Let's track the mapcount of large folios in a single value. The mapcount
of a large folio currently corresponds to the sum of the entire mapcount
and all page mapcounts.
This sum is what we actually want to know in folio_mapcount() and it is
also sufficient for implementing folio_mapped().
With PTE-mapped THP becoming more important and more widely used, we want
to avoid looping over all pages of a folio just to obtain the mapcount of
large folios. The comment "In the common case, avoid the loop when no
pages mapped by PTE" in folio_total_mapcount() does no longer hold for
mTHP that are always mapped by PTE.
Further, we are planning on using folio_mapcount() more frequently, and
might even want to remove page mapcounts for large folios in some kernel
configs. Therefore, allow for reading the mapcount of large folios
efficiently and atomically without looping over any pages.
Maintain the mapcount also for hugetlb pages for simplicity. Use the new
mapcount to implement folio_mapcount() and folio_mapped(). Make
page_mapped() simply call folio_mapped(). We can now get rid of
folio_large_is_mapped().
_nr_pages_mapped is now only used in rmap code and for debugging purposes.
Keep folio_nr_pages_mapped() around, but document that its use should be
limited to rmap internals and debugging purposes.
This change implies one additional atomic add/sub whenever
mapping/unmapping (parts of) a large folio.
As we now batch RMAP operations for PTE-mapped THP during fork(), during
unmap/zap, and when PTE-remapping a PMD-mapped THP, and we adjust the
large mapcount for a PTE batch only once, the added overhead in the common
case is small. Only when unmapping individual pages of a large folio
(e.g., during COW), the overhead might be bigger in comparison, but it's
essentially one additional atomic operation.
Note that before the new mapcount would overflow, already our refcount
would overflow: each mapping requires a folio reference. Extend the
focumentation of folio_mapcount().
Link: https://lkml.kernel.org/r/20240409192301.907377-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Both callers already have a folio; pass it in and save a few calls to
compound_head().
Link: https://lkml.kernel.org/r/20240405153228.2563754-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Nowadays, we call it "GUP-fast", the external interface includes functions
like "get_user_pages_fast()", and we renamed all internal functions to
reflect that as well.
Let's make the config option reflect that.
Link: https://lkml.kernel.org/r/20240402125516.223131-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rework madvise_cold_or_pageout_pte_range() to avoid splitting any large
folio that is fully and contiguously mapped in the pageout/cold vm range.
This change means that large folios will be maintained all the way to swap
storage. This both improves performance during swap-out, by eliding the
cost of splitting the folio, and sets us up nicely for maintaining the
large folio when it is swapped back in (to be covered in a separate
series).
Folios that are not fully mapped in the target range are still split, but
note that behavior is changed so that if the split fails for any reason
(folio locked, shared, etc) we now leave it as is and move to the next pte
in the range and continue work on the proceeding folios. Previously any
failure of this sort would cause the entire operation to give up and no
folios mapped at higher addresses were paged out or made cold. Given
large folios are becoming more common, this old behavior would have likely
lead to wasted opportunities.
While we are at it, change the code that clears young from the ptes to use
ptep_test_and_clear_young(), via the new mkold_ptes() batch helper
function. This is more efficent than get_and_clear/modify/set, especially
for contpte mappings on arm64, where the old approach would require
unfolding/refolding and the new approach can be done in place.
Link: https://lkml.kernel.org/r/20240408183946.2991168-8-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now that we no longer have a convenient flag in the cluster to determine
if a folio is large, free_swap_and_cache() will take a reference and lock
a large folio much more often, which could lead to contention and (e.g.)
failure to split large folios, etc.
Let's solve that problem by batch freeing swap and cache with a new
function, free_swap_and_cache_nr(), to free a contiguous range of swap
entries together. This allows us to first drop a reference to each swap
slot before we try to release the cache folio. This means we only try to
release the folio once, only taking the reference and lock once - much
better than the previous 512 times for the 2M THP case.
Contiguous swap entries are gathered in zap_pte_range() and
madvise_free_pte_range() in a similar way to how present ptes are already
gathered in zap_pte_range().
While we are at it, let's simplify by converting the return type of both
functions to void. The return value was used only by zap_pte_range() to
print a bad pte, and was ignored by everyone else, so the extra reporting
wasn't exactly guaranteed. We will still get the warning with most of the
information from get_swap_device(). With the batch version, we wouldn't
know which pte was bad anyway so could print the wrong one.
