Back in the 6.2-rc1 days, Eric Whitney reported a fstests regression in
ext4 against generic/454. The cause of this test failure was the
unfortunate combination of setting an xattr name containing UTF8 encoded
emoji, an xattr hash function that accepted a char pointer with no
explicit signedness, signed type extension of those chars to an int, and
the 6.2 build tools maintainers deciding to mandate -funsigned-char
across the board. As a result, the ondisk extended attribute structure
written out by 6.1 and 6.2 were not the same.
This discrepancy, in fact, had been noticeable if a filesystem with such
an xattr were moved between any two architectures that don't employ the
same signedness of a raw "char" declaration. The only reason anyone
noticed is that x86 gcc defaults to signed, and no such -funsigned-char
update was made to e2fsprogs, so e2fsck immediately started reporting
data corruption.
After a day and a half of discussing how to handle this use case (xattrs
with bit 7 set anywhere in the name) without breaking existing users,
Linus merged his own patch and didn't tell the maintainer. None of the
ext4 developers realized this until AUTOSEL announced that the commit
had been backported to stable.
In the end, this problem could have been detected much earlier if there
had been any useful tests of hash function(s) in use inside ext4 to make
sure that they always produce the same outputs given the same inputs.
The XFS dirent/xattr name hash takes a uint8_t*, so I don't think it's
vulnerable to this problem. However, let's avoid all this drama by
adding our own self test to check that the da hash produces the same
outputs for a static pile of inputs on various platforms. This enables
us to fix any breakage that may result in a controlled fashion. The
buffer and test data are identical to the patches submitted to xfsprogs.
Link: https://lore.kernel.org/linux-ext4/Y8bpkm3jA3bDm3eL@debian-BULLSEYE-live-builder-AMD64/
Link: https://lore.kernel.org/linux-xfs/ZBUKCRR7xvIqPrpX@destitution/T/#md38272cc684e2c0d61494435ccbb91f022e8dee4
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
We currently don't have any flags or operational state in the
xfs_perag except for the pagf_init and pagi_init flags. And the
agflreset flag. Oh, there's also the pagf_metadata and pagi_inodeok
flags, too.
For controlling per-ag operations, we are going to need some atomic
state flags. Hence add an opstate field similar to what we already
have in the mount and log, and convert all these state flags across
to atomic bit operations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
This is currently a spinlock lock protected rotor which can be
implemented with a single atomic operation. Change it to be more
efficient and get rid of the m_agirotor_lock. Noticed while
converting the inode allocation AG selection loop to active perag
references.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
As of now only device names are printed out over __xfs_printk().
The device names are not persistent across reboots which in case
of searching for origin of corruption brings another task to properly
identify the devices. This patch add XFS UUID upon every mount/umount
event which will make the identification much easier.
Signed-off-by: Lukas Herbolt <lukas@herbolt.com>
[sandeen: rebase onto current upstream kernel]
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Refactor all the open-coded sizeof logic for EFI/EFD log item and log
format structures into common helper functions whose names reflect the
struct names.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Starting in 6.1, CONFIG_FORTIFY_SOURCE checks the length parameter of
memcpy. Since we're already fixing problems with BUI item copying, we
should fix it everything else.
An extra difficulty here is that the ef[id]_extents arrays are declared
as single-element arrays. This is not the convention for flex arrays in
the modern kernel, and it causes all manner of problems with static
checking tools, since they often cannot tell the difference between a
single element array and a flex array.
So for starters, change those array[1] declarations to array[]
declarations to signal that they are proper flex arrays and adjust all
the "size-1" expressions to fit the new declaration style.
Next, refactor the xfs_efi_copy_format function to handle the copying of
the head and the flex array members separately. While we're at it, fix
a minor validation deficiency in the recovery function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Currently the I_DIRTY_TIME will never get set if the inode already has
I_DIRTY_INODE with assumption that it supersedes I_DIRTY_TIME. That's
true, however ext4 will only update the on-disk inode in
->dirty_inode(), not on actual writeback. As a result if the inode
already has I_DIRTY_INODE state by the time we get to
__mark_inode_dirty() only with I_DIRTY_TIME, the time was already filled
into on-disk inode and will not get updated until the next I_DIRTY_INODE
update, which might never come if we crash or get a power failure.
The problem can be reproduced on ext4 by running xfstest generic/622
with -o iversion mount option.
Fix it by allowing I_DIRTY_TIME to be set even if the inode already has
I_DIRTY_INODE. Also make sure that the case is properly handled in
writeback_single_inode() as well. Additionally changes in
xfs_fs_dirty_inode() was made to accommodate for I_DIRTY_TIME in flag.
Thanks Jan Kara for suggestions on how to make this work properly.
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20220825100657.44217-1-lczerner@redhat.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve latency
and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA
jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/
SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE=
=w/UH
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
Failure notification is not supported on partitions. So, when we mount a
reflink enabled xfs on a partition with dax option, let it fail with
-EINVAL code.
Link: https://lkml.kernel.org/r/20220609143435.393724-1-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Darrick and Sachin Sant reported that xfs/435 and xfs/436 would
report an non-empty xfs_buf slab on module remove. This isn't easily
to reproduce, but is clearly a side effect of converting the buffer
caceh to RUC freeing and lockless lookups. Sachin bisected and
Darrick hit it when testing the patchset directly.
Turns out that the xfs_buf slab is not destroyed when all the other
XFS slab caches are destroyed. Instead, it's got it's own little
wrapper function that gets called separately, and so it doesn't have
an rcu_barrier() call in it that is needed to drain all the rcu
callbacks before the slab is destroyed.
Fix it by removing the xfs_buf_init/terminate wrappers that just
allocate and destroy the xfs_buf slab, and move them to the same
place that all the other slab caches are set up and destroyed.
Reported-and-tested-by: Sachin Sant <sachinp@linux.ibm.com>
Fixes: 298f34224506 ("xfs: lockless buffer lookup")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
To facilitate future improvements in inode logging and improving
inode cluster buffer locking order consistency, we need a new
mechanism for defering inode cluster buffer modifications during
unlinked list modifications.
The unlinked inode list buffer locking is complex. The unlinked
list is unordered - we add to the tail, remove from where-ever the
inode is in the list. Hence we might need to lock two inode buffers
here (previous inode in list and the one being removed). While we
can order the locking of these buffers correctly within the confines
of the unlinked list, there may be other inodes that need buffer
locking in the same transaction. e.g. O_TMPFILE being linked into a
directory also modifies the directory inode.
Hence we need a mechanism for defering unlinked inode list updates
until a point where we know that all modifications have been made
and all that remains is to lock and modify the cluster buffers.
We can do this by first observing that we serialise unlinked list
modifications by holding the AGI buffer lock. IOWs, the AGI is going
to be locked until the transaction commits any time we modify the
unlinked list. Hence it doesn't matter when in the unlink
transactions that we actually load, lock and modify the inode
cluster buffer.
We add an in-memory unlinked inode log item to defer the inode
cluster buffer update to transaction commit time where it can be
ordered with all the other inode cluster operations that need to be
done. Essentially all we need to do is record the inodes that need
to have their unlinked list pointer updated in a new log item that
we attached to the transaction.
This log item exists purely for the purpose of delaying the update
of the unlinked list pointer until the inode cluster buffer can be
locked in the correct order around the other inode cluster buffers.
