Linus pointed out that compiler.h - which is a key header that gets included in every
single one of the 28,000+ kernel files during a kernel build - was bloated in:
655389666643: ("vmlinux.lds.h: Create section for protection against instrumentation")
Linus noted:
> I have pulled this, but do we really want to add this to a header file
> that is _so_ core that it gets included for basically every single
> file built?
>
> I don't even see those instrumentation_begin/end() things used
> anywhere right now.
>
> It seems excessive. That 53 lines is maybe not a lot, but it pushed
> that header file to over 12kB, and while it's mostly comments, it's
> extra IO and parsing basically for _every_ single file compiled in the
> kernel.
>
> For what appears to be absolutely zero upside right now, and I really
> don't see why this should be in such a core header file!
Move these primitives into a new header: <linux/instrumentation.h>, and include that
header in the headers that make use of it.
Unfortunately one of these headers is asm-generic/bug.h, which does get included
in a lot of places, similarly to compiler.h. So the de-bloating effect isn't as
good as we'd like it to be - but at least the interfaces are defined separately.
No change to functionality intended.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200604071921.GA1361070@gmail.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
The kernel test robot reports that moving READ_ONCE() out into its own
header breaks a W=1 build for parisc, which is relying on the definition
of compiletime_assert() being available:
| In file included from ./arch/parisc/include/generated/asm/rwonce.h:1,
| from ./include/asm-generic/barrier.h:16,
| from ./arch/parisc/include/asm/barrier.h:29,
| from ./arch/parisc/include/asm/atomic.h:11,
| from ./include/linux/atomic.h:7,
| from kernel/locking/percpu-rwsem.c:2:
| ./arch/parisc/include/asm/atomic.h: In function 'atomic_read':
| ./include/asm-generic/rwonce.h:36:2: error: implicit declaration of function 'compiletime_assert' [-Werror=implicit-function-declaration]
| 36 | compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \
| | ^~~~~~~~~~~~~~~~~~
| ./include/asm-generic/rwonce.h:49:2: note: in expansion of macro 'compiletime_assert_rwonce_type'
| 49 | compiletime_assert_rwonce_type(x); \
| | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| ./arch/parisc/include/asm/atomic.h:73:9: note: in expansion of macro 'READ_ONCE'
| 73 | return READ_ONCE((v)->counter);
| | ^~~~~~~~~
Move these macros into compiler_types.h, so that they are available to
READ_ONCE() and friends.
Link: http://lists.infradead.org/pipermail/linux-arm-kernel/2020-July/587094.html
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Will Deacon <will@kernel.org>
In preparation for allowing architectures to define their own
implementation of the READ_ONCE() macro, move the generic
{READ,WRITE}_ONCE() definitions out of the unwieldy 'linux/compiler.h'
file and into a new 'rwonce.h' header under 'asm-generic'.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
A KCSAN build revealed we have explicit annoations through atomic_*()
usage, switch to arch_atomic_*() for the respective functions.
vmlinux.o: warning: objtool: rcu_nmi_exit()+0x4d: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: rcu_dynticks_eqs_enter()+0x25: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: rcu_nmi_enter()+0x4f: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: rcu_dynticks_eqs_exit()+0x2a: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: __rcu_is_watching()+0x25: call to __kcsan_check_access() leaves .noinstr.text section
Additionally, without the NOP in instrumentation_begin(), objtool would
not detect the lack of the 'else instrumentation_begin();' branch in
rcu_nmi_enter().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cleanup and move the KASAN and KCSAN related function attributes to
compiler_types.h, where the rest of the same kind live.
No functional change intended.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200521142047.169334-11-elver@google.com
It appears that compilers have trouble with nested statement
expressions. Therefore, remove one level of statement expression nesting
from the data_race() macro. This will help avoiding potential problems
in the future as its usage increases.
Reported-by: Borislav Petkov <bp@suse.de>
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lkml.kernel.org/r/20200520221712.GA21166@zn.tnic
Link: https://lkml.kernel.org/r/20200521142047.169334-10-elver@google.com
The volatile accesses no longer need to be wrapped in data_race()
because compilers that emit instrumentation distinguishing volatile
accesses are required for KCSAN.
Consequently, the explicit kcsan_check_atomic*() are no longer required
either since the compiler emits instrumentation distinguishing the
volatile accesses.
Finally, simplify __READ_ONCE_SCALAR() and remove __WRITE_ONCE_SCALAR().
[ bp: Convert commit message to passive voice. ]
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200521142047.169334-9-elver@google.com
Some compilers incorrectly inline small __no_kcsan functions, which then
results in instrumenting the accesses. For this reason, the 'noinline'
attribute was added to __no_kcsan_or_inline. All known versions of GCC
are affected by this. Supported versions of Clang are unaffected, and
never inline a no_sanitize function.
However, the attribute 'noinline' in __no_kcsan_or_inline causes
unexpected code generation in functions that are __no_kcsan and call a
__no_kcsan_or_inline function.
In certain situations it is expected that the __no_kcsan_or_inline
function is actually inlined by the __no_kcsan function, and *no* calls
are emitted. By removing the 'noinline' attribute, give the compiler
the ability to inline and generate the expected code in __no_kcsan
functions.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/CANpmjNNOpJk0tprXKB_deiNAv_UmmORf1-2uajLhnLWQQ1hvoA@mail.gmail.com
Link: https://lkml.kernel.org/r/20200521142047.169334-6-elver@google.com
Merge the state of the locking kcsan branch before the read/write_once()
and the atomics modifications got merged.
