To obtain the pointer to the next memcg position, mem_cgroup_iter()
currently holds css->refcnt during memcg traversal only to put css->refcnt
at the end of the routine. This isn't necessary as an rcu_read_lock is
already held throughout the function. The use of the RCU read lock with
css_next_descendant_pre() guarantees that sibling linkage is safe without
holding a ref on the passed-in @css.
Remove css->refcnt usage during traversal by leveraging RCU.
Link: https://lkml.kernel.org/r/20240905003058.1859929-3-kinseyho@google.com
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Reviewed-by: T.J. Mercier <tjmercier@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Improve mem_cgroup_iter()", v4.
Incremental cgroup iteration is being used again [1]. This patchset
improves the reliability of mem_cgroup_iter(). It also improves
simplicity and code readability.
[1] https://lore.kernel.org/20240514202641.2821494-1-hannes@cmpxchg.org/
This patch (of 5):
Explicitly document that css sibling/descendant linkage is protected by
cgroup_mutex or RCU. Also, document in css_next_descendant_pre() and
similar functions that it isn't necessary to hold a ref on @pos.
The following changes in this patchset rely on this clarification for
simplification in memcg iteration code.
Link: https://lkml.kernel.org/r/20240905003058.1859929-1-kinseyho@google.com
Link: https://lkml.kernel.org/r/20240905003058.1859929-2-kinseyho@google.com
Suggested-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: T.J. Mercier <tjmercier@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
random.h is not needed since commit 6c542ab757 ("mm/demotion: build
demotion targets based on explicit memory tiers"), all functions moved
into memory-tiers.
nsproxy.h is not needed since commit 228ebcbe63 ("Uninline
find_task_by_xxx set of functions"), no nsproxy, we only call
find_task_by_vpid() now.
hugetlb_cgroup.h is not needed since commit ab5ac90aec ("mm, hugetlb: do
not rely on overcommit limit during migration"), move_hugetlb_state() is
called and it belongs to hugetlb.h, which is already included.
balloon_compaction.h, we have more general movable_operations for non-lru
movable page migration, so it could be dropped.
memremap.h, userfaultfd_k.h and oom.h are introduced for zone device page
migration, but all functions are moved into migrate_device.c, so no needed
anymore too.
Link: https://lkml.kernel.org/r/20240905152432.626877-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The helper find_get_task_by_vpid() can totally replace the task_struct
find logic in split_huge_pages_pid(), so use it to simplify the code.
Also delete the needless comments for the helper function name already
explains what it's doing here.
Link: https://lkml.kernel.org/r/20240905153028.1205128-1-sunnanyong@huawei.com
Signed-off-by: Nanyong Sun <sunnanyong@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use find_get_task_by_vpid() to replace the task_struct find logic in
find_mm_struct(), note that this patch move the ptrace_may_access() call
out from rcu_read_lock() scope, this is ok because it actually does not
need it, find_get_task_by_vpid() already get the pid and task safely,
ptrace_may_access() can use the task safely, like what
sched_core_share_pid() similarly do.
Link: https://lkml.kernel.org/r/20240905153118.1205173-1-sunnanyong@huawei.com
Signed-off-by: Nanyong Sun <sunnanyong@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The aggregation interval of test purpose damon_attrs for
damon_test_nr_accesses_to_accesses_bp() becomes zero on 32 bit
architecture, since size of int and long types are same. As a result,
damon_nr_accesses_to_accesses_bp() call with the test data triggers
divide-by-zero exception. damon_nr_accesses_to_accesses_bp() shouldn't
be called with such data, and the non-test code avoids that by checking
the case on damon_update_monitoring_results(). Skip the test code in
the case, and add an explicit caution of the case on the comment for the
test target function.