It plays no part in the actual commit, and there's no change to
anything that is written to the log. i.e. the inode cluster buffers
still have to be fully logged here (not just ordered) as log
recovery depedends on this to replay mods to the unlinked inode
list.
Hence if we add a "precommit" hook into xfs_trans_commit()
to run a "precommit" operation on these iunlink log items, we can
delay the locking, modification and logging of the inode cluster
buffer until after all other modifications have been made. The
precommit hook reuires us to sort the items that are going to be run
so that we can lock precommit items in the correct order as we
perform the modifications they describe.
To make this unlinked inode list processing simpler and easier to
implement as a log item, we need to change the way we track the
unlinked list in memory. Starting from the observation that an inode
on the unlinked list is pinned in memory by the VFS, we can use the
xfs_inode itself to track the unlinked list. To do this efficiently,
we want the unlinked list to be a double linked list. The problem
here is that we need a list per AGI unlinked list, and there are 64
of these per AGI. The approach taken in this patchset is to shadow
the AGI unlinked list heads in the perag, and link inodes by agino,
hence requiring only 8 extra bytes per inode to track this state.
We can then use the agino pointers for lockless inode cache lookups
to retreive the inode. The aginos in the inode are modified only
under the AGI lock, just like the cluster buffer pointers, so we
don't need any extra locking here. The i_next_unlinked field tracks
the on-disk value of the unlinked list, and the i_prev_unlinked is a
purely in-memory pointer that enables us to efficiently remove
inodes from the middle of the list.
This results in moving a lot of the unlink modification work into
the precommit operations on the unlink log item. Tracking all the
unlinked inodes in the inodes themselves also gets rid of the
unlinked list reference hash table that is used to track this back
pointer relationship. This greatly simplifies the the unlinked list
modification code, and removes memory allocations in this hot path
to track back pointers. This, overall, slightly reduces the CPU
overhead of the unlink path.
The result of this log item means that we move all the actual
manipulation of objects to be logged out of the iunlink path and
into the iunlink item. This allows for future optimisation of this
mechanism without needing changes to high level unlink path, as
well as making the unlink lock ordering predictable and synchronised
with other operations that may require inode cluster locking.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmLPvZAUHGRhdmlkQGZy
b21vcmJpdC5jb20ACgkQregpR/R1+h2CDBAAj9QH4/XIe8JIx/mKgAGzcNNwQxu8
geBqb5S2ri0oB22pRXKc/3zArw/8zPwcgZF83ChkFrQ6tLn4JGkEEuvIKr3b8k50
2AEghYf8dqCaXRpkdvIGjJtdK54MFZIHv9TYRwHVzBp3WLtrz7uHmKeRf2qeSBMI
DLurzVIbcocMptvHxrZZCpf1ajuVdovXtuw8ExiORZZKLOeF+3xBGztenkfh2BTO
8Kh8qJVSNN41XQ8h87PWyQtmah6JouqURXXGERJcgLbr80pTSw2EBihJvmXUmn8y
qnoT27TCPAMOEDTWe+SHzLOVRLvhN+at/lFWbvas6PwOvDGAwQQtZkv/QyLTSgqD
6Zg9xJeeSgHhHP2kCeLlKmvW1dRptcUzhCWOrQ9Ry+WZnKK5ZenevkaAXAva6ucS
NXwIU1DnWfJ51SHIYQiQIci2g+vF+pnJRQq1DtYUuwtBSWfsmw1uquNZodgbA9Ue
k6hfk4qVua63k+vXsd5gVdCHT+Liw+1ldTInl2GNhT/riNzewO0HY3zmc1aZQyMM
mymHXKVcQJbLpJvwqB5SXq8a37fbpoQDYlycptSF/YxxBhiCKKWuc6q7Tl6Y9VSS
qpSHvh+MkJcP8PYtPjNUcJ9yeXhYJgkv1KK47zkIKzOD9a+zh4SIrfiBUflZbpQq
M9ubXGHVmFqS4Nk=
=59M0
-----END PGP SIGNATURE-----
Merge tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB
xfs: introduce in-memory inode unlink log items
To facilitate future improvements in inode logging and improving
inode cluster buffer locking order consistency, we need a new
mechanism for defering inode cluster buffer modifications during
unlinked list modifications.
The unlinked inode list buffer locking is complex. The unlinked
list is unordered - we add to the tail, remove from where-ever the
inode is in the list. Hence we might need to lock two inode buffers
here (previous inode in list and the one being removed). While we
can order the locking of these buffers correctly within the confines
of the unlinked list, there may be other inodes that need buffer
locking in the same transaction. e.g. O_TMPFILE being linked into a
directory also modifies the directory inode.
Hence we need a mechanism for defering unlinked inode list updates
until a point where we know that all modifications have been made
and all that remains is to lock and modify the cluster buffers.
We can do this by first observing that we serialise unlinked list
modifications by holding the AGI buffer lock. IOWs, the AGI is going
to be locked until the transaction commits any time we modify the
unlinked list. Hence it doesn't matter when in the unlink
transactions that we actually load, lock and modify the inode
cluster buffer.
We add an in-memory unlinked inode log item to defer the inode
cluster buffer update to transaction commit time where it can be
ordered with all the other inode cluster operations that need to be
done. Essentially all we need to do is record the inodes that need
to have their unlinked list pointer updated in a new log item that
we attached to the transaction.
This log item exists purely for the purpose of delaying the update
of the unlinked list pointer until the inode cluster buffer can be
locked in the correct order around the other inode cluster buffers.
It plays no part in the actual commit, and there's no change to
anything that is written to the log. i.e. the inode cluster buffers
still have to be fully logged here (not just ordered) as log
recovery depedends on this to replay mods to the unlinked inode
list.
Hence if we add a "precommit" hook into xfs_trans_commit()
to run a "precommit" operation on these iunlink log items, we can
delay the locking, modification and logging of the inode cluster
buffer until after all other modifications have been made. The
precommit hook reuires us to sort the items that are going to be run
so that we can lock precommit items in the correct order as we
perform the modifications they describe.
To make this unlinked inode list processing simpler and easier to
implement as a log item, we need to change the way we track the
unlinked list in memory. Starting from the observation that an inode
on the unlinked list is pinned in memory by the VFS, we can use the
xfs_inode itself to track the unlinked list. To do this efficiently,
we want the unlinked list to be a double linked list. The problem
here is that we need a list per AGI unlinked list, and there are 64
of these per AGI. The approach taken in this patchset is to shadow
the AGI unlinked list heads in the perag, and link inodes by agino,
hence requiring only 8 extra bytes per inode to track this state.
We can then use the agino pointers for lockless inode cache lookups
to retreive the inode. The aginos in the inode are modified only
under the AGI lock, just like the cluster buffer pointers, so we
don't need any extra locking here. The i_next_unlinked field tracks
the on-disk value of the unlinked list, and the i_prev_unlinked is a
purely in-memory pointer that enables us to efficiently remove
inodes from the middle of the list.
This results in moving a lot of the unlink modification work into
the precommit operations on the unlink log item. Tracking all the
unlinked inodes in the inodes themselves also gets rid of the
unlinked list reference hash table that is used to track this back
pointer relationship. This greatly simplifies the the unlinked list
modification code, and removes memory allocations in this hot path
to track back pointers. This, overall, slightly reduces the CPU
overhead of the unlink path.