Squash the fallout of the rebase on top of the read/write once and atomic
fallback work into the merge. The history of the original branch is
preserved in tag locking-kcsan-2020-06-02.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull READ/WRITE_ONCE rework from Will Deacon:
"This the READ_ONCE rework I've been working on for a while, which
bumps the minimum GCC version and improves code-gen on arm64 when
stack protector is enabled"
[ Side note: I'm _really_ tempted to raise the minimum gcc version to
4.9, so that we can just say that we require _Generic() support.
That would allow us to more cleanly handle a lot of the cases where we
depend on very complex macros with 'sizeof' or __builtin_choose_expr()
with __builtin_types_compatible_p() etc.
This branch has a workaround for sparse not handling _Generic(),
either, but that was already fixed in the sparse development branch,
so it's really just gcc-4.9 that we'd require. - Linus ]
* 'rwonce/rework' of git://git.kernel.org/pub/scm/linux/kernel/git/will/linux:
compiler_types.h: Use unoptimized __unqual_scalar_typeof for sparse
compiler_types.h: Optimize __unqual_scalar_typeof compilation time
compiler.h: Enforce that READ_ONCE_NOCHECK() access size is sizeof(long)
compiler-types.h: Include naked type in __pick_integer_type() match
READ_ONCE: Fix comment describing 2x32-bit atomicity
gcov: Remove old GCC 3.4 support
arm64: barrier: Use '__unqual_scalar_typeof' for acquire/release macros
locking/barriers: Use '__unqual_scalar_typeof' for load-acquire macros
READ_ONCE: Drop pointer qualifiers when reading from scalar types
READ_ONCE: Enforce atomicity for {READ,WRITE}_ONCE() memory accesses
READ_ONCE: Simplify implementations of {READ,WRITE}_ONCE()
arm64: csum: Disable KASAN for do_csum()
fault_inject: Don't rely on "return value" from WRITE_ONCE()
net: tls: Avoid assigning 'const' pointer to non-const pointer
netfilter: Avoid assigning 'const' pointer to non-const pointer
compiler/gcc: Raise minimum GCC version for kernel builds to 4.8
READ_ONCE_NOCHECK() unconditionally performs a sizeof(long)-sized access,
so enforce that the size of the pointed-to object that we are loading
from is the same size as 'long'.
Reported-by: Marco Elver <elver@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
READ_ONCE() permits 64-bit accesses on 32-bit architectures, since this
crops up in a few places and is generally harmless because either the
upper bits are always zero (e.g. for a virtual address or 32-bit time_t)
or the architecture provides 64-bit atomicity anyway.
Update the corresponding comment above compiletime_assert_rwonce_type(),
which incorrectly states that 32-bit x86 provides 64-bit atomicity, and
instead reference 32-bit Armv7 with LPAE.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
logic, instead of the current per debug facility blacklist, use the more generic
.noinstr.text approach, combined with a 'noinstr' marker for functions.
Also add instrumentation_begin()/end() to better manage the exact place in entry
code where instrumentation may be used.
Also add a kprobes blacklist for modules.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7U/KERHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1h6xg//bnWhJzrxlOr89d7c5pEUeZehTscZ4OxU
HyiWnfgd6bHJGHiB8TRHZInJFys/Y0UG+xzQvCP2YCIHW42tguD3u0wQ1rOrA6im
VkDxUwHn72avqnBq+knMwtqiKQjxJrPe+YpikWOgb4B+9jQwLARzTArhs+aoWBRn
a9jRP1jcuS26F/9wxctFoHVvKZ7Vv+HCgtNzequHsd1e0J8ElvDRk+QkfkaZopl5
cQ44TIfzR8xjJuGqW45hXwOw5PPjhZHwytSoFquSMb57txoWL2devn7S38VaCWv7
/fqmQAnQqlW5eG5ipJ0zWY1n0uLZLRrIecfA1INY8fdJeFFr6cxaN6FM1GhVZ93I
GjZZFYwxDv9IftpeSyCaIzF1zISV+as3r9sMKMt89us77XazRiobjWCi1aE9a1rX
QRv1nTjmypWg65IMV+nfIT26riP6YXSZ3uXQJPwm+kzEjJJl0LSi2AfjWQadcHeZ
Z8svSIepP4oJBJ9tJlZ3K7kHBV3E0G4SV3fnHaUYGrp9gheqhe33U0VWfILcvq7T
zIhtZXzqRGaMKuw0IFy2xITCQyEZAXwTedtSSeyXt0CN/hwhaxbrd38HhKOBw8WH
k+OAmXZ+lgSO5ZvkoxgV6QgHtjsif3ICcHNelJtcbRA80/3oj/QwJ5dAVR61EDZa
3Jn8mMxvCn0=
=25Vr
-----END PGP SIGNATURE-----
Merge tag 'core-kprobes-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull kprobes updates from Ingo Molnar:
"Various kprobes updates, mostly centered around cleaning up the
no-instrumentation logic.
