.6944-8-kanchana.p.sridhar@intel.com Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Cc: Chengming Zhou <chengming.zhou@linux.dev> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Wajdi Feghali <wajdi.k.feghali@intel.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: "Zou, Nanhai" <nanhai.zou@intel.com> Cc: Barry Song <21cnbao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kanchana P Sridhar
|
b7c0ccdfba |
mm: zswap: support large folios in zswap_store()
This series enables zswap_store() to accept and store large folios. The most significant contribution in this series is from the earlier RFC submitted by Ryan Roberts [1]. Ryan's original RFC has been migrated to mm-unstable as of 9-30-2024 in patch 6 of this series, and adapted based on code review comments received for the current patch-series. [1]: [RFC PATCH v1] mm: zswap: Store large folios without splitting https://lore.kernel.org/linux-mm/20231019110543.3284654-1-ryan.roberts@arm.com/T/#u The first few patches do the prep work for supporting large folios in zswap_store. Patch 6 provides the main functionality to swap-out large folios in zswap. Patch 7 adds sysfs per-order hugepages "zswpout" counters that get incremented upon successful zswap_store of large folios, and also updates the documentation for this: /sys/kernel/mm/transparent_hugepage/hugepages-*kB/stats/zswpout This series is a pre-requisite for zswap compress batching of large folio swap-out and decompress batching of swap-ins based on swapin_readahead(), using Intel IAA hardware acceleration, which we would like to submit in subsequent patch-series, with performance improvement data. Thanks to Ying Huang for pre-posting review feedback and suggestions! Thanks also to Nhat, Yosry, Johannes, Barry, Chengming, Usama, Ying and Matthew for their helpful feedback, code/data reviews and suggestions! I would like to thank Ryan Roberts for his original RFC [1]. System setup for testing: ========================= Testing of this series was done with mm-unstable as of 9-27-2024, commit de2fbaa6d9c3576ec7133ed02a370ec9376bf000 (without this patch-series) and mm-unstable 9-30-2024 commit c121617e3606be6575cdacfdb63cc8d67b46a568 (with this patch-series). Data was gathered on an Intel Sapphire Rapids server, dual-socket 56 cores per socket, 4 IAA devices per socket, 503 GiB RAM and 525G SSD disk partition swap. Core frequency was fixed at 2500MHz. The vm-scalability "usemem" test was run in a cgroup whose memory.high was fixed at 150G. The is no swap limit set for the cgroup. 30 usemem processes were run, each allocating and writing 10G of memory, and sleeping for 10 sec before exiting: usemem --init-time -w -O -s 10 -n 30 10g Other kernel configuration parameters: zswap compressors : zstd, deflate-iaa zswap allocator : zsmalloc vm.page-cluster : 2 In the experiments where "deflate-iaa" is used as the zswap compressor, IAA "compression verification" is enabled by default (cat /sys/bus/dsa/drivers/crypto/verify_compress). Hence each IAA compression will be decompressed internally by the "iaa_crypto" driver, the crc-s returned by the hardware will be compared and errors reported in case of mismatches. Thus "deflate-iaa" helps ensure better data integrity as compared to the software compressors, and the experimental data listed below is with verify_compress set to "1". Metrics reporting methodology: ============================== Total and average throughput are derived from the individual 30 processes' throughputs reported by usemem. elapsed/sys times are measured with perf. All percentage changes are "new" vs. "old"; hence a positive value denotes an increase in the metric, whether it is throughput or latency, and a negative value denotes a reduction in the metric. Positive throughput change percentages and negative latency change percentages denote improvements. The vm stats and sysfs hugepages stats included with the performance data provide details on the swapout activity to zswap/swap device. Testing labels used in data summaries: ====================================== The data refers to these test configurations and the before/after comparisons that they do: before-case1: ------------- mm-unstable 9-27-2024, CONFIG_THP_SWAP=N (compares zswap 4K vs. zswap 64K) In this scenario, CONFIG_THP_SWAP=N results in 64K/2M folios to be split into 4K folios that get processed by zswap. before-case2: ------------- mm-unstable 9-27-2024, CONFIG_THP_SWAP=Y (compares SSD swap large folios vs. zswap large folios) In this scenario, CONFIG_THP_SWAP=Y results in zswap rejecting large folios, which will then be stored by the SSD swap device. after: ------ v10 of this patch-series, CONFIG_THP_SWAP=Y The "after" is CONFIG_THP_SWAP=Y and v10 of this patch-series, that results in 64K/2M folios to not be split, and to be processed by zswap_store. Regression Testing: =================== I ran vm-scalability usemem without large folios, i.e., only 4K folios with mm-unstable and this patch-series. The main goal was to make sure that there is no functional or performance regression wrt the earlier zswap behavior for 4K folios, now that 4K folios will be processed by the new zswap_store() code. The data indicates there is no significant regression. ------------------------------------------------------------------------------- 4K folios: ========== zswap compressor zstd zstd zstd zstd v10 before-case1 before-case2 after vs. vs. case1 case2 ------------------------------------------------------------------------------- Total throughput (KB/s) 4,793,363 4,880,978 4,853,074 1% -1% Average throughput (KB/s) 159,778 162,699 161,769 1% -1% elapsed time (sec) 130.14 123.17 126.29 -3% 3% sys time (sec) 3,135.53 2,985.64 3,083.18 -2% 3% memcg_high 446,826 444,626 452,930 memcg_swap_fail 0 0 0 zswpout 48,932,107 48,931,971 48,931,820 zswpin 383 386 397 pswpout 0 0 0 pswpin 0 0 0 thp_swpout 0 0 0 thp_swpout_fallback 0 0 0 64kB-mthp_swpout_fallback 0 0 0 pgmajfault 3,063 3,077 3,479 swap_ra 93 94 96 swap_ra_hit 47 47 50 ZSWPOUT-64kB n/a n/a 0 SWPOUT-64kB 0 0 0 ------------------------------------------------------------------------------- Performance Testing: ==================== We list the data for 64K folios with before/after data per-compressor, followed by the same for 2M pmd-mappable folios. ------------------------------------------------------------------------------- 64K folios: zstd: ================= zswap compressor zstd zstd zstd zstd v10 before-case1 before-case2 after vs. vs. case1 case2 ------------------------------------------------------------------------------- Total throughput (KB/s) 5,222,213 1,076,611 6,159,776 18% 472% Average throughput (KB/s) 174,073 35,887 205,325 18% 472% elapsed time (sec) 120.50 347.16 108.33 -10% -69% sys time (sec) 2,930.33 248.16 2,549.65 -13% 927% memcg_high 416,773 552,200 465,874 memcg_swap_fail 3,192,906 1,293 