The result of this log item means that we move all the actual
manipulation of objects to be logged out of the iunlink path and
into the iunlink item. This allows for future optimisation of this
mechanism without needing changes to high level unlink path, as
well as making the unlink lock ordering predictable and synchronised
with other operations that may require inode cluster locking.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: add in-memory iunlink log item
xfs: add log item precommit operation
xfs: combine iunlink inode update functions
xfs: clean up xfs_iunlink_update_inode()
xfs: double link the unlinked inode list
xfs: introduce xfs_iunlink_lookup
xfs: refactor xlog_recover_process_iunlinks()
xfs: track the iunlink list pointer in the xfs_inode
xfs: factor the xfs_iunlink functions
xfs: flush inode gc workqueue before clearing agi bucket
Now that we have a clean operation to update the di_next_unlinked
field of inode cluster buffers, we can easily defer this operation
to transaction commit time so we can order the inode cluster buffer
locking consistently.
To do this, we introduce a new in-memory log item to track the
unlinked list item modification that we are going to make. This
follows the same observations as the in-memory double linked list
used to track unlinked inodes in that the inodes on the list are
pinned in memory and cannot go away, and hence we can simply
reference them for the duration of the transaction without needing
to take active references or pin them or look them up.
This allows us to pass the xfs_inode to the transaction commit code
along with the modification to be made, and then order the logged
modifications via the ->iop_sort and ->iop_precommit operations
for the new log item type. As this is an in-memory log item, it
doesn't have formatting, CIL or AIL operational hooks - it exists
purely to run the inode unlink modifications and is then removed
from the transaction item list and freed once the precommit
operation has run.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The CIL push lock is highly contended on larger machines, becoming a
hard bottleneck that about 700,000 transaction commits/s on >16p
machines. To address this, start moving the CIL tracking
infrastructure to utilise per-CPU structures.
We need to track the space used, the amount of log reservation space
reserved to write the CIL, the log items in the CIL and the busy
extents that need to be completed by the CIL commit. This requires
a couple of per-cpu counters, an unordered per-cpu list and a
globally ordered per-cpu list.
Create a per-cpu structure to hold these and all the management
interfaces needed, as well as the hooks to handle hotplug CPUs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The current blocking mechanism for pushing the inodegc queue out to
disk can result in systems becoming unusable when there is a long
running inodegc operation. This is because the statfs()
implementation currently issues a blocking flush of the inodegc
queue and a significant number of common system utilities will call
statfs() to discover something about the underlying filesystem.
This can result in userspace operations getting stuck on inodegc
progress, and when trying to remove a heavily reflinked file on slow
storage with a full journal, this can result in delays measuring in
hours.
Avoid this problem by adding "push" function that expedites the
flushing of the inodegc queue, but doesn't wait for it to complete.
Convert xfs_fs_statfs() and xfs_qm_scall_getquota() to use this
mechanism so they don't block but still ensure that queued
operations are expedited.
Fixes: ab23a7768739 ("xfs: per-cpu deferred inode inactivation queues")
Reported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: fix _getquota_next to use _inodegc_push too]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Currently inodegc work can sit queued on the per-cpu queue until
the workqueue is either flushed of the queue reaches a depth that
triggers work queuing (and later throttling). This means that we
could queue work that waits for a long time for some other event to
trigger flushing.
Hence instead of just queueing work at a specific depth, use a
delayed work that queues the work at a bound time. We can still
schedule the work immediately at a given depth, but we no long need
to worry about leaving a number of items on the list that won't get
processed until external events prevail.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This update includes:
- fix refcount leak in xfs_ifree()
- fix xfs_buf_cancel structure leaks in log recovery
- fix dquot leak after failed quota check
- fix a couple of problematic ASSERTS
- fix small aim7 perf regression in from new btree sibling
validation
- clean up log incompat feature marking for new logged attribute
feature
- disallow logged attributes on legacy V4 filesystem formats.
- fix da state leak when freeing attr intents
- improve validation of the attr log items in recovery
- use slab caches for commonly used attr structures
- fix leaks of attr name/value buffer and reduce copying overhead
during intent logging
- remove some dead debug code from log recovery
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmKX4ZUUHGRhdmlkQGZy
b21vcmJpdC5jb20ACgkQregpR/R1+h06gQ//X9786aR6rfeMprvrWLqY0Ui6mGz4
qI7s1BhsEyh6VMMzjVa0AzjX7R565ISTr4SdxLNewdPPAvro+avd2K4t+FdfFTG0
9cA4kgC5MoURljHZmflYB8EKGsLXQ2fuzDmih6Ozu4pmKhKc5QU3XpsLn2HzLded
KrNc08GX2JKvBxjdImk0pTxUq2xZ5CPWvpjdrfxnN2bNPHdJJtqBh/lhX1r73bqA
Tz0RLwUqbL7fUZfIeslDlu2rU/MlZDXhT7C81y6tnyg7ObNN35NXuZX/UfQKFIWR
pXUiPZTurso9Z7g7leEJ2Uco7Aeivs36mqes60Mv4YvN5ilv/Ja07kFZlfdaYkhJ
YYSeIod1QLH3aOJOImPjYpOFOjyHrXmdG5KS5iLqADokywCPfgDMxCVWKeKxtLCC
/1jBEQnKDWdZtAHup+vQ4PC1YP0rsLhXfNQNjYau8pwhEaN8nl2MOWMmQOLMyoES
VAsBV9zrCa60sPT5IdYgnkRG3C+QV7nwLoLluguS+XvWtBgB0zxqjSZG5jFYYgCr
v8VfW5esnvs+hF8YD3RmWpKxnoTuCXaftbc7ZdxneKZJyDPzWqr81zySCeBVCbt/
wWrkl5E3Mdhq+LHDcbnrRZ63W377aRiNAh5D+aIeJUm0HZoEP+VLqBRVnWOuv/LC
AfIuZcQi24PIZPw=
=OLD4
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.19-for-linus-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull more xfs updates from Dave Chinner:
"This update is largely bug fixes and cleanups for all the code merged
in the first pull request. The majority of them are to the new logged
attribute code, but there are also a couple of fixes for other log
recovery and memory leaks that have recently been found.
Summary:
- fix refcount leak in xfs_ifree()
- fix xfs_buf_cancel structure leaks in log recovery
- fix dquot leak after failed quota check
- fix a couple of problematic ASSERTS
- fix small aim7 perf regression in from new btree sibling validation
- clean up log incompat feature marking for new logged attribute
feature
- disallow logged attributes on legacy V4 filesystem formats.
- fix da state leak when freeing attr intents
- improve validation of the attr log items in recovery
- use slab caches for commonly used attr structures
- fix leaks of attr name/value buffer and reduce copying overhead
during intent logging
- remove some dead debug code from log recovery"
* tag 'xfs-5.19-for-linus-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (33 commits)
xfs: fix xfs_ifree() error handling to not leak perag ref
xfs: move xfs_attr_use_log_assist usage out of libxfs
xfs: move xfs_attr_use_log_assist out of xfs_log.c
xfs: warn about LARP once per mount
xfs: implement per-mount warnings for scrub and shrink usage
xfs: don't log every time we clear the log incompat flags
xfs: convert buf_cancel_table allocation to kmalloc_array
xfs: don't leak xfs_buf_cancel structures when recovery fails
xfs: refactor buffer cancellation table allocation
xfs: don't leak btree cursor when insrec fails after a split
xfs: purge dquots after inode walk fails during quotacheck
xfs: assert in xfs_btree_del_cursor should take into account error
xfs: don't assert fail on perag references on teardown
xfs: avoid unnecessary runtime sibling pointer endian conversions
xfs: share xattr name and value buffers when logging xattr updates
xfs: do not use logged xattr updates on V4 filesystems
xfs: Remove duplicate include
xfs: reduce IOCB_NOWAIT judgment for retry exclusive unaligned DIO
xfs: Remove dead code
xfs: fix typo in comment
...