Instead of the current per debug facility blacklist, use the more
generic .noinstr.text approach, combined with a 'noinstr' marker for
functions.
Also add instrumentation_begin()/end() to better manage the exact
place in entry code where instrumentation may be used.
And add a kprobes blacklist for modules"
* tag 'core-kprobes-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kprobes: Prevent probes in .noinstr.text section
vmlinux.lds.h: Create section for protection against instrumentation
samples/kprobes: Add __kprobes and NOKPROBE_SYMBOL() for handlers.
kprobes: Support NOKPROBE_SYMBOL() in modules
kprobes: Support __kprobes blacklist in modules
kprobes: Lock kprobe_mutex while showing kprobe_blacklist
Some code pathes, especially the low level entry code, must be protected
against instrumentation for various reasons:
- Low level entry code can be a fragile beast, especially on x86.
- With NO_HZ_FULL RCU state needs to be established before using it.
Having a dedicated section for such code allows to validate with tooling
that no unsafe functions are invoked.
Add the .noinstr.text section and the noinstr attribute to mark
functions. noinstr implies notrace. Kprobes will gain a section check
later.
Provide also a set of markers: instrumentation_begin()/end()
These are used to mark code inside a noinstr function which calls
into regular instrumentable text section as safe.
The instrumentation markers are only active when CONFIG_DEBUG_ENTRY is
enabled as the end marker emits a NOP to prevent the compiler from merging
the annotation points. This means the objtool verification requires a
kernel compiled with this option.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134100.075416272@linutronix.de
... or the odyssey of trying to disable the stack protector for the
function which generates the stack canary value.
The whole story started with Sergei reporting a boot crash with a kernel
built with gcc-10:
Kernel panic — not syncing: stack-protector: Kernel stack is corrupted in: start_secondary
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.6.0-rc5—00235—gfffb08b37df9 #139
Hardware name: Gigabyte Technology Co., Ltd. To be filled by O.E.M./H77M—D3H, BIOS F12 11/14/2013
Call Trace:
dump_stack
panic
? start_secondary
__stack_chk_fail
start_secondary
secondary_startup_64
-—-[ end Kernel panic — not syncing: stack—protector: Kernel stack is corrupted in: start_secondary
This happens because gcc-10 tail-call optimizes the last function call
in start_secondary() - cpu_startup_entry() - and thus emits a stack
canary check which fails because the canary value changes after the
boot_init_stack_canary() call.
To fix that, the initial attempt was to mark the one function which
generates the stack canary with:
__attribute__((optimize("-fno-stack-protector"))) ... start_secondary(void *unused)
however, using the optimize attribute doesn't work cumulatively
as the attribute does not add to but rather replaces previously
supplied optimization options - roughly all -fxxx options.
The key one among them being -fno-omit-frame-pointer and thus leading to
not present frame pointer - frame pointer which the kernel needs.
The next attempt to prevent compilers from tail-call optimizing
the last function call cpu_startup_entry(), shy of carving out
start_secondary() into a separate compilation unit and building it with
-fno-stack-protector, was to add an empty asm("").
This current solution was short and sweet, and reportedly, is supported
by both compilers but we didn't get very far this time: future (LTO?)
optimization passes could potentially eliminate this, which leads us
to the third attempt: having an actual memory barrier there which the
compiler cannot ignore or move around etc.
That should hold for a long time, but hey we said that about the other
two solutions too so...
Reported-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Kalle Valo <kvalo@codeaurora.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200314164451.346497-1-slyfox@gentoo.org
Passing a volatile-qualified pointer to READ_ONCE() is an absolute
trainwreck for code generation: the use of 'typeof()' to define a
temporary variable inside the macro means that the final evaluation in
macro scope ends up forcing a read back from the stack. When stack
protector is enabled (the default for arm64, at least), this causes
the compiler to vomit up all sorts of junk.
Unfortunately, dropping pointer qualifiers inside the macro poses quite
a challenge, especially since the pointed-to type is permitted to be an
aggregate, and this is relied upon by mm/ code accessing things like
'pmd_t'. Based on numerous hacks and discussions on the mailing list,
this is the best I've managed to come up with.
Introduce '__unqual_scalar_typeof()' which takes an expression and, if
the expression is an optionally qualified 8, 16, 32 or 64-bit scalar
type, evaluates to the unqualified type. Other input types, including
aggregates, remain unchanged. Hopefully READ_ONCE() on volatile aggregate
pointers isn't something we do on a fast-path.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Will Deacon <will@kernel.org>
{READ,WRITE}_ONCE() cannot guarantee atomicity for arbitrary data sizes.
This can be surprising to callers that might incorrectly be expecting
atomicity for accesses to aggregate structures, although there are other
callers where tearing is actually permissable (e.g. if they are using
something akin to sequence locking to protect the access).
Linus sayeth:
| We could also look at being stricter for the normal READ/WRITE_ONCE(),
| and require that they are
|
| (a) regular integer types
|
| (b) fit in an atomic word
|
| We actually did (b) for a while, until we noticed that we do it on
| loff_t's etc and relaxed the rules. But maybe we could have a
| "non-atomic" version of READ/WRITE_ONCE() that is used for the
| questionable cases?