[ryan.roberts@arm.com: fix a build warning on parisc]
Link: https://lkml.kernel.org/r/20240409111840.3173122-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20240408183946.2991168-3-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
With all callers converted, we can use the nice shorter name. Take this
opportunity to reorder the arguments to the logical order (larger object
first).
Link: https://lkml.kernel.org/r/20240328225831.1765286-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert the three remaining callers to call vma_pgoff_address() directly.
This removes an ambiguity where we'd check just one page if passed a tail
page and all N pages if passed a head page.
Also add better kernel-doc for vma_pgoff_address().
Link: https://lkml.kernel.org/r/20240328225831.1765286-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Implements the "init_mlocked_on_free" boot option. When this boot option
is enabled, any mlock'ed pages are zeroed on free. If
the pages are munlock'ed beforehand, no initialization takes place.
This boot option is meant to combat the performance hit of
"init_on_free" as reported in commit 6471384af2a6 ("mm: security:
introduce init_on_alloc=1 and init_on_free=1 boot options"). With
"init_mlocked_on_free=1" only relevant data is freed while everything
else is left untouched by the kernel. Correspondingly, this patch
introduces no performance hit for unmapping non-mlock'ed memory. The
unmapping overhead for purely mlocked memory was measured to be
approximately 13%. Realistically, most systems mlock only a fraction of
the total memory so the real-world system overhead should be close to
zero.
Optimally, userspace programs clear any key material or other
confidential memory before exit and munlock the according memory
regions. If a program crashes, userspace key managers fail to do this
job. Accordingly, no munlock operations are performed so the data is
caught and zeroed by the kernel. Should the program not crash, all
memory will ideally be munlocked so no overhead is caused.
CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON can be set to enable
"init_mlocked_on_free" by default.
Link: https://lkml.kernel.org/r/20240329145605.149917-1-yjnworkstation@gmail.com
Signed-off-by: York Jasper Niebuhr <yjnworkstation@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: York Jasper Niebuhr <yjnworkstation@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
PageAnonExclusive() used to forbid tail pages for hugetlbfs, as that used
to be called mostly in hugetlb specific paths and the head page was
guaranteed.
As we move forward towards merging hugetlb paths into generic mm, we may
start to pass in tail hugetlb pages (when with cont-pte/cont-pmd huge
pages) for such check. Allow it to properly fetch the head, in which case
the anon-exclusiveness of the head will always represents the tail page.
There's already a sign of it when we look at the GUP-fast which already
contain the hugetlb processing altogether: we used to have a specific
commit 5805192c7b72 ("mm/gup: handle cont-PTE hugetlb pages correctly in
gup_must_unshare() via GUP-fast") covering that area. Now with this more
generic change, that can also go away.
[akpm@linux-foundation.org: simplify PageAnonExclusive(), per Matthew]
Link: https://lkml.kernel.org/r/Zg3u5Sh9EbbYPhaI@casper.infradead.org
Link: https://lkml.kernel.org/r/20240403013249.1418299-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Replace pmd_trans_huge() with pmd_leaf() to also cover pmd_huge() as long
as enabled.
FOLL_TOUCH and FOLL_SPLIT_PMD only apply to THP, not yet huge.
Since now follow_trans_huge_pmd() can process hugetlb pages, renaming it
into follow_huge_pmd() to match what it does. Move it into gup.c so not
depend on CONFIG_THP.
When at it, move the ctx->page_mask setup into follow_huge_pmd(), only set
it when the page is valid. It was not a bug to set it before even if GUP
failed (page==NULL), because follow_page_mask() callers always ignores
page_mask if so. But doing so makes the code cleaner.
[peterx@redhat.com: allow follow_pmd_mask() to take hugetlb tail pages]
Link: https://lkml.kernel.org/r/20240403013249.1418299-3-peterx@redhat.com
Link: https://lkml.kernel.org/r/20240327152332.950956-12-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Jones <andrew.jones@linux.dev>
Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Teach follow_pud_mask() to be able to handle normal PUD pages like
hugetlb.
Rename follow_devmap_pud() to follow_huge_pud() so that it can process
either huge devmap or hugetlb. Move it out of TRANSPARENT_HUGEPAGE_PUD
and and huge_memory.c (which relies on CONFIG_THP). Switch to pud_leaf()
to detect both cases in the slow gup.
In the new follow_huge_pud(), taking care of possible CoR for hugetlb if
necessary. touch_pud() needs to be moved out of huge_memory.c to be
accessable from gup.c even if !THP.
Since at it, optimize the non-present check by adding a pud_present()
early check before taking the pgtable lock, failing the follow_page()
early if PUD is not present: that is required by both devmap or hugetlb.