1,012 zswpout 48,931,583 20,903 48,931,218 zswpin 384 363 410 pswpout 0 40,778,448 0 pswpin 0 16 0 thp_swpout 0 0 0 thp_swpout_fallback 0 0 0 64kB-mthp_swpout_fallback 3,192,906 1,293 1,012 pgmajfault 3,452 3,072 3,061 swap_ra 90 87 107 swap_ra_hit 42 43 57 ZSWPOUT-64kB n/a n/a 3,057,173 SWPOUT-64kB 0 2,548,653 0 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- 64K folios: deflate-iaa: ======================== zswap compressor deflate-iaa deflate-iaa deflate-iaa deflate-iaa v10 before-case1 before-case2 after vs. vs. case1 case2 ------------------------------------------------------------------------------- Total throughput (KB/s) 5,652,608 1,089,180 7,189,778 27% 560% Average throughput (KB/s) 188,420 36,306 239,659 27% 560% elapsed time (sec) 102.90 343.35 87.05 -15% -75% sys time (sec) 2,246.86 213.53 1,864.16 -17% 773% memcg_high 576,104 502,907 642,083 memcg_swap_fail 4,016,117 1,407 1,478 zswpout 61,163,423 22,444 57,798,716 zswpin 401 368 454 pswpout 0 40,862,080 0 pswpin 0 20 0 thp_swpout 0 0 0 thp_swpout_fallback 0 0 0 64kB-mthp_swpout_fallback 4,016,117 1,407 1,478 pgmajfault 3,063 3,153 3,122 swap_ra 96 93 156 swap_ra_hit 46 45 83 ZSWPOUT-64kB n/a n/a 3,611,032 SWPOUT-64kB 0 2,553,880 0 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- 2M folios: zstd: ================ zswap compressor zstd zstd zstd zstd v10 before-case1 before-case2 after vs. vs. case1 case2 ------------------------------------------------------------------------------- Total throughput (KB/s) 5,895,500 1,109,694 6,484,224 10% 484% Average throughput (KB/s) 196,516 36,989 216,140 10% 484% elapsed time (sec) 108.77 334.28 106.33 -2% -68% sys time (sec) 2,657.14 94.88 2,376.13 -11% 2404% memcg_high 64,200 66,316 56,898 memcg_swap_fail 101,182 70 27 zswpout 48,931,499 36,507 48,890,640 zswpin 380 379 377 pswpout 0 40,166,400 0 pswpin 0 0 0 thp_swpout 0 78,450 0 thp_swpout_fallback 101,182 70 27 2MB-mthp_swpout_fallback 0 0 27 pgmajfault 3,067 3,417 3,311 swap_ra 91 90 854 swap_ra_hit 45 45 810 ZSWPOUT-2MB n/a n/a 95,459 SWPOUT-2MB 0 78,450 0 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- 2M folios: deflate-iaa: ======================= zswap compressor deflate-iaa deflate-iaa deflate-iaa deflate-iaa v10 before-case1 before-case2 after vs. vs. case1 case2 ------------------------------------------------------------------------------- Total throughput (KB/s) 6,286,587 1,126,785 7,073,464 13% 528% Average throughput (KB/s) 209,552 37,559 235,782 13% 528% elapsed time (sec) 96.19 333.03 85.79 -11% -74% sys time (sec) 2,141.44 99.96 1,826.67 -15% 1727% memcg_high 99,253 64,666 79,718 memcg_swap_fail 129,074 53 165 zswpout 61,312,794 28,321 56,045,120 zswpin 383 406 403 pswpout 0 40,048,128 0 pswpin 0 0 0 thp_swpout 0 78,219 0 thp_swpout_fallback 129,074 53 165 2MB-mthp_swpout_fallback 0 0 165 pgmajfault 3,430 3,077 31,468 swap_ra 91 103 84,373 swap_ra_hit 47 46 84,317 ZSWPOUT-2MB n/a n/a 109,229 SWPOUT-2MB 0 78,219 0 ------------------------------------------------------------------------------- And finally, this is a comparison of deflate-iaa vs. zstd with v10 of this patch-series: --------------------------------------------- zswap_store large folios v10 Impr w/ deflate-iaa vs. zstd 64K folios 2M folios --------------------------------------------- Throughput (KB/s) 17% 9% elapsed time (sec) -20% -19% sys time (sec) -27% -23% --------------------------------------------- Conclusions based on the performance results: ============================================= v10 wrt before-case1: --------------------- We see significant improvements in throughput, elapsed and sys time for zstd and deflate-iaa, when comparing before-case1 (THP_SWAP=N) vs. after (THP_SWAP=Y) with zswap_store large folios. v10 wrt before-case2: --------------------- We see even more significant improvements in throughput and elapsed time for zstd and deflate-iaa, when comparing before-case2 (large-folio-SSD) vs. after (large-folio-zswap). The sys time increases with large-folio-zswap as expected, due to the CPU compression time vs. asynchronous disk write times, as pointed out by Ying and Yosry. In before-case2, when zswap does not store large folios, only allocations and cgroup charging due to 4K folio zswap stores count towards the cgroup memory limit. However, in the after scenario, with the introduction of zswap_store() of large folios, there is an added component of the zswap compressed pool usage from large folio stores from potentially all 30 processes, that gets counted towards the memory limit. As a result, we see higher swapout activity in the "after" data. Summary: ======== The v10 data presented above shows that zswap_store of large folios demonstrates good throughput/performance improvements compared to conventional SSD swap of large folios with a sufficiently large 525G SSD swap device. Hence, it seems reasonable for zswap_store to support large folios, so that further performance improvements can be implemented. In the experimental setup used in this patchset, we have enabled IAA compress verification to ensure additional hardware data integrity CRC checks not currently done by the software compressors. We see good throughput/latency improvements with deflate-iaa vs. zstd with zswap_store of large folios. Some of the ideas for further reducing latency that have shown promise in our experiments, are: 1) IAA compress/decompress batching. 2) Distributing compress jobs across all IAA devices on the socket. The tests run for this patchset are using only 1 IAA device per core, that avails of 2 compress engines on the device. In our experiments with IAA batching, we distribute compress jobs from all cores to the 8 compress engines available per socket. We further compress the pages in each folio in parallel in the accelerator. As a result, we improve compress latency and reclaim throughput. In decompress batching, we use swapin_readahead to generate a prefetch batch of 4K folios that we decompress in parallel in IAA. ------------------------------------------------------------------------------ IAA compress/decompress batching Further improvements wrt v10 zswap_store Sequential subpage store using "deflate-iaa": "deflate-iaa" Batching "deflate-iaa-canned" [2] Batching Additional Impr Additional Impr 64K folios 2M folios 64K folios 2M folios ------------------------------------------------------------------------------ Throughput (KB/s) 19% 43% 26% 55% elapsed time (sec) -5% -14% -10% -21% sys time (sec) 4% -7% -4% -18% ------------------------------------------------------------------------------ With zswap IAA compress/decompress batching, we are able to demonstrate significant performance improvements and memory savings in server scalability experiments in highly contended system scenarios under significant memory pressure; as compared to software compressors. We hope to submit this