The slight snag is that we also have to support 64-bit accesses on 32-bit
architectures, as these appear to be widespread and tend to work out ok
if either the architecture supports atomic 64-bit accesses (x86, armv7)
or if the variable being accesses represents a virtual address and
therefore only requires 32-bit atomicity in practice.
Take a step in that direction by introducing a variant of
'compiletime_assert_atomic_type()' and use it to check the pointer
argument to {READ,WRITE}_ONCE(). Expose __{READ,WRITE}_ONCE() variants
which are allowed to tear and convert the one broken caller over to the
new macros.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Will Deacon <will@kernel.org>
The implementations of {READ,WRITE}_ONCE() suffer from a significant
amount of indirection and complexity due to a historic GCC bug:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145
which was originally worked around by 230fa253df63 ("kernel: Provide
READ_ONCE and ASSIGN_ONCE").
Since GCC 4.8 is fairly vintage at this point and we emit a warning if
we detect it during the build, return {READ,WRITE}_ONCE() to their former
glory with an implementation that is easier to understand and, crucially,
more amenable to optimisation. A side effect of this simplification is
that WRITE_ONCE() no longer returns a value, but nobody seems to be
relying on that and the new behaviour is aligned with smp_store_release().
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Thus far, accesses marked with data_race() would still require the
racing access to be marked in some way (be it with READ_ONCE(),
WRITE_ONCE(), or data_race() itself), as otherwise KCSAN would still
report a data race. This requirement, however, seems to be unintuitive,
and some valid use-cases demand *not* marking other accesses, as it
might hide more serious bugs (e.g. diagnostic reads).
Therefore, this commit changes data_race() to no longer require marking
racing accesses (although it's still recommended if possible).
The alternative would have been introducing another variant of
data_race(), however, since usage of data_race() already needs to be
carefully reasoned about, distinguishing between these cases likely adds
more complexity in the wrong place.
Link: https://lkml.kernel.org/r/20200331131002.GA30975@willie-the-truck
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl6TbaUeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGhgkH/iWpiKvosA20HJjC
rBqYeJPxQsgZTuBieWJ+MeVxbpcF7RlM4c+glyvg3QJhHwIEG58dl6LBrQbAyBAR
aFHNojr1iAYOruVCGnU3pA008YZiwUIDv/ZQ4DF8fmIU2vI2mJ6qHBv3XDl4G2uR
Nwz8Eu9AgIwZM5coomVOSmoWyFy7Vxmb7W+3t5VmKsvOWx4ib9kyQtOIkvQDEl7j
XCbWfI0xDQr6LFOm4jnCi5R/LhJ2LIqqIvHHrunbpszM8IwK797jCXz4im+dmd5Y
+km46N7a8pDqri36xXz1gdBAU3eG7Pt1NyvfjwRVTdX4GquQ2MT0GoojxbLxUP3y
3pEsQuE=
=whbL
-----END PGP SIGNATURE-----
Merge tag 'v5.7-rc1' into locking/kcsan, to resolve conflicts and refresh
Resolve these conflicts:
arch/x86/Kconfig
arch/x86/kernel/Makefile
Do a minor "evil merge" to move the KCSAN entry up a bit by a few lines
in the Kconfig to reduce the probability of future conflicts.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
compiletime_assert() uses __LINE__ to create a unique function name. This
means that if you have more than one BUILD_BUG_ON() in the same source
line (which can happen if they appear e.g. in a macro), then the error
message from the compiler might output the wrong condition.
For this source file:
#include <linux/build_bug.h>
#define macro() \
BUILD_BUG_ON(1); \
BUILD_BUG_ON(0);
void foo()
{
macro();
}
gcc would output:
./include/linux/compiler.h:350:38: error: call to `__compiletime_assert_9' declared with attribute error: BUILD_BUG_ON failed: 0
_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
However, it was not the BUILD_BUG_ON(0) that failed, so it should say 1
instead of 0. With this patch, we use __COUNTER__ instead of __LINE__, so
each BUILD_BUG_ON() gets a different function name and the correct
condition is printed:
./include/linux/compiler.h:350:38: error: call to `__compiletime_assert_0' declared with attribute error: BUILD_BUG_ON failed: 1
_compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Daniel Santos <daniel.santos@pobox.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Ian Abbott <abbotti@mev.co.uk>
Cc: Joe Perches <joe@perches.com>
Link: http://lkml.kernel.org/r/20200331112637.25047-1-vegard.nossum@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No we longer have to include kcsan.h, since the required KCSAN interface
for both compiler.h and seqlock.h are now provided by kcsan-checks.h.
Acked-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the use of -fsanitize=thread is an implementation detail of KCSAN,
the name __no_sanitize_thread could be misleading if used widely.
Instead, we introduce the __no_kcsan attribute which is shorter and more
accurate in the context of KCSAN.
This matches the attribute name __no_kcsan_or_inline. The use of
__kcsan_or_inline itself is still required for __always_inline functions
to retain compatibility with older compilers.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tidy up a few bits:
- Fix typos and grammar, improve wording.
- Remove spurious newlines that are col80 warning artifacts where the
resulting line-break is worse than the disease it's curing.