The LARP patchset added an awkward coupling point between libxfs and
what would be libxlog, if the XFS log were actually its own library.
Move the code that enables logged xattr updates out of "lib"xlog and into
xfs_xattr.c so that it no longer has to know about xlog_* functions.
While we're at it, give xfs_xattr.c its own header file.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This update includes:
- support for printk message indexing.
- large extent counts to provide support for up to 2^47 data extents and 2^32
attribute extents, allowing us to scale beyond 4 billion data extents
to billions of xattrs per inode.
- conversion of various flags fields to be consistently declared as
unsigned bit fields.
- improvements to realtime extent accounting and converts them to per-cpu
counters to match all the other block and inode accounting.
- reworks core log formatting code to reduce iterations, have a shorter, cleaner
fast path and generally be easier to understand and maintain.
- improvements to rmap btree searches that reduce overhead by up
to 30% resulting in xfs_scrub runtime reductions of 15%.
- improvements to reflink that remove the size limitations in remapping operations
and greatly reduce the size of transaction reservations.
- reworks the minimum log size calculations to allow us to change transaction
reservations without changing the minimum supported log size.
- removal of quota warning support as it has never been used on Linux.
- intent whiteouts to allow us to cancel intents that are completed entirely
in memory rather than having use CPU and disk bandwidth formatting and writing
them into the journal when it is not necessary. This makes rmap, reflink and
extent freeing slightly more efficient, but provides massive improvements
for....
- Logged Attribute Replay feature support. This is a fundamental change to the
way we modify attributes, laying the foundation for future integration of
attribute modifications as part of other atomic transactional operations the
filesystem performs.
- Lots of cleanups and fixes for the logged attribute replay functionality.
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmKO2lIUHGRhdmlkQGZy
b21vcmJpdC5jb20ACgkQregpR/R1+h0cYRAAutdpA5BZzfgpqnRbmjkOzCmhp6xj
mSB6A8iBvlhtfY8p0IFFSbTT6jnf+EWfnsjy/jopojhhz5vCqYKfhGM6P9KBHxfz
amxfmWZd3XWcnc8Ay9hcjLIa7QLQr8PXh3zJhjiYm8PvsrtNzsiEKrh6lxG6pe0w
vQiq062ColCdN5DcuFVtfScsynCrzZCbUWFGm3y27NF00JpLdm8aBO57/ZaSFVdA
UKKsogoPUNkRIbmf81IjTWTx2f0syNQyjrK+CX0sxGb6nzcoU/dT8qQ5t/U5gPTc
cGpHE6vyBLdNA6BlnrFBoVAQ/M8n+ixnYy7XytZuTL5Izo80N+Vo+U5d1nLvC+fn
ZLKAxbtpudqjy2O393Nv0cqEkT/xPUy2x3IvNL1rKXlQmNWt+KFGuiNrE+y2W4WT
1bfbnmUJi0Knde4MD43iImwwaocXXdtVkED9f68aknZLCihqGEoi1EmU1Sr4+Wbj
D8lXZe4BZfGVCHoA2sDtgJsATAG5rdBu/Y6lJcEfUSblvwF2Ufh0r9ehieDrnGmq
asCTuXmIX/AzUQDa7JjgAzo2sgdhI+nOIPWJeKDVHRdpFjq+7xV573Iqa77Brik9
DNxAMATh5bZc+9paDib8Za55yE7NJO1cM/UJkwwqn3rvbV5hYki0XZvlKZQsJGig
ur5otF9Sdz+AcmE=
=yUEM
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.19-for-linus' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Dave Chinner:
"This is a big update with lots of new code. The summary below them
all, so I'll just touch on teh higlights. The two main new features
are Large Extent Counts and Logged Attribute Replay - these are two
new foundational features that we are building more complex future
features on top of.
For upcoming functionality, we need to be able to store hundreds of
millions of xattrs per inode. The Large Extent Count feature removes
the limits that prevent this scale of xattr storage, and while we were
modifying the on disk extent count format we also increased the number
of data extents we support per inode from 2^32 to 2^47.
We also need to be able to modify xattrs as part of larger atomic
transactions rather than as standalone transactions. The Logged
Attribute Replay feature introduces the infrastructure that allows us
to use intents to record the attribute modifications in the journal
before we start them, hence allowing other atomic transactions to log
attribute modification intents and then defer the actual modification
to later. If we then crash, log recovery then guarantees that the
attribute is replayed in the context of the atomic transaction that
logged the intent.
A significant chunk of the commits in this merge are for the base
attribute replay functionality along with fixes, improvements and
cleanups related to this new functioanlity. Allison deserves a big
round of thanks for her ongoing work to get this functionality into
XFS.
There are also many other smaller changes and improvements, so overall
this is one of the bigger XFS merge requests in some time.
I will be following up next week with another smaller pull request -
we already have another round of fixes and improvements to the logged
attribute replay functionality just about ready to go. They'll soak
and test over the next week, and I'll send a pull request for them
near the end of the merge window.
Summary:
- support for printk message indexing.
- large extent counts to provide support for up to 2^47 data extents
and 2^32 attribute extents, allowing us to scale beyond 4 billion
data extents to billions of xattrs per inode.
- conversion of various flags fields to be consistently declared as
unsigned bit fields.
- improvements to realtime extent accounting and converts them to
per-cpu counters to match all the other block and inode accounting.
- reworks core log formatting code to reduce iterations, have a
shorter, cleaner fast path and generally be easier to understand
and maintain.
- improvements to rmap btree searches that reduce overhead by up to
30% resulting in xfs_scrub runtime reductions of 15%.
- improvements to reflink that remove the size limitations in
remapping operations and greatly reduce the size of transaction
reservations.
- reworks the minimum log size calculations to allow us to change
transaction reservations without changing the minimum supported log
size.
- removal of quota warning support as it has never been used on
Linux.
- intent whiteouts to allow us to cancel intents that are completed
entirely in memory rather than having use CPU and disk bandwidth
formatting and writing them into the journal when it is not
necessary. This makes rmap, reflink and extent freeing slightly
more efficient, but provides massive improvements for....
- Logged Attribute Replay feature support. This is a fundamental
change to the way we modify attributes, laying the foundation for
future integration of attribute modifications as part of other
atomic transactional operations the filesystem performs.