work in subsequent patch series. The current patch-series is a prequisite for these future submissions. This patch (of 7): zswap_store() will store large folios by compressing them page by page. This patch provides a sequential implementation of storing a large folio in zswap_store() by iterating through each page in the folio to compress and store it in the zswap zpool. zswap_store() calls the newly added zswap_store_page() function for each page in the folio. zswap_store_page() handles compressing and storing each page. We check the global and per-cgroup limits once at the beginning of zswap_store(), and only check that the limit is not reached yet. This is racy and inaccurate, but it should be sufficient for now. We also obtain initial references to the relevant objcg and pool to guarantee that subsequent references can be acquired by zswap_store_page(). A new function zswap_pool_get() is added to facilitate this. If these one-time checks pass, we compress the pages of the folio, while maintaining a running count of compressed bytes for all the folio's pages. If all pages are successfully compressed and stored, we do the cgroup zswap charging with the total compressed bytes, and batch update the zswap_stored_pages atomic/zswpout event stats with folio_nr_pages() once, before returning from zswap_store(). If an error is encountered during the store of any page in the folio, all pages in that folio currently stored in zswap will be invalidated. Thus, a folio is either entirely stored in zswap, or entirely not stored in zswap. The most important value provided by this patch is it enables swapping out large folios to zswap without splitting them. Furthermore, it batches some operations while doing so (cgroup charging, stats updates). This patch also forms the basis for building compress batching of pages in a large folio in zswap_store() by compressing up to say, 8 pages of the folio in parallel in hardware using the Intel In-Memory Analytics Accelerator (Intel IAA). This change reuses and adapts the functionality in Ryan Roberts' RFC patch [1]: "[RFC,v1] mm: zswap: Store large folios without splitting" [1] https://lore.kernel.org/linux-mm/20231019110543.3284654-1-ryan.roberts@arm.com/T/#u Link: https://lkml.kernel.org/r/20241001053222.6944-1-kanchana.p.sridhar@intel.com Link: https://lkml.kernel.org/r/20241001053222.6944-7-kanchana.p.sridhar@intel.com Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Originally-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Yosry Ahmed <yosryahmed@google.com> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Cc: Chengming Zhou <chengming.zhou@linux.dev> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Wajdi Feghali <wajdi.k.feghali@intel.com> Cc: "Zou, Nanhai" <nanhai.zou@intel.com> Cc: Barry Song <21cnbao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kanchana P Sridhar
|
6e1fa555ec |
mm: zswap: modify zswap_stored_pages to be atomic_long_t
For zswap_store() to support large folios, we need to be able to do a batch update of zswap_stored_pages upon successful store of all pages in the folio. For this, we need to add folio_nr_pages(), which returns a long, to zswap_stored_pages. Link: https://lkml.kernel.org/r/20241001053222.6944-6-kanchana.p.sridhar@intel.com Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Acked-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Cc: Chengming Zhou <chengming.zhou@linux.dev> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Wajdi Feghali <wajdi.k.feghali@intel.com> Cc: "Zou, Nanhai" <nanhai.zou@intel.com> Cc: Barry Song <21cnbao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kanchana P Sridhar
|
0201c054c2 |
mm: zswap: rename zswap_pool_get() to zswap_pool_tryget()
Modify the name of the existing zswap_pool_get() to zswap_pool_tryget() to be representative of the call it makes to percpu_ref_tryget(). A subsequent patch will introduce a new zswap_pool_get() that calls percpu_ref_get(). The intent behind this change is for higher level zswap API such as zswap_store() to call zswap_pool_tryget() to check upfront if the pool's refcount is "0" (which means it could be getting destroyed) and to handle this as an error condition. zswap_store() would proceed only if zswap_pool_tryget() returns success, and any additional pool refcounts that need to be obtained for compressing sub-pages in a large folio could simply call zswap_pool_get(). Link: https://lkml.kernel.org/r/20241001053222.6944-4-kanchana.p.sridhar@intel.com Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Acked-by: Yosry Ahmed <yosryahmed@google.com> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Wajdi Feghali <wajdi.k.feghali@intel.com> Cc: "Zou, Nanhai" <nanhai.zou@intel.com> Cc: Barry Song <21cnbao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kanchana P Sridhar
|
3d0f560a36 |
mm: zswap: modify zswap_compress() to accept a page instead of a folio
For zswap_store() to be able to store a large folio by compressing it one page at a time, zswap_compress() needs to accept a page as input. This will allow us to iterate through each page in the folio in zswap_store(), compress it and store it in the zpool. Link: https://lkml.kernel.org/r/20241001053222.6944-3-kanchana.p.sridhar@intel.com Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Yosry Ahmed <yosryahmed@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Wajdi Feghali <wajdi.k.feghali@intel.com> Cc: "Zou, Nanhai" <nanhai.zou@intel.com> Cc: Barry Song <21cnbao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Andrew Morton
|
2ec0859039 |
Merge branch 'mm-hotfixes-stable' into mm-stable
Pick up
|
||
Barry Song
|
e7ac4daeed |
mm: count zeromap read and set for swapout and swapin
When the proportion of folios from the zeromap is small, missing their accounting may not significantly impact profiling. However, it's easy to construct a scenario where this becomes an issue—for example, allocating 1 GB of memory, writing zeros from userspace, followed by MADV_PAGEOUT, and then swapping it back in. In this case, the swap-out and swap-in counts seem to vanish into a black hole, potentially causing semantic ambiguity. On the other hand, Usama reported that zero-filled pages can exceed 10% in workloads utilizing zswap, while Hailong noted that some app in Android have more than 6% zero-filled pages. Before commit |
||
Trond Myklebust
|
ace149e083 |
filemap: Fix bounds checking in filemap_read()
If the caller supplies an iocb->ki_pos value that is close to the
filesystem upper limit, and an iterator with a count that causes us to
overflow that limit, then filemap_read() enters an infinite loop.
This behaviour was discovered when testing xfstests generic/525 with the
"localio" optimisation for loopback NFS mounts.
Reported-by: Mike Snitzer <snitzer@kernel.org>
Fixes:
|
||
Linus Torvalds
|
28e43197c4 |
20 hotfixes, 14 of which are cc:stable.