Link: https://lkml.kernel.org/r/20240905162423.74053-1-sj@kernel.org
Fixes: 5e06ad5900 ("mm/damon/core-test: test max_nr_accesses overflow caused divide-by-zero")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Closes: https://lore.kernel.org/c771b962-a58f-435b-89e4-1211a9323181@roeck-us.net
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Gow <davidgow@google.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
PGFREE is currently updated in two code paths:
- __free_pages_ok(): for pages freed to the buddy allocator.
- free_unref_page_commit(): for pages freed to the pcplists.
Before commit df1acc8569 ("mm/page_alloc: avoid conflating IRQs disabled
with zone->lock"), free_unref_page_commit() used to fallback to freeing
isolated pages directly to the buddy allocator through free_one_page().
This was done _after_ updating PGFREE, so the counter was correctly
updated.
However, that commit moved the fallback logic to its callers (now called
free_unref_page() and free_unref_folios()), so PGFREE was no longer
updated in this fallback case.
Now that the code has developed, there are more cases in free_unref_page()
and free_unref_folios() where we fallback to calling free_one_page() (e.g.
!pcp_allowed_order(), pcp_spin_trylock() fails). These cases also miss
updating PGFREE.
To make sure PGFREE is updated in all cases where pages are freed to the
buddy allocator, move the update down the stack to free_one_page().
This was noticed through code inspection, although it should be noticeable
at runtime (at least with some workloads).
Link: https://lkml.kernel.org/r/20240904205419.821776-1-yosryahmed@google.com
Fixes: df1acc8569 ("mm/page_alloc: avoid conflating IRQs disabled with zone->lock")
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Brendan Jackman <jackmanb@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
As covered in the commit log for c44357c2e7 ("x86/mm: care about shadow
stack guard gap during placement") our current mmap() implementation does
not take care to ensure that a new mapping isn't placed with existing
mappings inside it's own guard gaps. This is particularly important for
shadow stacks since if two shadow stacks end up getting placed adjacent to
each other then they can overflow into each other which weakens the
protection offered by the feature.
On x86 there is a custom arch_get_unmapped_area() which was updated by the
above commit to cover this case by specifying a start_gap for allocations
with VM_SHADOW_STACK. Both arm64 and RISC-V have equivalent features and
use the generic implementation of arch_get_unmapped_area() so let's make
the equivalent change there so they also don't get shadow stack pages
placed without guard pages. x86 uses a single page guard, this is also
sufficient for arm64 where we either do single word pops and pushes or
unconstrained writes.
Architectures which do not have this feature will define VM_SHADOW_STACK
to VM_NONE and hence be unaffected.
Link: https://lkml.kernel.org/r/20240904-mm-generic-shadow-stack-guard-v2-3-a46b8b6dc0ed@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
Suggested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Acked-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Chris Zankel <chris@zankel.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In preparation for using vm_flags to ensure guard pages for shadow stacks
supply them as an argument to generic_get_unmapped_area(). The only user
outside of the core code is the PowerPC book3s64 implementation which is
trivially wrapping the generic implementation in the radix_enabled() case.
No functional changes.
Link: https://lkml.kernel.org/r/20240904-mm-generic-shadow-stack-guard-v2-2-a46b8b6dc0ed@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Chris Zankel <chris@zankel.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: Care about shadow stack guard gap when getting an
unmapped area", v2.
As covered in the commit log for c44357c2e7 ("x86/mm: care about shadow
stack guard gap during placement") our current mmap() implementation does
not take care to ensure that a new mapping isn't placed with existing
mappings inside it's own guard gaps. This is particularly important for
shadow stacks since if two shadow stacks end up getting placed adjacent to
each other then they can overflow into each other which weakens the
protection offered by the feature.