Use pud_huge() to also cover the pud_devmap() case.
One more trivial thing to mention is, introduce "pud_t pud" in the code
paths along the way, so the code doesn't dereference *pudp multiple time.
Not only because that looks less straightforward, but also because if the
dereference really happened, it's not clear whether there can be race to
see different *pudp values when it's being modified at the same time.
Setting ctx->page_mask properly for a PUD entry. As a side effect, this
patch should also be able to optimize devmap GUP on PUD to be able to jump
over the whole PUD range, but not yet verified. Hugetlb already can do so
prior to this patch.
Link: https://lkml.kernel.org/r/20240327152332.950956-11-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Jones <andrew.jones@linux.dev>
Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
None of the functions called by page_mapped() modify the page or folio, so
mark them all as const.
Link: https://lkml.kernel.org/r/20240326171045.410737-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There are two types of iterators mas and vmi in the current code. If the
maple tree comes from the mm structure, we can use the vma iterator.
Avoid using mas directly as possible.
Keep using mas for the mt_detach tree, since it doesn't come from the mm
structure.
Remove as many uses of mas as possible, but we will still have a few that
must be passed through in unmap_vmas() and free_pgtables().
Also introduce vma_iter_reset, vma_iter_{prev, next}_range_limit and
vma_iter_area_{lowest, highest} helper functions for using the vma
interator.
Link: https://lkml.kernel.org/r/20240325063258.1437618-1-yajun.deng@linux.dev
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Tested-by: Helge Deller <deller@gmx.de> [parisc]
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit d0637c505f8a1 ("arm64: enable THP_SWAP for arm64") brings up
THP_SWAP on ARM64, but it doesn't enable THP_SWP on hardware with MTE as
the MTE code works with the assumption tags save/restore is always
handling a folio with only one page.
The limitation should be removed as more and more ARM64 SoCs have this
feature. Co-existence of MTE and THP_SWAP becomes more and more
important.
This patch makes MTE tags saving support large folios, then we don't need
to split large folios into base pages for swapping out on ARM64 SoCs with
MTE any more.
arch_prepare_to_swap() should take folio rather than page as parameter
because we support THP swap-out as a whole. It saves tags for all pages
in a large folio.
As now we are restoring tags based-on folio, in arch_swap_restore(), we
may increase some extra loops and early-exitings while refaulting a large
folio which is still in swapcache in do_swap_page(). In case a large
folio has nr pages, do_swap_page() will only set the PTE of the particular
page which is causing the page fault. Thus do_swap_page() runs nr times,
and each time, arch_swap_restore() will loop nr times for those subpages
in the folio. So right now the algorithmic complexity becomes O(nr^2).
Once we support mapping large folios in do_swap_page(), extra loops and
early-exitings will decrease while not being completely removed as a large
folio might get partially tagged in corner cases such as, 1. a large
folio in swapcache can be partially unmapped, thus, MTE tags for the
unmapped pages will be invalidated; 2. users might use mprotect() to set
MTEs on a part of a large folio.
arch_thp_swp_supported() is dropped since ARM64 MTE was the only one who
needed it.
Link: https://lkml.kernel.org/r/20240322114136.61386-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "make the hugetlb migration strategy consistent", v2.
As discussed in previous thread [1], there is an inconsistency when
handling hugetlb migration. When handling the migration of freed hugetlb,
it prevents fallback to other NUMA nodes in
alloc_and_dissolve_hugetlb_folio(). However, when dealing with in-use
hugetlb, it allows fallback to other NUMA nodes in
alloc_hugetlb_folio_nodemask(), which can break the per-node hugetlb pool
and might result in unexpected failures when node bound workloads doesn't
get what is asssumed available.
This patchset tries to make the hugetlb migration strategy more clear
and consistent. Please find details in each patch.
[1]
https://lore.kernel.org/all/6f26ce22d2fcd523418a085f2c588fe0776d46e7.1706794035.git.baolin.wang@linux.alibaba.com/
This patch (of 2):
To support different hugetlb allocation strategies during hugetlb
migration based on various migration reasons, record the migration reason
in the migration_target_control structure as a preparation.
Link: https://lkml.kernel.org/r/cover.1709719720.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/7b95d4981e07211f57139fc5b1f7ce91b920cee4.1709719720.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Free page accounting currently happens a bit too high up the call stack,
where it has to deal with guard pages, compaction capturing, block
stealing and even page isolation. This is subtle and fragile, and makes
it difficult to hack on the code.