- Use core kernel coding style to improve readability and reduce
spurious code pattern variations.
- Use better vertical alignment for structure definitions and initialization
sequences.
- Misc other small details.
No change in functionality intended.
Cc: linux-kernel@vger.kernel.org
Cc: Marco Elver <elver@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This introduces the data_race(expr) macro, which can be used to annotate
expressions for purposes of (1) documenting, and (2) giving tooling such
as KCSAN information about which data races are deemed "safe".
More context:
http://lkml.kernel.org/r/CAHk-=wg5CkOEF8DTez1Qu0XTEFw_oHhxN98bDnFqbY7HL5AB2g@mail.gmail.com
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Kernel Concurrency Sanitizer (KCSAN) is a dynamic data-race detector for
kernel space. KCSAN is a sampling watchpoint-based data-race detector.
See the included Documentation/dev-tools/kcsan.rst for more details.
This patch adds basic infrastructure, but does not yet enable KCSAN for
any architecture.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
GCC unescapes escaped string section names while Clang does not. Because
__section uses the `#` stringification operator for the section name, it
doesn't need to be escaped.
This fixes an Oops observed in distro's that use systemd and not
net.core.bpf_jit_enable=1, when their kernels are compiled with Clang.
Link: https://github.com/ClangBuiltLinux/linux/issues/619
Link: https://bugs.llvm.org/show_bug.cgi?id=42950
Link: https://marc.info/?l=linux-netdev&m=156412960619946&w=2
Link: https://lore.kernel.org/lkml/20190904181740.GA19688@gmail.com/
Acked-by: Will Deacon <will@kernel.org>
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
[Cherry-picked from the __section cleanup series for 5.3]
[Adjusted commit message]
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Objtool doesn't know how to read C jump tables, so it has to whitelist
functions which use them, causing missing ORC unwinder data for such
functions, e.g. ___bpf_prog_run().
C jump tables are very similar to GCC switch jump tables, which objtool
already knows how to read. So adding support for C jump tables is easy.
It just needs to be able to find the tables and distinguish them from
other data.
To allow the jump tables to be found, create an __annotate_jump_table
macro which can be used to annotate them.
The annotation is done by placing the jump table in an
.rodata..c_jump_table section. The '.rodata' prefix ensures that the data
will be placed in the rodata section by the vmlinux linker script. The
double periods are part of an existing convention which distinguishes
kernel sections from GCC sections.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lkml.kernel.org/r/0ba2ca30442b16b97165992381ce643dc27b3d1a.1561685471.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Peter Zijlstra noticed that with CONFIG_PROFILE_ALL_BRANCHES, the "if"
macro converts the conditional to an array index. This can cause GCC
to create horrible code. When there are nested ifs, the generated code
uses register values to encode branching decisions.
Josh Poimboeuf found that replacing the define "if" macro from using
the condition as an array index and incrementing the branch statics
with an if statement itself, reduced the asm complexity and shrinks the
generated code quite a bit.
But this can be simplified even further by replacing the internal if
statement with a ternary operator.
Link: https://lkml.kernel.org/r/20190307174802.46fmpysxyo35hh43@treble
Link: http://lkml.kernel.org/r/CAHk-=wiALN3jRuzARpwThN62iKd476Xj-uom+YnLZ4=eqcz7xQ@mail.gmail.com
Reported-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Since commit 815f0ddb346c ("include/linux/compiler*.h: make compiler-*.h
mutually exclusive") clang no longer reuses the OPTIMIZER_HIDE_VAR macro
from compiler-gcc - instead it gets the version in
include/linux/compiler.h. Unfortunately that version doesn't actually
prevent compiler from optimizing out the variable.
Fix up by moving the macro out from compiler-gcc.h to compiler.h.
Compilers without incline asm support will keep working
since it's protected by an ifdef.
Also fix up comments to match reality since we are no longer overriding
any macros.
Build-tested with gcc and clang.
Fixes: 815f0ddb346c ("include/linux/compiler*.h: make compiler-*.h mutually exclusive")
Cc: Eli Friedman <efriedma@codeaurora.org>
Cc: Joe Perches <joe@perches.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
The __no_sanitize_address_or_inline and __no_kasan_or_inline defines
are almost identical. The only difference is that __no_kasan_or_inline
does not have the 'notrace' attribute.
To be able to replace __no_sanitize_address_or_inline with the older
definition, add 'notrace' to __no_kasan_or_inline and change to two
users of __no_sanitize_address_or_inline in the s390 code.
The 'notrace' option is necessary for e.g. the __load_psw_mask function
in arch/s390/include/asm/processor.h. Without the option it is possible
to trace __load_psw_mask which leads to kernel stack overflow.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Pointed-out-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is an effort to disentangle the include/linux/compiler*.h headers
and bring them up to date.
The main idea behind the series is to use feature checking macros
(i.e. __has_attribute) instead of compiler version checks (e.g. GCC_VERSION),
which are compiler-agnostic (so they can be shared, reducing the size
of compiler-specific headers) and version-agnostic.
Other related improvements have been performed in the headers as well,
which on top of the use of __has_attribute it has amounted to a significant
simplification of these headers (e.g. GCC_VERSION is now only guarding
a few non-attribute macros).