Three affect DAMON. Lorenzo's five-patch series to address the mmap_region error handling is here also. Apart from that, various singletons. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzBVmAAKCRDdBJ7gKXxA ju42AQD0EEnzW+zFyI+E7x5FwCmLL6ofmzM8Sw9YrKjaeShdZgEAhcyS2Rc/AaJq Uty2ZvVMDF2a9p9gqHfKKARBXEbN2w0= =n+lO -----END PGP SIGNATURE----- Merge tag 'mm-hotfixes-stable-2024-11-09-22-40' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc fixes from Andrew Morton: "20 hotfixes, 14 of which are cc:stable. Three affect DAMON. Lorenzo's five-patch series to address the mmap_region error handling is here also. Apart from that, various singletons" * tag 'mm-hotfixes-stable-2024-11-09-22-40' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: mailmap: add entry for Thorsten Blum ocfs2: remove entry once instead of null-ptr-dereference in ocfs2_xa_remove() signal: restore the override_rlimit logic fs/proc: fix compile warning about variable 'vmcore_mmap_ops' ucounts: fix counter leak in inc_rlimit_get_ucounts() selftests: hugetlb_dio: check for initial conditions to skip in the start mm: fix docs for the kernel parameter ``thp_anon=`` mm/damon/core: avoid overflow in damon_feed_loop_next_input() mm/damon/core: handle zero schemes apply interval mm/damon/core: handle zero {aggregation,ops_update} intervals mm/mlock: set the correct prev on failure objpool: fix to make percpu slot allocation more robust mm/page_alloc: keep track of free highatomic mm: resolve faulty mmap_region() error path behaviour mm: refactor arch_calc_vm_flag_bits() and arm64 MTE handling mm: refactor map_deny_write_exec() mm: unconditionally close VMAs on error mm: avoid unsafe VMA hook invocation when error arises on mmap hook mm/thp: fix deferred split unqueue naming and locking mm/thp: fix deferred split queue not partially_mapped |
||
Linus Torvalds
|
f1dce1f093 |
slab fix for 6.12-rc7
-----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmcuE+8ACgkQu+CwddJF iJoAmAf+JhB/c4xgZ6ztCPNRHAeMTBomr578qFqE1uU7HW4rZaWiVAuIYRghpVgj xXXRU1sITBrMJzakRr3kYDIjchv08yDOd/Bx3nkgRUHAozhNh2DVGR7XVF9qKNDU 0Xof4+hNXSAqHsBTgJm3rYq42qdjVrJ0oA83EfwHFRUxVwrc6pARBrbNHprxfx1q /HbGI/FWqF/O2KEO45XuXHc/G4ZxLu/DlsHEcP7jHKG/TU2u3+wIUzGkIe1zgHH8 pD5ARsRA9QG2zQ3Z12guh4zyLVjc+REg29/ko8J5cLLs79KHV7I9nSHW5+bw0425 zAgOmo3P2NwQSnmNo0fdTWlNPniIsg== =+Co+ -----END PGP SIGNATURE----- Merge tag 'slab-for-6.12-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab Pull slab fix from Vlastimil Babka: - Fix for duplicate caches in some arm64 configurations with CONFIG_SLAB_BUCKETS (Koichiro Den) * tag 'slab-for-6.12-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: mm/slab: fix warning caused by duplicate kmem_cache creation in kmem_buckets_create |
||
SeongJae Park
|
73da523802 |
mm/damon/tests/dbgfs-kunit: fix the header double inclusion guarding ifdef comment
Closing part of double inclusion guarding macro for dbgfs-kunit.h was
copy-pasted from somewhere (maybe before the initial mainline merge of
DAMON), and not properly updated. Fix it.
Link: https://lkml.kernel.org/r/20241028233058.283381-7-sj@kernel.org
Fixes:
|
||
SeongJae Park
|
12d021659c |
mm/damon/Kconfig: update DBGFS_KUNIT prompt copy for SYSFS_KUNIT
CONFIG_DAMON_SYSFS_KUNIT_TEST prompt is copied from that for DAMON debugfs
interface kunit tests, and not correctly updated. Fix it.
Link: https://lkml.kernel.org/r/20241028233058.283381-6-sj@kernel.org
Fixes:
|
||
Xiu Jianfeng
|
2b1d55498b |
memcg: factor out mem_cgroup_stat_aggregate()
Currently mem_cgroup_css_rstat_flush() is used to flush the per-CPU statistics from a specified CPU into the global statistics of the memcg. It processes three kinds of data in three for loops using exactly the same method. Therefore, the for loop can be factored out and may make the code more clean. Link: https://lkml.kernel.org/r/20241026093407.310955-1-xiujianfeng@huaweicloud.com Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Wang Weiyang <wangweiyang2@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Thorsten Blum
|
e8c1a296b8 |
mm/show_mem: use str_yes_no() helper in show_free_areas()
Remove hard-coded strings by using the str_yes_no() helper function. Link: https://lkml.kernel.org/r/20241026103552.6790-2-thorsten.blum@linux.dev Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zeng Jingxiang
|
1bc542c6a0 |
mm/vmscan: wake up flushers conditionally to avoid cgroup OOM
Commit |
||
Matthew Wilcox (Oracle)
|
33d7f15f91 |
mm: use page->private instead of page->index in percpu
The percpu allocator only uses one field in struct page, just change it from page->index to page->private. Link: https://lkml.kernel.org/r/20241005200121.3231142-8-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
544ec0ed37 |
mm: remove references to page->index in huge_memory.c
We already have folios in all these places; it's just a matter of using them instead of the pages. Link: https://lkml.kernel.org/r/20241005200121.3231142-7-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
0386aaa6e9 |
bootmem: stop using page->index
Encode the type into the bottom four bits of page->private and the info into the remaining bits. Also turn the bootmem type into a named enum. [arnd@arndb.de: bootmem: add bootmem_type stub function] Link: https://lkml.kernel.org/r/20241015143802.577613-1-arnd@kernel.org [akpm@linux-foundation.org: fix build with !CONFIG_HAVE_BOOTMEM_INFO_NODE] Link: https://lore.kernel.org/oe-kbuild-all/202410090311.eaqcL7IZ-lkp@intel.com/ Link: https://lkml.kernel.org/r/20241005200121.3231142-6-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
68158bfa3d |
mm: mass constification of folio/page pointers
Now that page_pgoff() takes const pointers, we can constify the pointers to a lot of functions. Link: https://lkml.kernel.org/r/20241005200121.3231142-5-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
713da0b33b |
mm: renovate page_address_in_vma()
This function doesn't modify any of its arguments, so if we make a few other functions take const pointers, we can make page_address_in_vma() take const pointers too. All of its callers have the containing folio already, so pass that in as an argument instead of recalculating it. Also add kernel-doc Link: https://lkml.kernel.org/r/20241005200121.3231142-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
7d3e93eca3 |
mm: use page_pgoff() in more places
There are several places which currently open-code page_pgoff(), convert them to call it. Link: https://lkml.kernel.org/r/20241005200121.3231142-3-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
f7470591f8 |
mm: convert page_to_pgoff() to page_pgoff()
Patch series "page->index removals in mm", v2. As part of shrinking struct page, we need to stop using page->index. This patchset gets rid of most of the remaining references to page->index in mm, as well as increasing the number of functions which take a const folio/page pointer. It shrinks the text segment of mm by a few hundred bytes in my test config, probably mostly from removing calls to compound_head() in page_to_pgoff(). This patch (of 7): Change the function signature to pass in the folio as all three callers have it. This removes a reference to page->index, which we're trying to get rid of. And add kernel-doc. Link: https://lkml.kernel.org/r/20241005200121.3231142-1-willy@infradead.org Link: https://lkml.kernel.org/r/20241005200121.3231142-2-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Pintu Kumar
|
e664c2cd98 |
mm/zsmalloc: use memcpy_from/to_page whereever possible
As part of "zsmalloc: replace kmap_atomic with kmap_local_page" [1] we replaced kmap/kunmap_atomic() with kmap_local_page()/kunmap_local(). But later it was found that some of the code could be replaced with already available apis in highmem.h, such as memcpy_from_page()/memcpy_to_page(). Also, update the comments with correct api naming. [1] https://lkml.kernel.org/r/20241001175358.12970-1-quic_pintu@quicinc.com Link: https://lkml.kernel.org/r/20241010175143.27262-1-quic_pintu@quicinc.com Signed-off-by: Pintu Kumar <quic_pintu@quicinc.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Joe Perches <joe@perches.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pintu Agarwal <pintu.ping@gmail.com> Cc: Shuah Khan <skhan@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Pintu Kumar