Now that type violations on the freelists have been fixed, push the
accounting down to where pages enter and leave the freelist.
[hannes@cmpxchg.org: undo unrelated drive-by line wrap]
Link: https://lkml.kernel.org/r/20240327185736.GA7597@cmpxchg.org
[hannes@cmpxchg.org: remove unused page parameter from account_freepages()]
Link: https://lkml.kernel.org/r/20240327185831.GB7597@cmpxchg.org
[baolin.wang@linux.alibaba.com: fix free page accounting]
Link: https://lkml.kernel.org/r/a2a48baca69f103aa431fd201f8a06e3b95e203d.1712648441.git.baolin.wang@linux.alibaba.com
[andriy.shevchenko@linux.intel.com: avoid defining unused function]
Link: https://lkml.kernel.org/r/20240423161506.2637177-1-andriy.shevchenko@linux.intel.com
Link: https://lkml.kernel.org/r/20240320180429.678181-11-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Page isolation currently sets MIGRATE_ISOLATE on a block, then drops
zone->lock and scans the block for straddling buddies to split up.
Because this happens non-atomically wrt the page allocator, it's possible
for allocations to get a buddy whose first block is a regular pcp
migratetype but whose tail is isolated. This means that in certain cases
memory can still be allocated after isolation. It will also trigger the
freelist type hygiene warnings in subsequent patches.
start_isolate_page_range()
isolate_single_pageblock()
set_migratetype_isolate(tail)
lock zone->lock
move_freepages_block(tail) // nop
set_pageblock_migratetype(tail)
unlock zone->lock
__rmqueue_smallest()
del_page_from_freelist(head)
expand(head, head_mt)
WARN(head_mt != tail_mt)
start_pfn = ALIGN_DOWN(MAX_ORDER_NR_PAGES)
for (pfn = start_pfn, pfn < end_pfn)
if (PageBuddy())
split_free_page(head)
Introduce a variant of move_freepages_block() provided by the allocator
specifically for page isolation; it moves free pages, converts the block,
and handles the splitting of straddling buddies while holding zone->lock.
The allocator knows that pageblocks and buddies are always naturally
aligned, which means that buddies can only straddle blocks if they're
actually >pageblock_order. This means the search-and-split part can be
simplified compared to what page isolation used to do.
Also tighten up the page isolation code around the expectations of which
pages can be large, and how they are freed.
Based on extensive discussions with and invaluable input from Zi Yan.
[hannes@cmpxchg.org: work around older gcc warning]
Link: https://lkml.kernel.org/r/20240321142426.GB777580@cmpxchg.org
Link: https://lkml.kernel.org/r/20240320180429.678181-10-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now that prep_compound_page() initialises folio->_deferred_list,
folio_prep_large_rmappable()'s only purpose is to set the large_rmappable
flag, so inline it into the two callers. Take the opportunity to convert
the large_rmappable definition from PAGEFLAG to FOLIO_FLAG and remove the
existance of PageTestLargeRmappable and friends.
Link: https://lkml.kernel.org/r/20240321142448.1645400-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Various significant MM patches".
These patches all interact in annoying ways which make it tricky to send
them out in any way other than a big batch, even though there's not really
an overarching theme to connect them.
The big effects of this patch series are:
- folio_test_hugetlb() becomes reliable, even when called without a
page reference
- We free up PG_slab, and we could always use more page flags
- We no longer need to check PageSlab before calling page_mapcount()
This patch (of 9):
For compound pages which are at least order-2 (and hence have a
deferred_list), initialise it and then we can check at free that the page
is not part of a deferred list. We recently found this useful to rule out
a source of corruption.
[peterx@redhat.com: always initialise folio->_deferred_list]
Link: https://lkml.kernel.org/r/20240417211836.2742593-2-peterx@redhat.com
Link: https://lkml.kernel.org/r/20240321142448.1645400-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20240321142448.1645400-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Darrick reports that in some cases where pread() would fail with -EIO and
mmap()+access would generate a SIGBUS signal, MADV_POPULATE_READ /
MADV_POPULATE_WRITE will keep retrying forever and not fail with -EFAULT.
While the madvise() call can be interrupted by a signal, this is not the
desired behavior. MADV_POPULATE_READ / MADV_POPULATE_WRITE should behave
like page faults in that case: fail and not retry forever.
A reproducer can be found at [1].
The reason is that __get_user_pages(), as called by
faultin_vma_page_range(), will not handle VM_FAULT_RETRY in a proper way:
it will simply return 0 when VM_FAULT_RETRY happened, making
madvise_populate()->faultin_vma_page_range() retry again and again, never
setting FOLL_TRIED->FAULT_FLAG_TRIED for __get_user_pages().