This series should also help the efforts to support compiling the kernel
with clang and icc. A fair amount of documentation and comments have also
been added, clarified or removed; and the headers are now more readable,
which should help kernel developers in general.
The series was triggered due to the move to gcc >= 4.6. In turn, this series
has also triggered Sparse to gain the ability to recognize __has_attribute
on its own.
Finally, the __nonstring variable attribute series has been also applied
on top; plus two related patches from Nick Desaulniers for unreachable()
that came a bit afterwards.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAlvNpywACgkQGXyLc2ht
IW1aiQ/+P8SJOa3GkiH37/nrIbk/wgMNytbs+gxE5YPaU1DP74Mn1prJ4XhQQic9
/mt8GnitZwzEHWdsGEUk+ZQwnIa7ZEAmpecbAF206AMRbNxa14T5YwBx4bqWFjZp
sP4zPTHt3JCKL8TM+z26o152UbF2kc4WSxHjEjSFaqEnR2E5D0MwFeGPzc8fgWmS
pNyn3CidzB0TS1UF008YXhiJO6HIhFNPyhPawlhwbbdsdlhZ4u0JmwfqP4EvjRFM
kyzdQ9CDe+AgTTD9Y8HhtoUClaa7SJzFWNzpKIJMWt8jpKWYZQ/+WtwKg2cf+v3M
uwktcs3RI1dYrjcITLz4VJ0oVaRFnyGgXvMP4yqWQx429hqnd09WXhMioXQ1htoI
H0vpPIAPsK+dqVA9sP3JzMq4h6+dE7P364lkbThbVpYAGKZ52qaLt9ixT1mw1Q9f
a683ji6o02IVOGUNZ/3KAb5MqdhewNEDdZILZYRfm4AL1Em3WW9QVtIosHPviLgc
16VjA02wKdxIcg+1LZMTNhfybztnSCf7SuQurpH1zEqFDGzrXwB7nYFplEY7DrrD
cqhOA1fMQa++oQR+D40QDoY2ybqPOyvJG7z17pvtt+6jXep4yy2a3Bxf+ClK0nto
5yT7v9ikXJr84FOkk7OvktLlAWvcykvAdfvDepBZhpqhuX82tHY=
=Y8WB
-----END PGP SIGNATURE-----
Merge tag 'compiler-attributes-for-linus-4.20-rc1' of https://github.com/ojeda/linux
Pull compiler attribute updates from Miguel Ojeda:
"This is an effort to disentangle the include/linux/compiler*.h headers
and bring them up to date.
The main idea behind the series is to use feature checking macros
(i.e. __has_attribute) instead of compiler version checks (e.g.
GCC_VERSION), which are compiler-agnostic (so they can be shared,
reducing the size of compiler-specific headers) and version-agnostic.
Other related improvements have been performed in the headers as well,
which on top of the use of __has_attribute it has amounted to a
significant simplification of these headers (e.g. GCC_VERSION is now
only guarding a few non-attribute macros).
This series should also help the efforts to support compiling the
kernel with clang and icc. A fair amount of documentation and comments
have also been added, clarified or removed; and the headers are now
more readable, which should help kernel developers in general.
The series was triggered due to the move to gcc >= 4.6. In turn, this
series has also triggered Sparse to gain the ability to recognize
__has_attribute on its own.
Finally, the __nonstring variable attribute series has been also
applied on top; plus two related patches from Nick Desaulniers for
unreachable() that came a bit afterwards"
* tag 'compiler-attributes-for-linus-4.20-rc1' of https://github.com/ojeda/linux:
compiler-gcc: remove comment about gcc 4.5 from unreachable()
compiler.h: update definition of unreachable()
Compiler Attributes: ext4: remove local __nonstring definition
Compiler Attributes: auxdisplay: panel: use __nonstring
Compiler Attributes: enable -Wstringop-truncation on W=1 (gcc >= 8)
Compiler Attributes: add support for __nonstring (gcc >= 8)
Compiler Attributes: add MAINTAINERS entry
Compiler Attributes: add Doc/process/programming-language.rst
Compiler Attributes: remove uses of __attribute__ from compiler.h
Compiler Attributes: KENTRY used twice the "used" attribute
Compiler Attributes: use feature checks instead of version checks
Compiler Attributes: add missing SPDX ID in compiler_types.h
Compiler Attributes: remove unneeded sparse (__CHECKER__) tests
Compiler Attributes: homogenize __must_be_array
Compiler Attributes: remove unneeded tests
Compiler Attributes: always use the extra-underscores syntax
Compiler Attributes: remove unused attributes
- Remove unused fallback for BUILD_BUG_ON (which technically contains a VLA)
- Lift -Wvla to the top-level Makefile
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlvV7jMWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJkUwD/46aPTmVXQqzVr1QxRC087Aou5H
hCMaUSG0mSuinhIpB398xh58imTqz48n44gf8yrBgittecV+g8cQ3TJZBp8fSbj4
zyuSy0xlghxqNYhsirMPdN61A8qOS/F7i60XFBXSKpdzKorUUsqlP6paDg1CWslB
KWIOr2aHxvQk93pHFsWjOeM7CGqQIq1brKKDPAL+R4zj8EzXfi0s1sOR4tHCXRZP
sTsuHysAjsBlaw54tvbCA5SIyABzZK5xsQoeChSKMoCDQb8TOQK4j8f78470/nmk
lFWZWGKFr2sPUPcuf1casL5Cp57ycjwi4qTzKX2Qa1hhEhrYTIvcOwzOWdc0AY+6
Fttbopla1QmrGndLtm8FOJRGWiCAzhiSpV9vk1VDaP2jeCc6MEvTC0shsAgxSfsr
JRIHqq37w3TBr78qeNuxOaSEkoqtjTVYug2aq7kefG66DGGChzCTVNQrLVNei3Qg
ZdamzUZz7FVV6WmXlWsBfbm14sIRd02r7XORm0cJdIVvIwqJ9QIGJigR/Sfc4Qdi
pXuuE3TNSfArACXlCkaBfqMYAhWO35qy41TerRlRDkri89DNHPY8RAVV0GpNSp7q
kPaPBHZRKXAjHPnnypXz3A/zQoqJ7uWRG5msethAWtEXJBQ4qQWVhjTNmV7tkOkr
HIaJFTb03LLIcuv23Q==
=Vnw8
-----END PGP SIGNATURE-----
Merge tag 'vla-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull VLA removal from Kees Cook:
"Globally warn on VLA use.