On x86 there is a custom arch_get_unmapped_area() which was updated by the
above commit to cover this case by specifying a start_gap for allocations
with VM_SHADOW_STACK. Both arm64 and RISC-V have equivalent features and
use the generic implementation of arch_get_unmapped_area() so let's make
the equivalent change there so they also don't get shadow stack pages
placed without guard pages. The arm64 and RISC-V shadow stack
implementations are currently on the list:
https://lore.kernel.org/r/20240829-arm64-gcs-v12-0-42fec94743https://lore.kernel.org/lkml/20240403234054.2020347-1-debug@rivosinc.com/
Given the addition of the use of vm_flags in the generic implementation we
also simplify the set of possibilities that have to be dealt with in the
core code by making arch_get_unmapped_area() take vm_flags as standard.
This is a bit invasive since the prototype change touches quite a few
architectures but since the parameter is ignored the change is
straightforward, the simplification for the generic code seems worth it.
This patch (of 3):
When we introduced arch_get_unmapped_area_vmflags() in 961148704a ("mm:
introduce arch_get_unmapped_area_vmflags()") we did so as part of properly
supporting guard pages for shadow stacks on x86_64, which uses a custom
arch_get_unmapped_area(). Equivalent features are also present on both
arm64 and RISC-V, both of which use the generic implementation of
arch_get_unmapped_area() and will require equivalent modification there.
Rather than continue to deal with having two versions of the functions
let's bite the bullet and have all implementations of
arch_get_unmapped_area() take vm_flags as a parameter.
The new parameter is currently ignored by all implementations other than
x86. The only caller that doesn't have a vm_flags available is
mm_get_unmapped_area(), as for the x86 implementation and the wrapper used
on other architectures this is modified to supply no flags.
No functional changes.
Link: https://lkml.kernel.org/r/20240904-mm-generic-shadow-stack-guard-v2-0-a46b8b6dc0ed@kernel.org
Link: https://lkml.kernel.org/r/20240904-mm-generic-shadow-stack-guard-v2-1-a46b8b6dc0ed@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Acked-by: Helge Deller <deller@gmx.de> [parisc]
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Chris Zankel <chris@zankel.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
damon_test_three_regions_in_vmas() initializes a maple tree with
MM_MT_FLAGS. The flags contains MT_FLAGS_LOCK_EXTERN, which means mt_lock
of the maple tree will not be used. And therefore the maple tree
initialization code skips initialization of the mt_lock. However,
__link_vmas(), which adds vmas for test to the maple tree, uses the
mt_lock. In other words, the uninitialized spinlock is used. The problem
becomes clear when spinlock debugging is turned on, since it reports
spinlock bad magic bug.
Fix the issue by excluding MT_FLAGS_LOCK_EXTERN from the maple tree
initialization flags. Note that we don't use empty flags to make it
further similar to the usage of mm maple tree, and to be prepared for
possible future changes, as suggested by Liam.
Link: https://lkml.kernel.org/r/20240904172931.1284-1-sj@kernel.org
Fixes: d0cf3dd47f ("damon: convert __damon_va_three_regions to use the VMA iterator")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Closes: https://lore.kernel.org/1453b2b2-6119-4082-ad9e-f3c5239bf87e@roeck-us.net
Suggested-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
zsmalloc is not exclusive to zswap. Commit b3fbd58fcb ("mm: Kconfig:
simplify zswap configuration") made CONFIG_ZSMALLOC only visible when
CONFIG_ZSWAP is selected, which makes it impossible to menuconfig
zsmalloc-specific features (stats, chain-size, etc.) on systems that use
ZRAM but don't have ZSWAP enabled.
Make zsmalloc depend on both ZRAM and ZSWAP.
Link: https://lkml.kernel.org/r/20240903040143.1580705-1-senozhatsky@chromium.org
Fixes: b3fbd58fcb ("mm: Kconfig: simplify zswap configuration")
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In commit b6273b55d8 ("filemap: add trace events for get_pages,
map_pages, and fault"), mm_filemap_get_pages was added to trace page cache
access. However, it tracks an extra page beyond the end of the accessed
range. This patch fixes it by replacing last_index with last_index - 1.