- Lots of cleanups and fixes for the logged attribute replay
functionality"
* tag 'xfs-5.19-for-linus' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (124 commits)
xfs: can't use kmem_zalloc() for attribute buffers
xfs: detect empty attr leaf blocks in xfs_attr3_leaf_verify
xfs: ATTR_REPLACE algorithm with LARP enabled needs rework
xfs: use XFS_DA_OP flags in deferred attr ops
xfs: remove xfs_attri_remove_iter
xfs: switch attr remove to xfs_attri_set_iter
xfs: introduce attr remove initial states into xfs_attr_set_iter
xfs: xfs_attr_set_iter() does not need to return EAGAIN
xfs: clean up final attr removal in xfs_attr_set_iter
xfs: remote xattr removal in xfs_attr_set_iter() is conditional
xfs: XFS_DAS_LEAF_REPLACE state only needed if !LARP
xfs: split remote attr setting out from replace path
xfs: consolidate leaf/node states in xfs_attr_set_iter
xfs: kill XFS_DAC_LEAF_ADDNAME_INIT
xfs: separate out initial attr_set states
xfs: don't set quota warning values
xfs: remove warning counters from struct xfs_dquot_res
xfs: remove quota warning limit from struct xfs_quota_limits
xfs: rework deferred attribute operation setup
xfs: make xattri_leaf_bp more useful
...
Initialize and destroy the xattr log item caches in the same places that
we do all the other log item caches.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs: Large extent counters
The commit xfs: fix inode fork extent count overflow
(3f8a4f1d876d3e3e49e50b0396eaffcc4ba71b08) mentions that 10 billion
data fork extents should be possible to create. However the
corresponding on-disk field has a signed 32-bit type. Hence this
patchset extends the per-inode data fork extent counter to 64 bits
(out of which 48 bits are used to store the extent count).
Also, XFS has an attribute fork extent counter which is 16 bits
wide. A workload that,
1. Creates 1 million 255-byte sized xattrs,
2. Deletes 50% of these xattrs in an alternating manner,
3. Tries to insert 400,000 new 255-byte sized xattrs
causes the xattr extent counter to overflow.
Dave tells me that there are instances where a single file has more
than 100 million hardlinks. With parent pointers being stored in
xattrs, we will overflow the signed 16-bits wide attribute extent
counter when large number of hardlinks are created. Hence this
patchset extends the on-disk field to 32-bits.
The following changes are made to accomplish this,
1. A 64-bit inode field is carved out of existing di_pad and
di_flushiter fields to hold the 64-bit data fork extent counter.
2. The existing 32-bit inode data fork extent counter will be used to
hold the attribute fork extent counter.
3. A new incompat superblock flag to prevent older kernels from mounting
the filesystem.
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Just use a non-zero max_discard_sectors as an indicator for discard
support, similar to what is done for write zeroes.
The only places where needs special attention is the RAID5 driver,
which must clear discard support for security reasons by default,
even if the default stacking rules would allow for it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> [drbd]
Acked-by: Jan Höppner <hoeppner@linux.ibm.com> [s390]
Acked-by: Coly Li <colyli@suse.de> [bcache]
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220415045258.199825-25-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This commit enables XFS module to work with fs instances having 64-bit
per-inode extent counters by adding XFS_SB_FEAT_INCOMPAT_NREXT64 flag to the
list of supported incompat feature flags.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
As mentioned in the previous commit, the kernel misuses sb_frextents in
the incore mount to reflect both incore reservations made by running
transactions as well as the actual count of free rt extents on disk.
This results in the superblock being written to the log with an
underestimate of the number of rt extents that are marked free in the
rtbitmap.
Teaching XFS to recompute frextents after log recovery avoids
operational problems in the current mount, but it doesn't solve the
problem of us writing undercounted frextents which are then recovered by
an older kernel that doesn't have that fix.
Create an incore percpu counter to mirror the ondisk frextents. This
new counter will track transaction reservations and the only time we
will touch the incore super counter (i.e the one that gets logged) is
when those transactions commit updates to the rt bitmap. This is in
contrast to the lazysbcount counters (e.g. fdblocks), where we know that
log recovery will always fix any incorrect counter that we log.
As a bonus, we only take m_sb_lock at transaction commit time.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
On a modern filesystem, we don't allow userspace to allocate blocks for
data storage from the per-AG space reservations, the user-controlled
reservation pool that prevents ENOSPC in the middle of internal
operations, or the internal per-AG set-aside that prevents unwanted
filesystem shutdowns due to ENOSPC during a bmap btree split.
Since we now consider freespace btree blocks as unavailable for
allocation for data storage, we shouldn't report those blocks via statfs
either. This makes the numbers that we return via the statfs f_bavail
and f_bfree fields a more conservative estimate of actual free space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
- Only call sync_filesystem when we're remounting the filesystem
readonly readonly, and actually check its return value.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmIEnhUACgkQ+H93GTRK
tOsn7g//e3R/lqpkx6jJtg6SqiC1KiI9euwD0wBdIvrCWSJZ6IdjOSvfRRG13vN0
S1spU0joiLLlVhzLIQdysgZkRub57P0mRmq3zVpHYxMOWKBvPH1OmZtdu83HOiAv
/zjy3tNFc/1ZaqHudAZv3+4780qMZtQTmL7DbgLnvFspCBf4PdBlT0d7Wbf982w8
dMWF7Pla8DhLVFbMsGdyXlnGROz+pw3jofVwY9P6f+PaY37mo+lZu65GrTlNecnc
QfTyX45VAWFO/XZtXm7pXCr8211eK2SnrOFZXZH9u3qxSD5vo1NWf9KPKVkYxc8/
7icz+Yp5t61HQg3o0z7cNAQZp7CQl0BWz6gp2YXMWHS3ZJMnd6H4zTDBdV2MSA5/
alT4kcwncRVcmHtFET7JAsnQkWNeREBqhqCRoAf8hW8uxpjkXw6sPop7+hbZtoJw
VAp1TxbEMbPGTZb76Kw4nZt1eZ3SyJOl6ByzsJMxekEFiMYVh4yxO+a3Q6KNOkMM
O62JpzdE1EeFgV7qmoZ8QzCZuD7z7KC99iv5QtyacFITCqv5y0h/RLGCsOwJ0EMc
fJGKN7uQOZrBIJYInx53S7fCYGGMm0+HUUXMUatBe4RK3dADyqapLzQb0tCGamAf
NQra6NotwfNq8SN+Sn17PJ1KifSRKfw6l7Q+6pt9LA2eVbr2jV4=
=6ODm
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.17-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs fixes from Darrick Wong:
"Nothing exciting, just more fixes for not returning sync_filesystem
error values (and eliding it when it's not necessary).
Summary:
- Only call sync_filesystem when we're remounting the filesystem
readonly readonly, and actually check its return value"
* tag 'xfs-5.17-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: only bother with sync_filesystem during readonly remount
In commit 02b9984d6408, we pushed a sync_filesystem() call from the VFS
into xfs_fs_remount. The only time that we ever need to push dirty file
data or metadata to disk for a remount is if we're remounting the
filesystem read only, so this really could be moved to xfs_remount_ro.
Once we've moved the call site, actually check the return value from
sync_filesystem.
Fixes: 02b9984d6408 ("fs: push sync_filesystem() down to the file system's remount_fs()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that the VFS will do something with the return values from
->sync_fs, make ours pass on error codes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian Brauner <brauner@kernel.org>
- Simplify the dax_operations API
- Eliminate bdev_dax_pgoff() in favor of the filesystem maintaining
and applying a partition offset to all its DAX iomap operations.
- Remove wrappers and device-mapper stacked callbacks for
->copy_from_iter() and ->copy_to_iter() in favor of moving
block_device relative offset responsibility to the
dax_direct_access() caller.