__get_user_pages_locked() does what we want, but duplicating that logic in
faultin_vma_page_range() feels wrong.
So let's use __get_user_pages_locked() instead, that will detect
VM_FAULT_RETRY and set FOLL_TRIED when retrying, making the fault handler
return VM_FAULT_SIGBUS (VM_FAULT_ERROR) at some point, propagating -EFAULT
from faultin_page() to __get_user_pages(), all the way to
madvise_populate().
But, there is an issue: __get_user_pages_locked() will end up re-taking
the MM lock and then __get_user_pages() will do another VMA lookup. In
the meantime, the VMA layout could have changed and we'd fail with
different error codes than we'd want to.
As __get_user_pages() will currently do a new VMA lookup either way, let
it do the VMA handling in a different way, controlled by a new
FOLL_MADV_POPULATE flag, effectively moving these checks from
madvise_populate() + faultin_page_range() in there.
With this change, Darricks reproducer properly fails with -EFAULT, as
documented for MADV_POPULATE_READ / MADV_POPULATE_WRITE.
[1] https://lore.kernel.org/all/20240313171936.GN1927156@frogsfrogsfrogs/
Link: https://lkml.kernel.org/r/20240314161300.382526-1-david@redhat.com
Link: https://lkml.kernel.org/r/20240314161300.382526-2-david@redhat.com
Fixes: 4ca9b3859dac ("mm/madvise: introduce MADV_POPULATE_(READ|WRITE) to prefault page tables")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Darrick J. Wong <djwong@kernel.org>
Closes: https://lore.kernel.org/all/20240311223815.GW1927156@frogsfrogsfrogs/
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series "mm:
zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is hotplugged
as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving policy
wherein we allocate memory across nodes in a weighted fashion rather
than uniformly. This is beneficial in heterogeneous memory environments
appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the process
has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown situations.
The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings" Ryan
Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's series
"Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page faults.
He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction test",
Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in
our handling of DAX on archiecctures which have virtually aliasing data
caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic
improvements in worst-case mmap_lock hold times during certain
userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability improvements
in his series "Mitigate a vmap lock contention". It realizes a 12x
improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging of
large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages() to
an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which are
configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA
joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx
TMNhHfyiHYDTx/GAV9NXW84tasJSDgA=
=TG55
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
madvise, mprotect and some others might need folio_pte_batch to check if a
range of PTEs are completely mapped to a large folio with contiguous
physical addresses. Let's make it available in mm/internal.h.
While at it, add proper kernel doc and sanity-check more input parameters
using two additional VM_WARN_ON_FOLIO().
[21cnbao@gmail.com: build fix]
Link: https://lkml.kernel.org/r/CAGsJ_4wWzG-37D82vqP_zt+Fcbz+URVe5oXLBc4M5wbN8A_gpQ@mail.gmail.com
[david@redhat.com: improve the doc for the exported func]
Link: https://lkml.kernel.org/r/20240227104201.337988-1-21cnbao@gmail.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
alloc_contig_migrate_range has every information to be able to understand
big contiguous allocation latency. For example, how many pages are
migrated, how many times they were needed to unmap from page tables.
This patch adds the trace event to collect the allocation statistics. In
the field, it was quite useful to understand CMA allocation latency.
[akpm@linux-foundation.org: a/trace_mm_alloc_config_migrate_range_info_enabled/trace_mm_alloc_contig_migrate_range_info_enabled]
Link: https://lkml.kernel.org/r/20240228051127.2859472-1-richardycc@google.com
Signed-off-by: Richard Chang <richardycc@google.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org.
Cc: Martin Liu <liumartin@google.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All callers now use free_unref_folios() so we can delete this function.
Link: https://lkml.kernel.org/r/20240227174254.710559-15-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Iterate over a folio_batch rather than a linked list. This is easier for
the CPU to prefetch and has a batch count naturally built in so we don't
need to track it. Again, this lowers the maximum lock hold time from
32 folios to 15, but I do not expect this to have a significant effect.
Link: https://lkml.kernel.org/r/20240227174254.710559-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Folios of order 1 have no space to store the deferred list. This is not a
problem for the page cache as file-backed folios are never placed on the
deferred list. All we need to do is prevent the core MM from touching the
deferred list for order 1 folios and remove the code which prevented us
from allocating order 1 folios.