Link: https://lkml.kernel.org/r/20240903102100.70405-1-takayas@chromium.org
Fixes: b6273b55d8 ("filemap: add trace events for get_pages, map_pages, and fault")
Signed-off-by: Takaya Saeki <takayas@chromium.org>
Cc: Junichi Uekawa <uekawa@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Take the end of a file write into consideration when deciding whether or
not to use huge pages for tmpfs files when the tmpfs filesystem is mounted
with huge=within_size
This allows large writes that append to the end of a file to automatically
use large pages.
Doing 4MB sequential writes without fallocate to a 16GB tmpfs file with
fio. The numbers without THP or with huge=always stay the same, but the
performance with huge=within_size now matches that of huge=always.
huge before after
4kB pages 1560 MB/s 1560 MB/s
within_size 1560 MB/s 4720 MB/s
always: 4720 MB/s 4720 MB/s
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20240903111928.7171e60c@imladris.surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
recompress device attribute supports alg=NAME parameter so that we can
specify only one particular algorithm we want to perform recompression
with. However, with algo params we now can have several exactly same
secondary algorithms but each with its own params tuning (e.g. priority 1
configured to use more aggressive level, and priority 2 configured to use
a pre-trained dictionary). Support priority=NUM parameter so that we can
correctly determine which secondary algorithm we want to use.
Link: https://lkml.kernel.org/r/20240902105656.1383858-25-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Support pre-trained dictionary param. Just like lz4, lz4hc doesn't
mandate specific format of the dictionary and zstd --train can be used to
train a dictionary for lz4, according to [1].
TEST
====
*** lz4hc
/sys/block/zram0/mm_stat
1750638592 608954620 621031424 0 621031424 1 0 34288 34288
*** lz4hc dict=/etc/lz4-dict-amd64
/sys/block/zram0/mm_stat
1750671360 505068582 514994176 0 514994176 1 0 34278 34278
[1] https://github.com/lz4/lz4/issues/557
Link: https://lkml.kernel.org/r/20240902105656.1383858-22-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Support pre-trained dictionary param. lz4 doesn't mandate specific format
of the dictionary and even zstd --train can be used to train a dictionary
for lz4, according to [1].
TEST
====
*** lz4
/sys/block/zram0/mm_stat
1750654976 664188565 676864000 0 676864000 1 0 34288 34288
*** lz4 dict=/etc/lz4-dict-amd64
/sys/block/zram0/mm_stat
1750638592 619891141 632053760 0 632053760 1 0 34278 34278
*** lz4 level=5 dict=/etc/lz4-dict-amd64
/sys/block/zram0/mm_stat
1750638592 727174243 740810752 0 740810752 1 0 34437 34437
[1] https://github.com/lz4/lz4/issues/557
Link: https://lkml.kernel.org/r/20240902105656.1383858-21-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Immutable params never change once comp has been allocated and setup, so
we don't need to store multiple copies of them in each per-CPU backend
context. Move those to per-comp zcomp_params and pass it to backends
callbacks for requests execution. Basically, this means parameters
sharing between different contexts.
Also introduce two new backends callbacks: setup_params() and
release_params(). First, we need to validate params in a driver-specific
way; second, driver may want to allocate its specific representation of
the params which is needed to execute requests.
Link: https://lkml.kernel.org/r/20240902105656.1383858-20-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Keep run-time driver data (scratch buffers, etc.) in zcomp_ctx structure.
This structure is allocated per-CPU because drivers (backends) need to
modify its content during requests execution.
We will split mutable and immutable driver data, this is a preparation
path.
Link: https://lkml.kernel.org/r/20240902105656.1383858-19-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Encapsulate compression/decompression data in zcomp_req structure.
Link: https://lkml.kernel.org/r/20240902105656.1383858-18-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Handle dict=path algorithm param so that we can read a pre-trained
compression algorithm dictionary which we then pass to the backend
configuration.