|
91d0ec8347 |
zsmalloc: replace kmap_atomic with kmap_local_page
The use of kmap_atomic/kunmap_atomic is deprecated. Replace it will kmap_local_page/kunmap_local all over the place. Also fix SPDX missing license header. WARNING: Missing or malformed SPDX-License-Identifier tag in line 1 WARNING: Deprecated use of 'kmap_atomic', prefer 'kmap_local_page' instead + vaddr = kmap_atomic(page); Link: https://lkml.kernel.org/r/20241001175358.12970-1-quic_pintu@quicinc.com Signed-off-by: Pintu Kumar <quic_pintu@quicinc.com> Cc: Joe Perches <joe@perches.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pintu Agarwal <pintu.ping@gmail.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Shuah Khan <skhan@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Suren Baghdasaryan
|
4835f747d3 |
alloc_tag: support for page allocation tag compression
Implement support for storing page allocation tag references directly in the page flags instead of page extensions. sysctl.vm.mem_profiling boot parameter it extended to provide a way for a user to request this mode. Enabling compression eliminates memory overhead caused by page_ext and results in better performance for page allocations. However this mode will not work if the number of available page flag bits is insufficient to address all kernel allocations. Such condition can happen during boot or when loading a module. If this condition is detected, memory allocation profiling gets disabled with an appropriate warning. By default compression mode is disabled. Link: https://lkml.kernel.org/r/20241023170759.999909-7-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Gomez <da.gomez@samsung.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport (Microsoft) <rppt@kernel.org> Cc: Minchan Kim <minchan@google.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Petr Pavlu <petr.pavlu@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Sourav Panda <souravpanda@google.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Huth <thuth@redhat.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xiongwei Song <xiongwei.song@windriver.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Suren Baghdasaryan
|
0f9b685626 |
alloc_tag: populate memory for module tags as needed
The memory reserved for module tags does not need to be backed by physical pages until there are tags to store there. Change the way we reserve this memory to allocate only virtual area for the tags and populate it with physical pages as needed when we load a module. [surenb@google.com: avoid execmem_vmap() when !MMU] Link: https://lkml.kernel.org/r/20241031233611.3833002-1-surenb@google.com Link: https://lkml.kernel.org/r/20241023170759.999909-5-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Gomez <da.gomez@samsung.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport (Microsoft) <rppt@kernel.org> Cc: Minchan Kim <minchan@google.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Petr Pavlu <petr.pavlu@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Sourav Panda <souravpanda@google.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Huth <thuth@redhat.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xiongwei Song <xiongwei.song@windriver.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mike Rapoport (Microsoft)
|
2e45474ab1 |
execmem: add support for cache of large ROX pages
Using large pages to map text areas reduces iTLB pressure and improves performance. Extend execmem_alloc() with an ability to use huge pages with ROX permissions as a cache for smaller allocations. To populate the cache, a writable large page is allocated from vmalloc with VM_ALLOW_HUGE_VMAP, filled with invalid instructions and then remapped as ROX. The direct map alias of that large page is exculded from the direct map. Portions of that large page are handed out to execmem_alloc() callers without any changes to the permissions. When the memory is freed with execmem_free() it is invalidated again so that it won't contain stale instructions. An architecture has to implement execmem_fill_trapping_insns() callback and select ARCH_HAS_EXECMEM_ROX configuration option to be able to use the ROX cache. The cache is enabled on per-range basis when an architecture sets EXECMEM_ROX_CACHE flag in definition of an execmem_range. Link: https://lkml.kernel.org/r/20241023162711.2579610-8-rppt@kernel.org Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Tested-by: kdevops <kdevops@lists.linux.dev> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guo Ren <guoren@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <linux@armlinux.org.uk> Cc: Song Liu <song@kernel.org> Cc: Stafford Horne <shorne@gmail.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mike Rapoport (Microsoft)
|
0c133b1e78 |
module: prepare to handle ROX allocations for text
In order to support ROX allocations for module text, it is necessary to handle modifications to the code, such as relocations and alternatives patching, without write access to that memory. One option is to use text patching, but this would make module loading extremely slow and will expose executable code that is not finally formed. A better way is to have memory allocated with ROX permissions contain invalid instructions and keep a writable, but not executable copy of the module text. The relocations and alternative patches would be done on the writable copy using the addresses of the ROX memory. Once the module is completely ready, the updated text will be copied to ROX memory using text patching in one go and the writable copy will be freed. Add support for that to module initialization code and provide necessary interfaces in execmem. Link: https://lkml.kernel.org/r/20241023162711.2579610-5-rppt@kernel.org Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewd-by: Luis Chamberlain <mcgrof@kernel.org> Tested-by: kdevops <kdevops@lists.linux.dev> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guo Ren <guoren@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <linux@armlinux.org.uk> Cc: Song Liu <song@kernel.org> Cc: Stafford Horne <shorne@gmail.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mike Rapoport (Microsoft)
|
c82be0be95 |
mm: vmalloc: don't account for number of nodes for HUGE_VMAP allocations
vmalloc allocations with VM_ALLOW_HUGE_VMAP that do not explicitly specify node ID will use huge pages only if size_per_node is larger than a huge page. Still the actual allocated memory is not distributed between nodes and there is no advantage in such approach. On the contrary, BPF allocates SZ_2M * num_possible_nodes() for each new bpf_prog_pack, while it could do with a single huge page per pack. Don't account for number of nodes for VM_ALLOW_HUGE_VMAP with NUMA_NO_NODE and use huge pages whenever the requested allocation size is larger than a huge page. Link: https://lkml.kernel.org/r/20241023162711.2579610-3-rppt@kernel.org Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Tested-by: kdevops <kdevops@lists.linux.dev> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guo Ren <guoren@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <linux@armlinux.org.uk> Cc: Song Liu <song@kernel.org> Cc: Stafford Horne <shorne@gmail.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
SeongJae Park
|
4401e9d10a |
mm/damon/core: avoid overflow in damon_feed_loop_next_input()
damon_feed_loop_next_input() is inefficient and fragile to overflows.
Specifically, 'score_goal_diff_bp' calculation can overflow when 'score'
is high. The calculation is actually unnecessary at all because 'goal' is
a constant of value 10,000. Calculation of 'compensation' is again
fragile to overflow. Final calculation of return value for under-achiving
case is again fragile to overflow when the current score is
under-achieving the target.
Add two corner cases handling at the beginning of the function to make the
body easier to read, and rewrite the body of the function to avoid
overflows and the unnecessary bp value calcuation.