Link: https://lore.kernel.org/linux-mm/90344ea7-4eec-47ee-5996-0c22f42d6a6a@google.com/
Link: https://lkml.kernel.org/r/20240226205534.1603748-3-zi.yan@sent.com
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Zi Yan <ziy@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Michal Koutny <mkoutny@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
While doing MADV_PAGEOUT, the current code will clear PTE young so that
vmscan won't read young flags to allow the reclamation of madvised folios
to go ahead. It seems we can do it by directly ignoring references, thus
we can remove tlb flush in madvise and rmap overhead in vmscan.
Regarding the side effect, in the original code, if a parallel thread runs
side by side to access the madvised memory with the thread doing madvise,
folios will get a chance to be re-activated by vmscan (though the time gap
is actually quite small since checking PTEs is done immediately after
clearing PTEs young). But with this patch, they will still be reclaimed.
But this behaviour doing PAGEOUT and doing access at the same time is
quite silly like DoS. So probably, we don't need to care. Or ignoring
the new access during the quite small time gap is even better.
For DAMON's DAMOS_PAGEOUT based on physical address region, we still keep
its behaviour as is since a physical address might be mapped by multiple
processes. MADV_PAGEOUT based on virtual address is actually much more
aggressive on reclamation. To untouch paddr's DAMOS_PAGEOUT, we simply
pass ignore_references as false in reclaim_pages().
A microbench as below has shown 6% decrement on the latency of
MADV_PAGEOUT,
#define PGSIZE 4096
main()
{
int i;
#define SIZE 512*1024*1024
volatile long *p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
for (i = 0; i < SIZE/sizeof(long); i += PGSIZE / sizeof(long))
p[i] = 0x11;
madvise(p, SIZE, MADV_PAGEOUT);
}
w/o patch w/ patch
root@10:~# time ./a.out root@10:~# time ./a.out
real 0m49.634s real 0m46.334s
user 0m0.637s user 0m0.648s
sys 0m47.434s sys 0m44.265s
Link: https://lkml.kernel.org/r/20240226005739.24350-1-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Handle hugetlb faults under the VMA lock", v2.
It is generally safe to handle hugetlb faults under the VMA lock. The
only time this is unsafe is when no anon_vma has been allocated to this
vma yet, so we can use vmf_anon_prepare() instead of anon_vma_prepare() to
bailout if necessary. This should only happen for the first hugetlb page
in the vma.
Additionally, this patchset begins to use struct vm_fault within
hugetlb_fault(). This works towards cleaning up hugetlb code, and should
significantly reduce the number of arguments passed to functions.
The last patch in this series may cause ltp hugemmap10 to "fail". This is
because vmf_anon_prepare() may bailout with no anon_vma under the VMA lock
after allocating a folio for the hugepage. In free_huge_folio(), this
folio is completely freed on bailout iff there is a surplus of hugetlb
pages. This will remove a folio off the freelist and decrement the number
of hugepages while ltp expects these counters to remain unchanged on
failure. The rest of the ltp testcases pass.
This patch (of 2):
In order to handle hugetlb faults under the VMA lock, hugetlb can use
vmf_anon_prepare() to ensure we can safely prepare an anon_vma. Change it
to be a non-static function so it can be used within hugetlb as well.
Link: https://lkml.kernel.org/r/20240221234732.187629-6-vishal.moola@gmail.com
Link: https://lkml.kernel.org/r/20240221234732.187629-2-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Before last commit, memory compaction only migrates order-0 folios and
skips >0 order folios. Last commit splits all >0 order folios during
compaction. This commit migrates >0 order folios during compaction by
keeping isolated free pages at their original size without splitting them
into order-0 pages and using them directly during migration process.
What is different from the prior implementation:
1. All isolated free pages are kept in a NR_PAGE_ORDERS array of page
lists, where each page list stores free pages in the same order.
2. All free pages are not post_alloc_hook() processed nor buddy pages,
although their orders are stored in first page's private like buddy
pages.
3. During migration, in new page allocation time (i.e., in
compaction_alloc()), free pages are then processed by post_alloc_hook().
When migration fails and a new page is returned (i.e., in
compaction_free()), free pages are restored by reversing the
post_alloc_hook() operations using newly added
free_pages_prepare_fpi_none().
Step 3 is done for a latter optimization that splitting and/or merging
free pages during compaction becomes easier.
Note: without splitting free pages, compaction can end prematurely due to
migration will return -ENOMEM even if there is free pages. This happens
when no order-0 free page exist and compaction_alloc() return NULL.