This turns on "-Wvla" globally now that the last few trees with their
VLA removals have landed (crypto, block, net, and powerpc).
Arnd mentioned that there may be a couple more VLAs hiding in
hard-to-find randconfigs, but nothing big has shaken out in the last
month or so in linux-next.
We should be basically VLA-free now! Wheee. :)
Summary:
- Remove unused fallback for BUILD_BUG_ON (which technically contains
a VLA)
- Lift -Wvla to the top-level Makefile"
* tag 'vla-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
Makefile: Globally enable VLA warning
compiler.h: give up __compiletime_assert_fallback()
Fixes the objtool warning seen with Clang:
arch/x86/mm/fault.o: warning: objtool: no_context()+0x220: unreachable
instruction
Fixes commit 815f0ddb346c ("include/linux/compiler*.h: make compiler-*.h
mutually exclusive")
Josh noted that the fallback definition was meant to work around a
pre-gcc-4.6 bug. GCC still needs to work around
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82365, so compiler-gcc.h
defines its own version of unreachable(). Clang and ICC can use this
shared definition.
Link: https://github.com/ClangBuiltLinux/linux/issues/204
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
__compiletime_assert_fallback() is supposed to stop building earlier
by using the negative-array-size method in case the compiler does not
support "error" attribute, but has never worked like that.
You can simply try:
BUILD_BUG_ON(1);
GCC immediately terminates the build, but Clang does not report
anything because Clang does not support the "error" attribute now.
It will later fail at link time, but __compiletime_assert_fallback()
is not working at least.
The root cause is commit 1d6a0d19c855 ("bug.h: prevent double evaluation
of `condition' in BUILD_BUG_ON"). Prior to that commit, BUILD_BUG_ON()
was checked by the negative-array-size method *and* the link-time trick.
Since that commit, the negative-array-size is not effective because
'__cond' is no longer constant. As the comment in <linux/build_bug.h>
says, GCC (and Clang as well) only emits the error for obvious cases.
When '__cond' is a variable,
((void)sizeof(char[1 - 2 * __cond]))
... is not obvious for the compiler to know the array size is negative.
Reverting that commit would break BUILD_BUG() because negative-size-array
is evaluated before the code is optimized out.
Let's give up __compiletime_assert_fallback(). This commit does not
change the current behavior since it just rips off the useless code.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
As described in:
77b0bf55bc67: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")
GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.
In the case of objtool the resulting borkage can be significant, since all the
annotations of objtool are discarded during linkage and never inlined,
yet GCC bogusly considers most functions affected by objtool annotations
as 'too large'.
The workaround is to set an assembly macro and call it from the inline
assembly block. As a result GCC considers the inline assembly block as
a single instruction. (Which it isn't, but that's the best we can get.)
This increases the kernel size slightly:
text data bss dec hex filename
18140829 10224724 2957312 31322865 1ddf2f1 ./vmlinux before
18140970 10225412 2957312 31323694 1ddf62e ./vmlinux after (+829)
The number of static text symbols (i.e. non-inlined functions) is reduced:
Before: 40321
After: 40302 (-19)
[ mingo: Rewrote the changelog. ]
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-sparse@vger.kernel.org
Link: http://lkml.kernel.org/r/20181003213100.189959-4-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Sparse knows about a few more attributes now, so we can remove
the __CHECKER__ conditions from them (which, in turn, allow us
to move some of them later on to compiler_attributes.h).