Link: https://lkml.kernel.org/r/20241031161203.47751-1-sj@kernel.org
Fixes:
|
||
SeongJae Park
|
8e7bde615f |
mm/damon/core: handle zero schemes apply interval
DAMON's logics to determine if this is the time to apply damos schemes
assumes next_apply_sis is always set larger than current
passed_sample_intervals. And therefore assume continuously incrementing
passed_sample_intervals will make it reaches to the next_apply_sis in
future. The logic hence does apply the scheme and update next_apply_sis
only if passed_sample_intervals is same to next_apply_sis.
If Schemes apply interval is set as zero, however, next_apply_sis is set
same to current passed_sample_intervals, respectively. And
passed_sample_intervals is incremented before doing the next_apply_sis
check. Hence, next_apply_sis becomes larger than next_apply_sis, and the
logic says it is not the time to apply schemes and update next_apply_sis.
In other words, DAMON stops applying schemes until passed_sample_intervals
overflows.
Based on the documents and the common sense, a reasonable behavior for
such inputs would be applying the schemes for every sampling interval.
Handle the case by removing the assumption.
Link: https://lkml.kernel.org/r/20241031183757.49610-3-sj@kernel.org
Fixes:
|
||
SeongJae Park
|
3488af0970 |
mm/damon/core: handle zero {aggregation,ops_update} intervals
Patch series "mm/damon/core: fix handling of zero non-sampling intervals".
DAMON's internal intervals accounting logic is not correctly handling
non-sampling intervals of zero values for a wrong assumption. This could
cause unexpected monitoring behavior, and even result in infinite hang of
DAMON sysfs interface user threads in case of zero aggregation interval.
Fix those by updating the intervals accounting logic. For details of the
root case and solutions, please refer to commit messages of fixes.
This patch (of 2):
DAMON's logics to determine if this is the time to do aggregation and ops
update assumes next_{aggregation,ops_update}_sis are always set larger
than current passed_sample_intervals. And therefore it further assumes
continuously incrementing passed_sample_intervals every sampling interval
will make it reaches to the next_{aggregation,ops_update}_sis in future.
The logic therefore make the action and update
next_{aggregation,ops_updaste}_sis only if passed_sample_intervals is same
to the counts, respectively.
If Aggregation interval or Ops update interval are zero, however,
next_aggregation_sis or next_ops_update_sis are set same to current
passed_sample_intervals, respectively. And passed_sample_intervals is
incremented before doing the next_{aggregation,ops_update}_sis check.
Hence, passed_sample_intervals becomes larger than
next_{aggregation,ops_update}_sis, and the logic says it is not the time
to do the action and update next_{aggregation,ops_update}_sis forever,
until an overflow happens. In other words, DAMON stops doing aggregations
or ops updates effectively forever, and users cannot get monitoring
results.
Based on the documents and the common sense, a reasonable behavior for
such inputs is doing an aggregation and an ops update for every sampling
interval. Handle the case by removing the assumption.
Note that this could incur particular real issue for DAMON sysfs interface
users, in case of zero Aggregation interval. When user starts DAMON with
zero Aggregation interval and asks online DAMON parameter tuning via DAMON
sysfs interface, the request is handled by the aggregation callback.
Until the callback finishes the work, the user who requested the online
tuning just waits. Hence, the user will be stuck until the
passed_sample_intervals overflows.
Link: https://lkml.kernel.org/r/20241031183757.49610-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20241031183757.49610-2-sj@kernel.org
Fixes:
|
||
Wei Yang
|
faa242b1d2 |
mm/mlock: set the correct prev on failure
After commit |
||
Yu Zhao
|
c928807f6f |
mm/page_alloc: keep track of free highatomic
OOM kills due to vastly overestimated free highatomic reserves were observed: ... invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0 ... Node 0 Normal free:1482936kB boost:0kB min:410416kB low:739404kB high:1068392kB reserved_highatomic:1073152KB ... Node 0 Normal: 1292*4kB (ME) 1920*8kB (E) 383*16kB (UE) 220*32kB (ME) 340*64kB (E) 2155*128kB (UE) 3243*256kB (UE) 615*512kB (U) 1*1024kB (M) 0*2048kB 0*4096kB = 1477408kB The second line above shows that the OOM kill was due to the following condition: free (1482936kB) - reserved_highatomic (1073152kB) = 409784KB < min (410416kB) And the third line shows there were no free pages in any MIGRATE_HIGHATOMIC pageblocks, which otherwise would show up as type 'H'. Therefore __zone_watermark_unusable_free() underestimated the usable free memory by over 1GB, which resulted in the unnecessary OOM kill above. The comments in __zone_watermark_unusable_free() warns about the potential risk, i.e., If the caller does not have rights to reserves below the min watermark then subtract the high-atomic reserves. This will over-estimate the size of the atomic reserve but it avoids a search. However, it is possible to keep track of free pages in reserved highatomic pageblocks with a new per-zone counter nr_free_highatomic protected by the zone lock, to avoid a search when calculating the usable free memory. And the cost would be minimal, i.e., simple arithmetics in the highatomic alloc/free/move paths. Note that since nr_free_highatomic can be relatively small, using a per-cpu counter might cause too much drift and defeat its purpose, in addition to the extra memory overhead. Dependson |
||
Shakeel Butt
|
906c38ff52 |
memcg: workingset: remove folio_memcg_rcu usage
The function workingset_activation() is called from folio_mark_accessed() with the guarantee that the given folio can not be freed under us in workingset_activation(). In addition, the association of the folio and its memcg can not be broken here because charge migration is no more. There is no need to use folio_memcg_rcu. Simply use folio_memcg_charged() because that is what this function cares about. [akpm@linux-foundation.org: provide folio_memcg_charged stub for CONFIG_MEMCG=n] Link: https://lkml.kernel.org/r/20241026163707.2479526-1-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Suggested-by: Yu Zhao <yuzhao@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Hugh Dickins <hughd@google.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wei Yang
|
642c66d84c |
mm/vma: the pgoff is correct if can_merge_right
By this point can_vma_merge_right() must have returned true, which implies can_vma_merge_before() also returned true, which already asserts that the pgoff is as expected for a merge with the following VMA, thus this assignment is redundant. Below is a more detail explanation. Current definition of can_vma_merge_right() is: static bool can_vma_merge_right(struct vma_merge_struct *vmg, bool can_merge_left) { if (!vmg->next || vmg->end != vmg->next->vm_start || !can_vma_merge_before(vmg)) return false; ... } And: static bool can_vma_merge_before(struct vma_merge_struct *vmg) { pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); ... if (vmg->next->vm_pgoff == vmg->pgoff + pglen) return true; ... } Which implies vmg->pgoff == vmg->next->vm_pgoff - pglen. None of these values are changed between the check and prior assignment, so this was an entirely redundant assignment. [akpm@linux-foundation.org: remove now-unused local] [lorenzo.stoakes@oracle.com: rephrase the changelog] Link: https://lkml.kernel.org/r/20241024093347.18057-1-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
5ac87a885a |
mm: defer second attempt at merge on mmap()
Rather than trying to merge again when ostensibly allocating a new VMA, instead defer until the VMA is added and attempt to merge the existing range. This way we have no complicated unwinding logic midway through the process of mapping the VMA. In addition this removes limitations on the VMA not being able to be the first in the virtual memory address space which was previously implicitly required. In theory, for this very same reason, we should unconditionally attempt merge here, however this is likely to have a performance impact so it is better to avoid this given the unlikely outcome of a merge. [lorenzo.stoakes@oracle.com: remove unnecessary indirection] Link: https://lkml.kernel.org/r/5106696d-e625-4d8a-8545-9d1430301730@lucifer.local Link: https://lkml.kernel.org/r/d4f84502605d7651ac114587f507395c0fc76004.1729858176.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