Link: https://lkml.kernel.org/r/20240220183220.1451315-4-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Adam Manzanares <a.manzanares@samsung.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There is a lot of code needs to set the range of vma in mmap.c, introduce
vma_set_range() to simplify the code.
Link: https://lkml.kernel.org/r/20240124035719.3685193-1-yajun.deng@linux.dev
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mapping_set_update is only used inside mm/. Move mapping_set_update to
mm/internal.h and turn it into an inline function instead of a macro.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
commit 23baf831a32c ("mm, treewide: redefine MAX_ORDER sanely") has
changed the definition of MAX_ORDER to be inclusive. This has caused
issues with code that was not yet upstream and depended on the previous
definition.
To draw attention to the altered meaning of the define, rename MAX_ORDER
to MAX_PAGE_ORDER.
Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Let's fixup one remaining comment. Note that the only trace remaining of
the old rmap interface is in an example in Documentation/trace/ftrace.rst,
that we'll just leave alone.
Link: https://lkml.kernel.org/r/20231220224504.646757-41-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We removed all "bool compound" and RMAP_COMPOUND parameters. Let's remove
the remaining "compound" terminology by making COMPOUND_MAPPED match the
"folio->_entire_mapcount" terminology, renaming it to ENTIRELY_MAPPED.
ENTIRELY_MAPPED is only used when the whole folio is mapped using a single
page table entry (e.g., a single PMD mapping a PMD-sized THP). For now,
we don't support mapping any THP bigger than that, so ENTIRELY_MAPPED only
applies to PMD-mapped PMD-sized THP only.
Link: https://lkml.kernel.org/r/20231220224504.646757-40-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Let's convert it like we converted all the other rmap functions. Don't
introduce folio_try_share_anon_rmap_ptes() for now, as we don't have a
user that wants rmap batching in sight. Pretty easy to add later.
All users are easy to convert -- only ksm.c doesn't use folios yet but
that is left for future work -- so let's just do it in a single shot.
While at it, turn the BUG_ON into a WARN_ON_ONCE.
Note that page_try_share_anon_rmap() so far didn't care about pte/pmd
mappings (no compound parameter). We're changing that so we can perform
better sanity checks and make the code actually more readable/consistent.
For example, __folio_rmap_sanity_checks() will make sure that a PMD range
actually falls completely into the folio.
Link: https://lkml.kernel.org/r/20231220224504.646757-39-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All callers are gone, let's remove it and some leftover traces.
Link: https://lkml.kernel.org/r/20231220224504.646757-33-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vma_pages() is more readable and also better at avoiding error codes, so
use vma_pages() instead of direct operations on vma
Link: https://lkml.kernel.org/r/tencent_151850CF327EB055BBC83298A929BD06CD0A@qq.com
Signed-off-by: Chen Haonan <chen.haonan2@zte.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
__mas_set_range() was created to shortcut resetting the maple state and a
debug check was added to the caller (the vma iterator) to ensure the
internal maple state remains safe to use. Move the debug check from the
vma iterator into the maple tree itself so other users do not incorrectly
use the advanced maple state modification.
Fallout from this change include a large amount of debug setup needed to
be moved to earlier in the header, and the maple_tree.h radix-tree test
code needed to move the inclusion of the header to after the atomic
define. None of those changes have functional changes.
Link: https://lkml.kernel.org/r/20231101171629.3612299-4-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All callers are now converted to call mapping_evict_folio().
Link: https://lkml.kernel.org/r/20231108182809.602073-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Fix fault handler's handling of poisoned tail pages".
Since introducing the ability to have large folios in the page cache, it's
been possible to have a hwpoisoned tail page returned from the fault
handler. We handle this situation poorly; failing to remove the affected
page from use.
This isn't a minimal patch to fix it, it's a full conversion of all the
code surrounding it.
This patch (of 6):
invalidate_inode_page() does very little beyond calling
mapping_evict_folio(). Move the check for mapping being NULL into
mapping_evict_folio() and make it available to the rest of the MM for use
in the next few patches.
Link: https://lkml.kernel.org/r/20231108182809.602073-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20231108182809.602073-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In dup_mmap(), using __mt_dup() to duplicate the old maple tree and then
directly replacing the entries of VMAs in the new maple tree can result in
better performance. __mt_dup() uses DFS pre-order to duplicate the maple
tree, so it is efficient.
The average time complexity of __mt_dup() is O(n), where n is the number
of VMAs. The proof of the time complexity is provided in the commit log
that introduces __mt_dup(). After duplicating the maple tree, each
element is traversed and replaced (ignoring the cases of deletion, which
are rare). Since it is only a replacement operation for each element,
this process is also O(n).