Link: https://lkml.kernel.org/r/20240902105656.1383858-17-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This attribute is used to setup compression algorithms' parameters, so we
can tweak algorithms' characteristics. At this point only 'level' is
supported (to be extended in the future).
Each call sets up parameters for one particular algorithm, which should be
specified either by the algorithm's priority or algo name. This is
expected to be called after corresponding algorithm is selected via
comp_algorithm or recomp_algorithm.
echo "priority=0 level=1" > /sys/block/zram0/algorithm_params
or
echo "algo=zstd level=1" > /sys/block/zram0/algorithm_params
Link: https://lkml.kernel.org/r/20240902105656.1383858-16-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
zstd compression params depends on level, but are constant for a given
instance of zstd compression backend. Calculate once (during ctx
creation).
Link: https://lkml.kernel.org/r/20240902105656.1383858-15-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We will store a per-algorithm parameters there (compression level,
dictionary, dictionary size, etc.).
Link: https://lkml.kernel.org/r/20240902105656.1383858-14-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Make sure that backends array has anything apart from the sentinel NULL
value.
We also select LZO_BACKEND if none backends were selected.
Link: https://lkml.kernel.org/r/20240902105656.1383858-13-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
zram works with PAGE_SIZE buffers, so we always know exact size of the
source buffer and hence can pass estimated_src_size to zstd_get_params().
This hint on x86_64, for example, reduces the size of the work memory
buffer from 1303520 bytes down to 90080 bytes. Given that compression
streams are per-CPU that's quite some memory saving.
Link: https://lkml.kernel.org/r/20240902105656.1383858-10-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Moving to custom backends implementation gives us ability to have our own
minimalistic and extendable API, and algorithms tunings becomes possible.
The list of compression backends is empty at this point, we will add
backends in the followup patches.
Link: https://lkml.kernel.org/r/20240902105656.1383858-5-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
ZSTD_createCDict_advanced2() must ensure that
ZSTD_createCDict_advanced_internal() has successfully allocated cdict.
customMalloc() may be called under low memory condition and may be unable
to allocate workspace for cdict.
Link: https://lkml.kernel.org/r/20240902105656.1383858-4-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Nick Terrell <terrelln@fb.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This symbol is needed to enable lz4hc dictionary support.
Link: https://lkml.kernel.org/r/20240902105656.1383858-3-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Nick Terrell <terrelln@fb.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The maple tree flag of allocation tree is MT_FLAGS_ALLOC_RANGE.
Just correct it.
Link: https://lkml.kernel.org/r/20240809020115.31575-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
folio_alloc_noprof) wasn't calling the _noprof version, causing
allocations to be accounted here instead of to the caller
Link: https://lkml.kernel.org/r/20240901202459.4867-1-kent.overstreet@linux.dev
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This patch tries to cleanup some function description:
* function name mismatch
* parameter name mismatch
* parameter all end up with ':'
* not prefix '*' if parameter is a pointer
There is still some missing description of parameters, I didn't add them
since I am not sure the exact meaning.
Link: https://lkml.kernel.org/r/20240830220400.2007-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When page del from buddy and need expand, it will account free_pages in
zone's migratetype.
The current way is to subtract the page number of the current order when
deleting, and then add it back when expanding.
This is unnecessary, as when migrating the same type, we can directly
record the difference between the high-order pages and the expand added,
and then subtract it directly.
This patch merge that, only when del and expand done, then account
free_pages.
Link: https://lkml.kernel.org/r/20240826064048.187790-1-link@vivo.com
Signed-off-by: Huan Yang <link@vivo.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It was recently observed at [1] that during the folio unmapping stage of
migration, when the PTEs are cleared, a racing thread faulting on that
folio may increase the refcount of the folio, sleep on the folio lock (the
migration path has the lock), and migration ultimately fails when
asserting the actual refcount against the expected. Thereby, the
migration selftest fails on shared-anon mappings. The above enforces the
fact that migration is a best-effort service, therefore, it is wrong to
fail the test for just a single failure; hence, fail the test after 100
consecutive failures (where 100 is still a subjective choice). Note that,
this has no effect on the execution time of the test since that is
controlled by a timeout.