- Remove the need for an @bdev in filesystem-DAX infrastructure
- Remove unused uio helpers copy_from_iter_flushcache() and
copy_mc_to_iter() as only the non-check_copy_size() versions are
used for DAX.
- Prepare XFS for the pending (next merge window) DAX+reflink support
- Remove deprecated DEV_DAX_PMEM_COMPAT support
- Cleanup a straggling misuse of the GUID api
Tags offered after the branch was cut:
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Link: https://lore.kernel.org/r/Ydb/3P+8nvjCjYfO@redhat.com
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCYd3dTAAKCRDfioYZHlFs
Z//UAP9zetoTE+O7zJG7CXja4jSopSadbdbh6QKSXaqfKBPvQQD+N4US3wA2bGv8
f/qCY62j2Hj3hUTGHs9RvTyw3JsSYAA=
=QvDs
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull dax and libnvdimm updates from Dan Williams:
"The bulk of this is a rework of the dax_operations API after
discovering the obstacles it posed to the work-in-progress DAX+reflink
support for XFS and other copy-on-write filesystem mechanics.
Primarily the need to plumb a block_device through the API to handle
partition offsets was a sticking point and Christoph untangled that
dependency in addition to other cleanups to make landing the
DAX+reflink support easier.
The DAX_PMEM_COMPAT option has been around for 4 years and not only
are distributions shipping userspace that understand the current
configuration API, but some are not even bothering to turn this option
on anymore, so it seems a good time to remove it per the deprecation
schedule. Recall that this was added after the device-dax subsystem
moved from /sys/class/dax to /sys/bus/dax for its sysfs organization.
All recent functionality depends on /sys/bus/dax.
Some other miscellaneous cleanups and reflink prep patches are
included as well.
Summary:
- Simplify the dax_operations API:
- Eliminate bdev_dax_pgoff() in favor of the filesystem
maintaining and applying a partition offset to all its DAX iomap
operations.
- Remove wrappers and device-mapper stacked callbacks for
->copy_from_iter() and ->copy_to_iter() in favor of moving
block_device relative offset responsibility to the
dax_direct_access() caller.
- Remove the need for an @bdev in filesystem-DAX infrastructure
- Remove unused uio helpers copy_from_iter_flushcache() and
copy_mc_to_iter() as only the non-check_copy_size() versions are
used for DAX.
- Prepare XFS for the pending (next merge window) DAX+reflink support
- Remove deprecated DEV_DAX_PMEM_COMPAT support
- Cleanup a straggling misuse of the GUID api"
* tag 'libnvdimm-for-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (38 commits)
iomap: Fix error handling in iomap_zero_iter()
ACPI: NFIT: Import GUID before use
dax: remove the copy_from_iter and copy_to_iter methods
dax: remove the DAXDEV_F_SYNC flag
dax: simplify dax_synchronous and set_dax_synchronous
uio: remove copy_from_iter_flushcache() and copy_mc_to_iter()
iomap: turn the byte variable in iomap_zero_iter into a ssize_t
memremap: remove support for external pgmap refcounts
fsdax: don't require CONFIG_BLOCK
iomap: build the block based code conditionally
dax: fix up some of the block device related ifdefs
fsdax: shift partition offset handling into the file systems
dax: return the partition offset from fs_dax_get_by_bdev
iomap: add a IOMAP_DAX flag
xfs: pass the mapping flags to xfs_bmbt_to_iomap
xfs: use xfs_direct_write_iomap_ops for DAX zeroing
xfs: move dax device handling into xfs_{alloc,free}_buftarg
ext4: cleanup the dax handling in ext4_fill_super
ext2: cleanup the dax handling in ext2_fill_super
fsdax: decouple zeroing from the iomap buffered I/O code
...
As part of multiple customer escalations due to file data corruption
after copy on write operations, I wrote some fstests that use fsstress
to hammer on COW to shake things loose. Regrettably, I caught some
filesystem shutdowns due to incorrect rmap operations with the following
loop:
mount <filesystem> # (0)
fsstress <run only readonly ops> & # (1)
while true; do
fsstress <run all ops>
mount -o remount,ro # (2)
fsstress <run only readonly ops>
mount -o remount,rw # (3)
done
When (2) happens, notice that (1) is still running. xfs_remount_ro will
call xfs_blockgc_stop to walk the inode cache to free all the COW
extents, but the blockgc mechanism races with (1)'s reader threads to
take IOLOCKs and loses, which means that it doesn't clean them all out.
Call such a file (A).
When (3) happens, xfs_remount_rw calls xfs_reflink_recover_cow, which
walks the ondisk refcount btree and frees any COW extent that it finds.
This function does not check the inode cache, which means that incore
COW forks of inode (A) is now inconsistent with the ondisk metadata. If
one of those former COW extents are allocated and mapped into another
file (B) and someone triggers a COW to the stale reservation in (A), A's
dirty data will be written into (B) and once that's done, those blocks
will be transferred to (A)'s data fork without bumping the refcount.
The results are catastrophic -- file (B) and the refcount btree are now
corrupt. In the first patch, we fixed the race condition in (2) so that
(A) will always flush the COW fork. In this second patch, we move the
_recover_cow call to the initial mount call in (0) for safety.
As mentioned previously, xfs_reflink_recover_cow walks the refcount
btree looking for COW staging extents, and frees them. This was
intended to be run at mount time (when we know there are no live inodes)
to clean up any leftover staging events that may have been left behind
during an unclean shutdown. As a time "optimization" for readonly
mounts, we deferred this to the ro->rw transition, not realizing that
any failure to clean all COW forks during a rw->ro transition would
result in catastrophic corruption.
Therefore, remove this optimization and only run the recovery routine
when we're guaranteed not to have any COW staging extents anywhere,
which means we always run this at mount time. While we're at it, move
the callsite to xfs_log_mount_finish because any refcount btree
expansion (however unlikely given that we're removing records from the
right side of the index) must be fed by a per-AG reservation, which
doesn't exist in its current location.
Fixes: 174edb0e46e5 ("xfs: store in-progress CoW allocations in the refcount btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
As part of multiple customer escalations due to file data corruption
after copy on write operations, I wrote some fstests that use fsstress
to hammer on COW to shake things loose. Regrettably, I caught some
filesystem shutdowns due to incorrect rmap operations with the following
loop:
mount <filesystem> # (0)
fsstress <run only readonly ops> & # (1)
while true; do
fsstress <run all ops>
mount -o remount,ro # (2)
fsstress <run only readonly ops>
mount -o remount,rw # (3)
done
When (2) happens, notice that (1) is still running. xfs_remount_ro will
call xfs_blockgc_stop to walk the inode cache to free all the COW
extents, but the blockgc mechanism races with (1)'s reader threads to
take IOLOCKs and loses, which means that it doesn't clean them all out.
Call such a file (A).
When (3) happens, xfs_remount_rw calls xfs_reflink_recover_cow, which
walks the ondisk refcount btree and frees any COW extent that it finds.
This function does not check the inode cache, which means that incore
COW forks of inode (A) is now inconsistent with the ondisk metadata. If
one of those former COW extents are allocated and mapped into another
file (B) and someone triggers a COW to the stale reservation in (A), A's
dirty data will be written into (B) and once that's done, those blocks
will be transferred to (A)'s data fork without bumping the refcount.