Analyzing the exact time complexity of the previous algorithm is
challenging because each insertion can involve appending to a node,
pushing data to adjacent nodes, or even splitting nodes. The frequency of
each action is difficult to calculate. The worst-case scenario for a
single insertion is when the tree undergoes splitting at every level. If
we consider each insertion as the worst-case scenario, we can determine
that the upper bound of the time complexity is O(n*log(n)), although this
is a loose upper bound. However, based on the test data, it appears that
the actual time complexity is likely to be O(n).
As the entire maple tree is duplicated using __mt_dup(), if dup_mmap()
fails, there will be a portion of VMAs that have not been duplicated in
the maple tree. To handle this, we mark the failure point with
XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, stop
releasing VMAs that have not been duplicated after this point.
There is a "spawn" in byte-unixbench[1], which can be used to test the
performance of fork(). I modified it slightly to make it work with
different number of VMAs.
Below are the test results. The first row shows the number of VMAs. The
second and third rows show the number of fork() calls per ten seconds,
corresponding to next-20231006 and the this patchset, respectively. The
test results were obtained with CPU binding to avoid scheduler load
balancing that could cause unstable results. There are still some
fluctuations in the test results, but at least they are better than the
original performance.
21 121 221 421 821 1621 3221 6421 12821 25621 51221
112100 76261 54227 34035 20195 11112 6017 3161 1606 802 393
114558 83067 65008 45824 28751 16072 8922 4747 2436 1233 599
2.19% 8.92% 19.88% 34.64% 42.37% 44.64% 48.28% 50.17% 51.68% 53.74% 52.42%
[1] https://github.com/kdlucas/byte-unixbench/tree/master
Link: https://lkml.kernel.org/r/20231027033845.90608-11-zhangpeng.00@bytedance.com
Signed-off-by: Peng Zhang <zhangpeng.00@bytedance.com>
Suggested-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Mike Christie <michael.christie@oracle.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
folio_prep_large_rmappable() is being used repeatedly along with a
conversion from page to folio, a check non-NULL, a check order > 1: wrap
it all up into struct folio *page_rmappable_folio(struct page *).
Link: https://lkml.kernel.org/r/8d92c6cf-eebe-748-e29c-c8ab224c741@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mremap uses vma_merge() in the case where a VMA needs to be extended. This
can be significantly simplified and abstracted.
This makes it far easier to understand what the actual function is doing,
avoids future mistakes in use of the confusing vma_merge() function and
importantly allows us to make future changes to how vma_merge() is
implemented by knowing explicitly which merge cases each invocation uses.
Note that in the mremap() extend case, we perform this merge only when
old_len == vma->vm_end - addr. The extension_start, i.e. the start of the
extended portion of the VMA is equal to addr + old_len, i.e. vma->vm_end.
With this refactoring, vma_merge() is no longer required anywhere except
mm/mmap.c, so mark it static.
Link: https://lkml.kernel.org/r/f16cbdc2e72d37a1a097c39dc7d1fee8919a1c93.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now the common pattern of - attempting a merge via vma_merge() and should
this fail splitting VMAs via split_vma() - has been abstracted, the former
can be placed into mm/internal.h and the latter made static.
In addition, the split_vma() nommu variant also need not be exported.
Link: https://lkml.kernel.org/r/405f2be10e20c4e9fbcc9fe6b2dfea105f6642e0.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This fixes a compiler warning when compiling an allyesconfig with W=1:
mm/internal.h:1235:9: error: function might be a candidate for `gnu_printf'
format attribute [-Werror=suggest-attribute=format]
[akpm@linux-foundation.org: fix shrinker_alloc() as welll per Qi Zheng]
Link: https://lkml.kernel.org/r/822387b7-4895-4e64-5806-0f56b5d6c447@bytedance.com
Link: https://lkml.kernel.org/r/ZSBue-3kM6gI6jCr@mainframe
Fixes: c42d50aefd17 ("mm: shrinker: add infrastructure for dynamically allocating shrinker")
Signed-off-by: Lucy Mielke <lucymielke@icloud.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Match how folio_unlock() works by combining the test for PG_waiters with
the clearing of PG_writeback. This should have a small performance win,
and removes the last user of folio_wake().
Link: https://lkml.kernel.org/r/20231004165317.1061855-18-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rather than check the result of test-and-clear, just check that we have
the writeback bit set at the start. This wouldn't catch every case, but
it's good enough (and enables the next patch).
Link: https://lkml.kernel.org/r/20231004165317.1061855-17-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>