* assume_aligned: since sparse's commit ffc860b ("sparse:
ignore __assume_aligned__ attribute"), included in 0.5.1
* error: since sparse's commit 0a04210 ("sparse: Add 'error'
to ignored attributes"), included in 0.5.0
* hotpatch: since sparse's commit 6043210 ("sparse/parse.c:
ignore hotpatch attribute"), included in 0.5.1
* warning: since sparse's commit 977365d ("Avoid "attribute
'warning': unknown attribute" warning"), included in 0.4.2
On top of that, __must_be_array does not need it either because:
* Even ancient versions of sparse do not have a problem
* BUILD_BUG_ON_ZERO() is currently disabled for __CHECKER__
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Different definitions of __must_be_array:
* gcc: disabled for __CHECKER__
* clang: same definition as gcc's, but without __CHECKER__
* intel: the comment claims __builtin_types_compatible_p()
is unsupported; but icc seems to support it since 13.0.1
(released in 2012). See https://godbolt.org/z/S0l6QQ
Therefore, we can remove all of them and have a single definition
in compiler.h
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
The attribute syntax optionally allows to surround attribute names
with "__" in order to avoid collisions with macros of the same name
(see https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html).
This homogenizes all attributes to use the syntax with underscores.
While there are currently only a handful of cases of some TUs defining
macros like "error" which may collide with the attributes,
this should prevent futures surprises.
This has been done only for "standard" attributes supported by
the major compilers. In other words, those of third-party tools
(e.g. sparse, plugins...) have not been changed for the moment.
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
__optimize and __deprecate_for_modules are unused in
the whole kernel tree. Simply drop them.
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Appararently, it's possible to have a non-trivial TU include a few
headers, including linux/build_bug.h, without ending up with
linux/types.h. So the 0day bot sent me
config: um-x86_64_defconfig (attached as .config)
>> include/linux/compiler.h:316:3: error: unknown type name 'bool'; did you mean '_Bool'?
bool __cond = !(condition); \
for something I'm working on.
Rather than contributing to the #include madness and including
linux/types.h from compiler.h, just use int.
Link: http://lkml.kernel.org/r/20180817101036.20969-1-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Christopher Li <sparse@chrisli.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function __builtin_expect returns long type (see the gcc
documentation), and so do macros likely and unlikely. Unfortunatelly, when
CONFIG_PROFILE_ANNOTATED_BRANCHES is selected, the macros likely and
unlikely expand to __branch_check__ and __branch_check__ truncates the
long type to int. This unintended truncation may cause bugs in various
kernel code (we found a bug in dm-writecache because of it), so it's
better to fix __branch_check__ to return long.
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1805300818140.24812@file01.intranet.prod.int.rdu2.redhat.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 1f0d69a9fc815 ("tracing: profile likely and unlikely annotations")
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Looking at functions with large stack frames across all architectures
led me discovering that BUG() suffers from the same problem as
fortify_panic(), which I've added a workaround for already.
In short, variables that go out of scope by calling a noreturn function
or __builtin_unreachable() keep using stack space in functions
afterwards.
A workaround that was identified is to insert an empty assembler
statement just before calling the function that doesn't return. I'm
adding a macro "barrier_before_unreachable()" to document this, and
insert calls to that in all instances of BUG() that currently suffer
from this problem.
The files that saw the largest change from this had these frame sizes
before, and much less with my patch:
fs/ext4/inode.c:82:1: warning: the frame size of 1672 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/ext4/namei.c:434:1: warning: the frame size of 904 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/ext4/super.c:2279:1: warning: the frame size of 1160 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/ext4/xattr.c:146:1: warning: the frame size of 1168 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/f2fs/inode.c:152:1: warning: the frame size of 1424 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_core.c:1195:1: warning: the frame size of 1068 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_core.c:395:1: warning: the frame size of 1084 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_ftp.c:298:1: warning: the frame size of 928 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_ftp.c:418:1: warning: the frame size of 908 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_lblcr.c:718:1: warning: the frame size of 960 bytes is larger than 800 bytes [-Wframe-larger-than=]
drivers/net/xen-netback/netback.c:1500:1: warning: the frame size of 1088 bytes is larger than 800 bytes [-Wframe-larger-than=]
In case of ARC and CRIS, it turns out that the BUG() implementation
actually does return (or at least the compiler thinks it does),
resulting in lots of warnings about uninitialized variable use and
leaving noreturn functions, such as:
block/cfq-iosched.c: In function 'cfq_async_queue_prio':
block/cfq-iosched.c:3804:1: error: control reaches end of non-void function [-Werror=return-type]
include/linux/dmaengine.h: In function 'dma_maxpq':
include/linux/dmaengine.h:1123:1: error: control reaches end of non-void function [-Werror=return-type]
This makes them call __builtin_trap() instead, which should normally
dump the stack and kill the current process, like some of the other
architectures already do.
I tried adding barrier_before_unreachable() to panic() and
fortify_panic() as well, but that had very little effect, so I'm not
submitting that patch.
Vineet said:
: For ARC, it is double win.
:
: 1. Fixes 3 -Wreturn-type warnings
:
: | ../net/core/ethtool.c:311:1: warning: control reaches end of non-void function
: [-Wreturn-type]
: | ../kernel/sched/core.c:3246:1: warning: control reaches end of non-void function
: [-Wreturn-type]
: | ../include/linux/sunrpc/svc_xprt.h:180:1: warning: control reaches end of
: non-void function [-Wreturn-type]
:
: 2. bloat-o-meter reports code size improvements as gcc elides the
: generated code for stack return.
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82365
Link: http://lkml.kernel.org/r/20171219114112.939391-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc]
Tested-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc]
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>