5a689bac0b |
mm: remove unnecessary reset state logic on merge new VMA
The only place where this was used was in mmap_region(), which we have now adjusted to not require this to be performed (we reset ourselves in effect). It also created a dangerous assumption that VMG state could be safely reused after a merge, at which point it may have been mutated in unexpected ways, leading to subtle bugs. Note that it was discovered by Wei Yang that there was also an error in this code - we are comparing vmg->vma with prev after setting it to NULL. This however had no impact, as we previously reset VMA iterator state before attempting merge again, but it was useless effort. In any case, this patch removes all of the logic so also eliminates this wasted effort. Link: https://lkml.kernel.org/r/5d9a59eee6498ae017cc87d89aa723de7179f75d.1729858176.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
0d11630cc5 |
mm: refactor __mmap_region()
We have seen bugs and resource leaks arise from the complexity of the __mmap_region() function. This, and the generally deeply fragile error handling logic and complexity which makes understanding the function difficult make it highly desirable to refactor it into something readable. Achieve this by separating the function into smaller logical parts which are easier to understand and follow, and which importantly very significantly simplify the error handling. Note that we now call vms_abort_munmap_vmas() in more error paths than we used to, however in cases where no abort need occur, vms->nr_pages will be equal to zero and we simply exit this function without doing more than we would have done previously. Importantly, the invocation of the driver mmap hook via mmap_file() now has very simple and obvious handling (this was previously the most problematic part of the mmap() operation). Use a generalised stack-based 'mmap state' to thread through values and also retrieve state as needed. Also avoid ever relying on vma merge (vmg) state after a merge is attempted, instead maintain meaningful state in the mmap state and establish vmg state as and when required. This avoids any subtle bugs arising from merge logic mutating this state and mmap_region() logic later relying upon it. Link: https://lkml.kernel.org/r/25bd2edc3275450f448cbfe0756ce2a7cd06810f.1729858176.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
52956b0d7f |
mm: isolate mmap internal logic to mm/vma.c
In previous commits we effected improvements to the mmap() logic in mmap_region() and its newly introduced internal implementation function __mmap_region(). However as these changes are intended to be backported, we kept the delta as small as is possible and made as few changes as possible to the newly introduced mm/vma.* files. Take the opportunity to move this logic to mm/vma.c which not only isolates it, but also makes it available for later userland testing which can help us catch such logic errors far earlier. Link: https://lkml.kernel.org/r/93fc2c3aa37dd30590b7e4ee067dfd832007bf7e.1729858176.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Shakeel Butt
|
a29c0e4b2e |
memcg-v1: remove memcg move locking code
The memcg v1's charge move feature has been deprecated. All the places using the memcg move lock, have stopped using it as they don't need the protection any more. Let's proceed to remove all the locking code related to charge moving. Link: https://lkml.kernel.org/r/20241025012304.2473312-7-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Shakeel Butt
|
cf4a65539c |
memcg-v1: no need for memcg locking for MGLRU
While updating the generation of the folios, MGLRU requires that the folio's memcg association remains stable. With the charge migration deprecated, there is no need for MGLRU to acquire locks to keep the folio and memcg association stable. [yuzhao@google.com: remove !rcu_read_lock_held() assertion] Link: https://lkml.kernel.org/r/ZykEtcHrQRq-KrBC@google.com Link: https://syzkaller.appspot.com/bug?extid=24f45b8beab9788e467e Link: https://lore.kernel.org/lkml/67294349.050a0220.701a.0010.GAE@google.com/ [akpm@linux-foundation.org: remove now-unused local] [shakeel.butt@linux.dev: folio_rcu() fixup, per Yu Zhao] Link: https://lkml.kernel.org/r/iwmabnye3nl4merealrawt3bdvfii2pwavwrddrqpraoveet7h@ezrsdhjwwej7 Link: https://lkml.kernel.org/r/20241025012304.2473312-6-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Shakeel Butt
|
568bcf4148 |
memcg-v1: no need for memcg locking for writeback tracking
During the era of memcg charge migration, the kernel has to be make sure that the writeback stat updates do not race with the charge migration. Otherwise it might update the writeback stats of the wrong memcg. Now with the memcg charge migration gone, there is no more race for writeback stat updates and the previous locking can be removed. Link: https://lkml.kernel.org/r/20241025012304.2473312-5-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Shakeel Butt
|
a8cd9d4ce3 |
memcg-v1: no need for memcg locking for dirty tracking
During the era of memcg charge migration, the kernel has to be make sure that the dirty stat updates do not race with the charge migration. Otherwise it might update the dirty stats of the wrong memcg. Now with the memcg charge migration gone, there is no more race for dirty stat updates and the previous locking can be removed. Link: https://lkml.kernel.org/r/20241025012304.2473312-4-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Shakeel Butt
|
6b611388b6 |
memcg-v1: remove charge move code
The memcg-v1 charge move feature has been deprecated completely and let's remove the relevant code as well. Link: https://lkml.kernel.org/r/20241025012304.2473312-3-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Shakeel Butt
|
aa6b4fdf59 |
memcg-v1: fully deprecate move_charge_at_immigrate
Patch series "memcg-v1: fully deprecate charge moving". The memcg v1's charge moving feature has been deprecated for almost 2 years and the kernel warns if someone try to use it. This warning has been backported to all stable kernel and there have not been any report of the warning or the request to support this feature anymore. Let's proceed to fully deprecate this feature. This patch (of 6): Proceed with the complete deprecation of memcg v1's charge moving feature. The deprecation warning has been in the kernel for almost two years and has been ported to all stable kernel since. Now is the time to fully deprecate this feature. Link: https://lkml.kernel.org/r/20241025012304.2473312-1-shakeel.butt@linux.dev Link: https://lkml.kernel.org/r/20241025012304.2473312-2-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baolin Wang
|
729881ffd3 |
mm: shmem: fallback to page size splice if large folio has poisoned pages
The tmpfs has already supported the PMD-sized large folios, and splice() can not read any pages if the large folio has a poisoned page, which is not good as Matthew pointed out in a previous email[1]: "so if we have hwpoison set on one page in a folio, we now can't read bytes from any page in the folio? That seems like we've made a bad situation worse." Thus add a fallback to the PAGE_SIZE splice() still allows reading normal pages if the large folio has hwpoisoned pages. [1] https://lore.kernel.org/all/Zw_d0EVAJkpNJEbA@casper.infradead.org/ [baolin.wang@linux.alibaba.com: code layout cleaup, per dhowells] Link: https://lkml.kernel.org/r/32dd938c-3531-49f7-93e4-b7ff21fec569@linux.alibaba.com Link: https://lkml.kernel.org/r/e3737fbd5366c4de4337bf5f2044817e77a5235b.1729915173.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zheng Yejian
|
477327e106 |
mm/damon/vaddr: add 'nr_piece == 1' check in damon_va_evenly_split_region()
As discussed in [1], damon_va_evenly_split_region() is called to size-evenly split a region into 'nr_pieces' small regions, when nr_pieces == 1, no actual split is required. Check that case for better code readability and add a simple kunit testcase. [1] https://lore.kernel.org/all/20241021163316.12443-1-sj@kernel.org/ Link: https://lkml.kernel.org/r/20241022083927.3592237-3-zhengyejian@huaweicloud.com Signed-off-by: Zheng Yejian <zhengyejian@huaweicloud.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Ye Weihua <yeweihua4@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zheng Yejian
|
f3c7a1ede4 |
mm/damon/vaddr: fix issue in damon_va_evenly_split_region()
Patch series "mm/damon/vaddr: Fix issue in
damon_va_evenly_split_region()". v2.