[1] https://lore.kernel.org/all/20240801081657.1386743-1-dev.jain@arm.com/
Link: https://lkml.kernel.org/r/20240830051609.4037834-1-dev.jain@arm.com
Signed-off-by: Dev Jain <dev.jain@arm.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@gentwo.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <yang@os.amperecomputing.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
list_head can be initialized automatically with LIST_HEAD() instead of
calling INIT_LIST_HEAD(). Here we can simplify the code.
Link: https://lkml.kernel.org/r/20240828041216.1222582-1-lihongbo22@huawei.com
Signed-off-by: Hongbo Li <lihongbo22@huawei.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If disabled, THPs faulted in or collapsed will not be added to
_deferred_list, and therefore won't be considered for splitting under
memory pressure if underused.
Link: https://lkml.kernel.org/r/20240830100438.3623486-7-usamaarif642@gmail.com
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Cc: Alexander Zhu <alexlzhu@fb.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nico Pache <npache@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuang Zhai <zhais@google.com>
Cc: Shuang Zhai <szhai2@cs.rochester.edu>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This is an attempt to mitigate the issue of running out of memory when THP
is always enabled. During runtime whenever a THP is being faulted in
(__do_huge_pmd_anonymous_page) or collapsed by khugepaged
(collapse_huge_page), the THP is added to _deferred_list. Whenever memory
reclaim happens in linux, the kernel runs the deferred_split shrinker
which goes through the _deferred_list.
If the folio was partially mapped, the shrinker attempts to split it. If
the folio is not partially mapped, the shrinker checks if the THP was
underused, i.e. how many of the base 4K pages of the entire THP were
zero-filled. If this number goes above a certain threshold (decided by
/sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_none), the
shrinker will attempt to split that THP. Then at remap time, the pages
that were zero-filled are mapped to the shared zeropage, hence saving
memory.
Link: https://lkml.kernel.org/r/20240830100438.3623486-6-usamaarif642@gmail.com
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Suggested-by: Rik van Riel <riel@surriel.com>
Co-authored-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexander Zhu <alexlzhu@fb.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nico Pache <npache@redhat.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuang Zhai <zhais@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Shuang Zhai <szhai2@cs.rochester.edu>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently folio->_deferred_list is used to keep track of partially_mapped
folios that are going to be split under memory pressure. In the next
patch, all THPs that are faulted in and collapsed by khugepaged are also
going to be tracked using _deferred_list.
This patch introduces a pageflag to be able to distinguish between
partially mapped folios and others in the deferred_list at split time in
deferred_split_scan. Its needed as __folio_remove_rmap decrements
_mapcount, _large_mapcount and _entire_mapcount, hence it won't be
possible to distinguish between partially mapped folios and others in
deferred_split_scan.
Eventhough it introduces an extra flag to track if the folio is partially
mapped, there is no functional change intended with this patch and the
flag is not useful in this patch itself, it will become useful in the next
patch when _deferred_list has non partially mapped folios.
Link: https://lkml.kernel.org/r/20240830100438.3623486-5-usamaarif642@gmail.com
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Cc: Alexander Zhu <alexlzhu@fb.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nico Pache <npache@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuang Zhai <zhais@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Shuang Zhai <szhai2@cs.rochester.edu>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When a THP is split, any subpage that is zero-filled will be mapped to the
shared zeropage, hence saving memory. Add selftest to verify this by
allocating zero-filled THP and comparing RssAnon before and after split.
Link: https://lkml.kernel.org/r/20240830100438.3623486-4-usamaarif642@gmail.com
Signed-off-by: Alexander Zhu <alexlzhu@fb.com>
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nico Pache <npache@redhat.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuang Zhai <zhais@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Shuang Zhai <szhai2@cs.rochester.edu>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>