The results are catastrophic -- file (B) and the refcount btree are now
corrupt. Solve this race by forcing the xfs_blockgc_free_space to run
synchronously, which causes xfs_icwalk to return to inodes that were
skipped because the blockgc code couldn't take the IOLOCK. This is safe
to do here because the VFS has already prohibited new writer threads.
Fixes: 10ddf64e420f ("xfs: remove leftover CoW reservations when remounting ro")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Hide the DAX device lookup from the xfs_super.c code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20211129102203.2243509-22-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Just open code the block size and dax_dev == NULL checks in the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mike Snitzer <snitzer@redhat.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com> [erofs]
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20211129102203.2243509-9-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Factor out another DAX setup helper to simplify future changes. Also
move the experimental warning after the checks to not clutter the log
too much if the setup failed.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20211129102203.2243509-8-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Fix following checkincludes.pl warning:
./fs/xfs/xfs_super.c: xfs_btree.h is included more than once.
The include is in line 15. Remove the duplicated here.
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_bmap_add_free isn't a block mapping function; it schedules deferred
freeing operations for a later point in a compound transaction chain.
While it's primarily used by bunmapi, its use has expanded beyond that.
Move it to xfs_alloc.c and rename the function since it's now general
freeing functionality. Bring the slab cache bits in line with the
way we handle the other intent items.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Create slab caches for the high-level structures that coordinate
deferred intent items, since they're used fairly heavily.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Now that we've gotten rid of the kmem_zone_t typedef, rename the
variables to _cache since that's what they are.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Now that we have the infrastructure to track the max possible height of
each btree type, we can create a separate slab cache for cursors of each
type of btree. For smaller indices like the free space btrees, this
means that we can pack more cursors into a slab page, improving slab
utilization.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
To support future btree code, we need to be able to size btree cursors
dynamically for very large btrees. Switch the maxlevels computation to
use the precomputed values in the superblock, and create cursors that
can handle a certain height. For now, we retain the btree cursor cache
that can handle up to 9-level btrees, though a subsequent patch
introduces separate caches for each btree type, where each cache's
objects will be exactly tall enough to handle the specific btree type.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Split out the btree level information into a separate struct and put it
at the end of the cursor structure as a VLA. Files with huge data forks
(and in the future, the realtime rmap btree) will require the ability to
support many more levels than a per-AG btree cursor, which means that
we're going to create per-btree type cursor caches to conserve memory
for the more common case.
Note that a subsequent patch actually introduces dynamic cursor heights.
This one merely rearranges the structure to prepare for that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
- Fix a race condition in the teardown path of raw mode pmem namespaces.
- Cleanup the code that filesystems use to detect filesystem-dax
capabilities of their underlying block device.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCYTlBMgAKCRDfioYZHlFs
ZwQLAQCPhwpuOP+Byn7NksotnfmyLNyniK0mX7Me7PoLiyq0oAEAmqBwlr9YP7E3
NPzWiBzqPCvDIv1YG4C3Vam7ue1osgM=
=33O+
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
- Fix a race condition in the teardown path of raw mode pmem
namespaces.
- Cleanup the code that filesystems use to detect filesystem-dax
capabilities of their underlying block device.
* tag 'libnvdimm-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: remove bdev_dax_supported
xfs: factor out a xfs_buftarg_is_dax helper
dax: stub out dax_supported for !CONFIG_FS_DAX
dax: remove __generic_fsdax_supported
dax: move the dax_read_lock() locking into dax_supported
dax: mark dax_get_by_host static
dm: use fs_dax_get_by_bdev instead of dax_get_by_host
dax: stop using bdevname
fsdax: improve the FS_DAX Kconfig description and help text
libnvdimm/pmem: Fix crash triggered when I/O in-flight during unbind
- Fix a potential log livelock on busy filesystems when there's so much
work going on that we can't finish a quotaoff before filling up the log
by removing the ability to disable quota accounting.
- Introduce the ability to use per-CPU data structures in XFS so that
we can do a better job of maintaining CPU locality for certain
operations.
- Defer inode inactivation work to per-CPU lists, which will help us
batch that processing. Deletions of large sparse files will *appear*
to run faster, but all that means is that we've moved the work to the
backend.
- Drop the EXPERIMENTAL warnings from the y2038+ support and the inode
btree counters, since it's been nearly a year and no complaints have
come in.
- Remove more of our bespoke kmem* variants in favor of using the
standard Linux calls.
- Prepare for the addition of log incompat features in upcoming cycles
by actually adding code to support this.
- Small cleanups of the xattr code in preparation for landing support
for full logging of extended attribute updates in a future cycle.
- Replace the various log shutdown state and flag code all over xfs
with a single atomic bit flag.
- Fix a serious log recovery bug where log item replay can be skipped
based on the start lsn of a transaction even though the transaction
commit lsn is the key data point for that by enforcing start lsns to
appear in the log in the same order as commit lsns.
- Enable pipelining in the code that pushes log items to disk.
- Drop ->writepage.
- Fix some bugs in GETFSMAP where the last fsmap record reported for a
device could extend beyond the end of the device, and a separate bug
where query keys for one device could be applied to another.
- Don't let GETFSMAP query functions edit their input parameters.
- Small cleanups to the scrub code's handling of perag structures.
- Small cleanups to the incore inode tree walk code.
- Constify btree function parameters that aren't changed, so that there
will never again be confusion about range query functions changing
their input parameters.
- Standardize the format and names of tracepoint data attributes.
- Clean up all the mount state and feature flags to use wrapped bitset
functions instead of inconsistently open-coded flag checks.
- Fix some confusion between xfs_buf hash table key variable vs. block
number.
- Fix a mis-interaction with iomap where we reported shared delalloc
cow fork extents to iomap, which would cause the iomap unshare
operation to return IO errors unnecessarily.
- Fix DONTCACHE behavior.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmEnwqcACgkQ+H93GTRK
tOtpZg/9G1RD9oDbVhKJy67bxkeLPX990dUtQFhcVjL3AMMyCJez2PBTqkQY3tL9
WDQveIF0UL5TjP5QUO2/6fncIXBmf5yXtinkfeQwkvkStb/yxs10zlpn2ZDEvJ7H
EUWwkV3cBY6Q+ftJIfXJmNW6eCcaxYs6KFiBwodbcoBxy2dIx6KFBQuqwtxOA97s
ZYfv1mPGOIg6AVJN9oxFWtF36qM8loFDNQeZj1ATfCsP25VNHbQf7YOFnJEnwLOB
rzz2zKQ3lP0hWavA6M2lX+IGymDphngx7qe4lZYcjAsh2BzL0IZf0QmFrXGQKuY/
kD0dWeStM8OHQbqCdkYx4XxcjucvJ7qmIYCtrWdpFqrrrQHygaJW6nI8LgsNTdvb
OPXpPPz58jdGY3ATaRYX/IFmpJExj655ZHUfpkeVGacBTa5KCVDykYKv1eYOfNsk
Aj+bZ4g++bx3dlGFHGsPScRn+hwg5h/+UyQJpAYupuaUsq3rpBhH/bhAJNyPUsYu
ej8LIeAWB3EPLozT4ewop8G0WWDBOe0MlYeO5gQho2AfFZzFInf15cSR62KZqx+v
XTZgITnnp0ND4wzgqAhgdU4USS9z5MtHGvhSkuYejg85R/bKirrwRu2P0n681sHv
UioiIVbXGWSAJqDQicfSjncafS3POIAUmMt4tgmDI33/3mTKwZQ=
=HPJr
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.15-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"There's a lot in this cycle.
Starting with bug fixes: To avoid livelocks between the logging code
and the quota code, we've disabled the ability of quotaoff to turn off
quota accounting. (Admins can still disable quota enforcement, but
truly turning off accounting requires a remount.) We've tried to do
this in a careful enough way that there shouldn't be any user visible
effects aside from quotaoff no longer randomly hanging the system.
We've also fixed some bugs in runtime log behavior that could trip up
log recovery if (otherwise unrelated) transactions manage to start and
commit concurrently; some bugs in the GETFSMAP ioctl where we would
incorrectly restrict the range of records output if the two xfs
devices are of different sizes; a bug that resulted in fallocate
funshare failing unnecessarily; and broken behavior in the xfs inode
cache when DONTCACHE is in play.
As for new features: we now batch inode inactivations in percpu
background threads, which sharply decreases frontend thread wait time
when performing file deletions and should improve overall directory
tree deletion times. This eliminates both the problem where closing an
unlinked file (especially on a frozen fs) can stall for a long time,
and should also ease complaints about direct reclaim bogging down on
unlinked file cleanup.
Starting with this release, we've enabled pipelining of the XFS log.
On workloads with high rates of metadata updates to different shards
of the filesystem, multiple threads can be used to format committed
log updates into log checkpoints.
Lastly, with this release, two new features have graduated to
supported status: inode btree counters (for faster mounts), and
support for dates beyond Y2038. Expect these to be enabled by default
in a future release of xfsprogs.
Summary:
- Fix a potential log livelock on busy filesystems when there's so
much work going on that we can't finish a quotaoff before filling
up the log by removing the ability to disable quota accounting.
- Introduce the ability to use per-CPU data structures in XFS so that
we can do a better job of maintaining CPU locality for certain
operations.
- Defer inode inactivation work to per-CPU lists, which will help us
batch that processing. Deletions of large sparse files will
*appear* to run faster, but all that means is that we've moved the
work to the backend.
- Drop the EXPERIMENTAL warnings from the y2038+ support and the
inode btree counters, since it's been nearly a year and no
complaints have come in.
- Remove more of our bespoke kmem* variants in favor of using the
standard Linux calls.
- Prepare for the addition of log incompat features in upcoming
cycles by actually adding code to support this.
- Small cleanups of the xattr code in preparation for landing support
for full logging of extended attribute updates in a future cycle.
- Replace the various log shutdown state and flag code all over xfs
with a single atomic bit flag.
- Fix a serious log recovery bug where log item replay can be skipped
based on the start lsn of a transaction even though the transaction
commit lsn is the key data point for that by enforcing start lsns
to appear in the log in the same order as commit lsns.
- Enable pipelining in the code that pushes log items to disk.
- Drop ->writepage.
- Fix some bugs in GETFSMAP where the last fsmap record reported for
a device could extend beyond the end of the device, and a separate
bug where query keys for one device could be applied to another.
- Don't let GETFSMAP query functions edit their input parameters.
- Small cleanups to the scrub code's handling of perag structures.
- Small cleanups to the incore inode tree walk code.
- Constify btree function parameters that aren't changed, so that
there will never again be confusion about range query functions
changing their input parameters.
- Standardize the format and names of tracepoint data attributes.
- Clean up all the mount state and feature flags to use wrapped
bitset functions instead of inconsistently open-coded flag checks.
- Fix some confusion between xfs_buf hash table key variable vs.
block number.
- Fix a mis-interaction with iomap where we reported shared delalloc
cow fork extents to iomap, which would cause the iomap unshare
operation to return IO errors unnecessarily.
- Fix DONTCACHE behavior"
* tag 'xfs-5.15-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (103 commits)
xfs: fix I_DONTCACHE
xfs: only set IOMAP_F_SHARED when providing a srcmap to a write
xfs: fix perag structure refcounting error when scrub fails
xfs: rename buffer cache index variable b_bn
xfs: convert bp->b_bn references to xfs_buf_daddr()
xfs: introduce xfs_buf_daddr()
xfs: kill xfs_sb_version_has_v3inode()
xfs: introduce xfs_sb_is_v5 helper
xfs: remove unused xfs_sb_version_has wrappers
xfs: convert xfs_sb_version_has checks to use mount features
xfs: convert scrub to use mount-based feature checks
xfs: open code sb verifier feature checks
xfs: convert xfs_fs_geometry to use mount feature checks
xfs: replace XFS_FORCED_SHUTDOWN with xfs_is_shutdown
xfs: convert remaining mount flags to state flags
xfs: convert mount flags to features
xfs: consolidate mount option features in m_features
xfs: replace xfs_sb_version checks with feature flag checks
xfs: reflect sb features in xfs_mount
xfs: rework attr2 feature and mount options
...
All callers already have a dax_device obtained from fs_dax_get_by_bdev
at hand, so just pass that to dax_supported() insted of doing another
lookup.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20210826135510.6293-10-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Refactor the DAX setup code in preparation of removing
bdev_dax_supported.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20210826135510.6293-9-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Rather than open coding XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5
checks everywhere, add a simple wrapper to encapsulate this and make
the code easier to read.
This allows us to remove the xfs_sb_version_has_v3inode() wrapper
which is only used in xfs_format.h now and is just a version number
check.
There are a couple of places where we should be checking the mount
feature bits rather than the superblock version (e.g. remount), so
those are converted to use xfs_has_crc(mp) instead.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This is a conversion of the remaining xfs_sb_version_has..(sbp)
checks to use xfs_has_..(mp) feature checks.
This was largely done with a vim replacement macro that did:
:0,$s/xfs_sb_version_has\(.*\)&\(.*\)->m_sb/xfs_has_\1\2/g<CR>
A couple of other variants were also used, and the rest touched up
by hand.
$ size -t fs/xfs/built-in.a
text data bss dec hex filename
before 1127533 311352 484 1439369 15f689 (TOTALS)
after 1125360 311352 484 1437196 15ee0c (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Remove the shouty macro and instead use the inline function that
matches other state/feature check wrapper naming. This conversion
was done with sed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The remaining mount flags kept in m_flags are actually runtime state
flags. These change dynamically, so they really should be updated
atomically so we don't potentially lose an update due to racing
modifications.
Convert these remaining flags to be stored in m_opstate and use
atomic bitops to set and clear the flags. This also adds a couple of
simple wrappers for common state checks - read only and shutdown.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Replace m_flags feature checks with xfs_has_<feature>() calls and
rework the setup code to set flags in m_features.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Convert the xfs_sb_version_hasfoo() to checks against
mp->m_features. Checks of the superblock itself during disk
operations (e.g. in the read/write verifiers and the to/from disk
formatters) are not converted - they operate purely on the
superblock state. Everything else should use the mount features.
Large parts of this conversion were done with sed with commands like
this:
for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do
sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f
done
With manual cleanups for things like "xfs_has_extflgbit" and other
little inconsistencies in naming.
The result is ia lot less typing to check features and an XFS binary
size reduced by a bit over 3kB:
$ size -t fs/xfs/built-in.a
text data bss dec hex filenam
before 1130866 311352 484 1442702 16038e (TOTALS)
after 1127727 311352 484 1439563 15f74b (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>