According to the logic of damon_va_evenly_split_region(), currently
following split case would not meet the expectation:
Suppose DAMON_MIN_REGION=0x1000,
Case: Split [0x0, 0x3000) into 2 pieces, then the result would be
acutually 3 regions:
[0x0, 0x1000), [0x1000, 0x2000), [0x2000, 0x3000)
but NOT the expected 2 regions:
[0x0, 0x1000), [0x1000, 0x3000) !!!
The root cause is that when calculating size of each split piece in
damon_va_evenly_split_region():
`sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);`
both the dividing and the ALIGN_DOWN may cause loss of precision, then
each time split one piece of size 'sz_piece' from origin 'start' to 'end'
would cause more pieces are split out than expected!!!
To fix it, count for each piece split and make sure no more than
'nr_pieces'. In addition, add above case into damon_test_split_evenly().
And add 'nr_piece == 1' check in damon_va_evenly_split_region() for better
code readability and add a corresponding kunit testcase.
This patch (of 2):
According to the logic of damon_va_evenly_split_region(), currently
following split case would not meet the expectation:
Suppose DAMON_MIN_REGION=0x1000,
Case: Split [0x0, 0x3000) into 2 pieces, then the result would be
acutually 3 regions:
[0x0, 0x1000), [0x1000, 0x2000), [0x2000, 0x3000)
but NOT the expected 2 regions:
[0x0, 0x1000), [0x1000, 0x3000) !!!
The root cause is that when calculating size of each split piece in
damon_va_evenly_split_region():
`sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);`
both the dividing and the ALIGN_DOWN may cause loss of precision,
then each time split one piece of size 'sz_piece' from origin 'start' to
'end' would cause more pieces are split out than expected!!!
To fix it, count for each piece split and make sure no more than
'nr_pieces'. In addition, add above case into damon_test_split_evenly().
After this patch, damon-operations test passed:
# ./tools/testing/kunit/kunit.py run damon-operations
[...]
============== damon-operations (6 subtests) ===============
[PASSED] damon_test_three_regions_in_vmas
[PASSED] damon_test_apply_three_regions1
[PASSED] damon_test_apply_three_regions2
[PASSED] damon_test_apply_three_regions3
[PASSED] damon_test_apply_three_regions4
[PASSED] damon_test_split_evenly
================ [PASSED] damon-operations =================
Link: https://lkml.kernel.org/r/20241022083927.3592237-1-zhengyejian@huaweicloud.com
Link: https://lkml.kernel.org/r/20241022083927.3592237-2-zhengyejian@huaweicloud.com
Fixes:
|
||
Thorsten Blum
|
ab505e8be0 |
mm/page_alloc: use str_off_on() helper in build_all_zonelists()
Remove hard-coded strings by using the str_off_on() helper function. Link: https://lkml.kernel.org/r/20241021091340.5243-2-thorsten.blum@linux.dev Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Ryan Roberts
|
8717734fdc |
mm/memcontrol: fix seq_buf size to save memory when PAGE_SIZE is large
Previously the seq_buf used for accumulating the memory.stat output was sized at PAGE_SIZE. But the amount of output is invariant to PAGE_SIZE; If 4K is enough on a 4K page system, then it should also be enough on a 64K page system, so we can save 60K on the static buffer used in mem_cgroup_print_oom_meminfo(). Let's make it so. This also has the beneficial side effect of removing a place in the code that assumed PAGE_SIZE is a compile-time constant. So this helps our quest towards supporting boot-time page size selection. Link: https://lkml.kernel.org/r/20241021130027.3615969-1-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
James Houghton
|
628e1b8c47 |
mm: add missing mmu_notifier_clear_young for !MMU_NOTIFIER
Remove the now unnecessary ifdef in mm/damon/vaddr.c as well. Link: https://lkml.kernel.org/r/20241021160212.9935-1-jthoughton@google.com Signed-off-by: James Houghton <jthoughton@google.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: SeongJae Park <sj@kernel.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Jim Zhao
|
39ac99852f |
mm/page-writeback: raise wb_thresh to prevent write blocking with strictlimit
With the strictlimit flag, wb_thresh acts as a hard limit in balance_dirty_pages() and wb_position_ratio(). When device write operations are inactive, wb_thresh can drop to 0, causing writes to be blocked. The issue occasionally occurs in fuse fs, particularly with network backends, the write thread is blocked frequently during a period. To address it, this patch raises the minimum wb_thresh to a controllable level, similar to the non-strictlimit case. Link: https://lkml.kernel.org/r/20241023100032.62952-1-jimzhao.ai@gmail.com Signed-off-by: Jim Zhao <jimzhao.ai@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Manas
|
722376934b |
mm/memory.c: simplify pfnmap_lockdep_assert
Use local `mapping' to reduce the pointer chasing.
akpm: extracted from a bugfix which Linus fixed with
|
||
Baolin Wang
|
a284cb8472 |
mm: shmem: improve the tmpfs large folio read performance
tmpfs already supports PMD-sized large folios, but the tmpfs read operation still performs copying at PAGE_SIZE granularity, which is unreasonable. This patch changes tmpfs to copy data at folio granularity, which can improve the read performance, as well as changing to use folio related functions. Moreover, if a large folio has a subpage that is hwpoisoned, it will still fall back to page granularity copying. Use 'fio bs=64k' to read a 1G tmpfs file populated with 2M THPs, and I can see about 20% performance improvement, and no regression with bs=4k. Before the patch: READ: bw=10.0GiB/s After the patch: READ: bw=12.0GiB/s Link: https://lkml.kernel.org/r/2129a21a5b9f77d3bb7ddec152c009ce7c5653c4.1729218573.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |