Removed s_lock from super_block and removed lock/unlock super.
Signed-off-by: Marco Stornelli <marco.stornelli@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Removed lock/unlock super. Added a new private s_lock mutex.
Signed-off-by: Marco Stornelli <marco.stornelli@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Removed lock/unlock super. Added a new private s_lock mutex.
Signed-off-by: Marco Stornelli <marco.stornelli@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Removed lock/unlock super. Added a new private s_lock mutex.
Signed-off-by: Marco Stornelli <marco.stornelli@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Removed lock/unlock super.
Signed-off-by: Marco Stornelli <marco.stornelli@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
I have tested the attached patch to fix the dup3 regression.
Rich.
From 0944e30e12dec6544b3602626b60ff412375c78f Mon Sep 17 00:00:00 2001
From: "Richard W.M. Jones" <rjones@redhat.com>
Date: Tue, 9 Oct 2012 14:42:45 +0100
Subject: [PATCH] dup3: Return an error when oldfd == newfd.
The following commit:
commit fe17f22d7fd0e344ef6447238f799bb49f670c6f
Author: Al Viro <viro@zeniv.linux.org.uk>
Date: Tue Aug 21 11:48:11 2012 -0400
take purely descriptor-related stuff from fcntl.c to file.c
was supposed to be just code motion, but it dropped the following two
lines:
if (unlikely(oldfd == newfd))
return -EINVAL;
from the dup3 system call. dup3 is not specified by POSIX, so Linux
can do what it likes. However the POSIX proposal for dup3 [1] states
that it should return an error if oldfd == newfd.
[1] http://austingroupbugs.net/view.php?id=411
Signed-off-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
audit_log_start() may return NULL, this is unchecked by the caller in
audit_log_link_denied() and could cause a NULL ptr deref.
Introduced by commit a51d9eaa ("fs: add link restriction audit reporting").
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Commit "fs: add link restriction audit reporting" has added auditing of failed
attempts to follow symlinks. Unfortunately, the auditing was being done after
the struct path structure was released earlier.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The VM_RESERVED flag was killed off in commit 314e51b9851b ("mm: kill
vma flag VM_RESERVED and mm->reserved_vm counter"), and replaced by the
proper semantic flags (eg "don't core-dump" etc). But there was a new
use of VM_RESERVED that got missed by the merge.
Fix the remaining use of VM_RESERVED in the vfio_pci driver, replacing
the VM_RESERVED flag with VM_DONTEXPAND | VM_DONTDUMP.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation,org>
Merge patches from Andrew Morton:
"A few misc things and very nearly all of the MM tree. A tremendous
amount of stuff (again), including a significant rbtree library
rework."
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (160 commits)
sparc64: Support transparent huge pages.
mm: thp: Use more portable PMD clearing sequenece in zap_huge_pmd().
mm: Add and use update_mmu_cache_pmd() in transparent huge page code.
sparc64: Document PGD and PMD layout.
sparc64: Eliminate PTE table memory wastage.
sparc64: Halve the size of PTE tables
sparc64: Only support 4MB huge pages and 8KB base pages.
memory-hotplug: suppress "Trying to free nonexistent resource <XXXXXXXXXXXXXXXX-YYYYYYYYYYYYYYYY>" warning
mm: memcg: clean up mm_match_cgroup() signature
mm: document PageHuge somewhat
mm: use %pK for /proc/vmallocinfo
mm, thp: fix mlock statistics
mm, thp: fix mapped pages avoiding unevictable list on mlock
memory-hotplug: update memory block's state and notify userspace
memory-hotplug: preparation to notify memory block's state at memory hot remove
mm: avoid section mismatch warning for memblock_type_name
make GFP_NOTRACK definition unconditional
cma: decrease cc.nr_migratepages after reclaiming pagelist
CMA: migrate mlocked pages
kpageflags: fix wrong KPF_THP on non-huge compound pages
...
This is relatively easy since PMD's now cover exactly 4MB of memory.
Our PMD entries are 32-bits each, so we use a special encoding. The
lowest bit, PMD_ISHUGE, determines the interpretation. This is possible
because sparc64's page tables are purely software entities so we can use
whatever encoding scheme we want. We just have to make the TLB miss
assembler page table walkers aware of the layout.
set_pmd_at() works much like set_pte_at() but it has to operate in two
page from a table of non-huge PTEs, so we have to queue up TLB flushes
based upon what mappings are valid in the PTE table. In the second regime
we are going from huge-page to non-huge-page, and in that case we need
only queue up a single TLB flush to push out the huge page mapping.
We still have 5 bits remaining in the huge PMD encoding so we can very
likely support any new pieces of THP state tracking that might get added
in the future.
With lots of help from Johannes Weiner.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Invalidation sequences are handled in various ways on various
architectures.
One way, which sparc64 uses, is to let the set_*_at() functions accumulate
pending flushes into a per-cpu array. Then the flush_tlb_range() et al.
calls process the pending TLB flushes.
In this regime, the __tlb_remove_*tlb_entry() implementations are
essentially NOPs.
The canonical PTE zap in mm/memory.c is:
ptent = ptep_get_and_clear_full(mm, addr, pte,
tlb->fullmm);
tlb_remove_tlb_entry(tlb, pte, addr);
With a subsequent tlb_flush_mmu() if needed.
Mirror this in the THP PMD zapping using:
orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
page = pmd_page(orig_pmd);
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
And we properly accomodate TLB flush mechanims like the one described
above.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The transparent huge page code passes a PMD pointer in as the third
argument of update_mmu_cache(), which expects a PTE pointer.
This never got noticed because X86 implements update_mmu_cache() as a
macro and thus we don't get any type checking, and X86 is the only
architecture which supports transparent huge pages currently.
Before other architectures can support transparent huge pages properly we
need to add a new interface which will take a PMD pointer as the third
argument rather than a PTE pointer.
[akpm@linux-foundation.org: implement update_mm_cache_pmd() for s390]
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're going to be messing around with the PMD interpretation and layout
for the sake of transparent huge pages, so we better clearly document what
we're starting with.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We've split up the PTE tables so that they take up half a page instead of
a full page. This is in order to facilitate transparent huge page
support, which works much better if our PMDs cover 4MB instead of 8MB.
What we do is have a one-behind cache for PTE table allocations in the
mm struct.
This logic triggers only on allocations. For example, we don't try to
keep track of free'd up page table blocks in the style that the s390 port
does.
There were only two slightly annoying aspects to this change:
1) Changing pgtable_t to be a "pte_t *". There's all of this special
logic in the TLB free paths that needed adjustments, as did the
PMD populate interfaces.
2) init_new_context() needs to zap the pointer, since the mm struct
just gets copied from the parent on fork.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The reason we want to do this is to facilitate transparent huge page
support.
Right now PMD's cover 8MB of address space, and our huge page size is 4MB.
The current transparent hugepage support is not able to handle HPAGE_SIZE
!= PMD_SIZE.
So make PTE tables be sized to half of a page instead of a full page.
We can still map properly the whole supported virtual address range which
on sparc64 requires 44 bits. Add a compile time CPP test which ensures
that this requirement is always met.
There is a minor inefficiency added by this change. We only use half of
the page for PTE tables. It's not trivial to use only half of the page
yet still get all of the pgtable_page_{ctor,dtor}() stuff working
properly. It is doable, and that will come in a subsequent change.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Narrowing the scope of the page size configurations will make the
transparent hugepage changes much simpler.
In the end what we really want to do is have the kernel support multiple
huge page sizes and use whatever is appropriate as the context dictactes.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When our x86 box calls __remove_pages(), release_mem_region() shows many
warnings. And x86 box cannot unregister iomem_resource.
"Trying to free nonexistent resource <XXXXXXXXXXXXXXXX-YYYYYYYYYYYYYYYY>"
release_mem_region() has been changed to be called in each
PAGES_PER_SECTION by commit de7f0cba9678 ("memory hotplug: release
memory regions in PAGES_PER_SECTION chunks"). Because powerpc registers
iomem_resource in each PAGES_PER_SECTION chunk. But when I hot add
memory on x86 box, iomem_resource is register in each _CRS not
PAGES_PER_SECTION chunk. So x86 box unregisters iomem_resource.
The patch fixes the problem.
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Nathan Fontenot <nfont@austin.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It really should return a boolean for match/no match. And since it takes
a memcg, not a cgroup, fix that parameter name as well.
[akpm@linux-foundation.org: mm_match_cgroup() is not a macro]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the paranoid case of sysctl kernel.kptr_restrict=2, mask the kernel
virtual addresses in /proc/vmallocinfo too.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Brad Spengler <spender@grsecurity.net>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a transparent hugepage is mapped and it is included in an mlock()
range, follow_page() incorrectly avoids setting the page's mlock bit and
moving it to the unevictable lru.
This is evident if you try to mlock(), munlock(), and then mlock() a
range again. Currently:
#define MAP_SIZE (4 << 30) /* 4GB */
void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
mlock(ptr, MAP_SIZE);
$ grep -E "Unevictable|Inactive\(anon" /proc/meminfo
Inactive(anon): 6304 kB
Unevictable: 4213924 kB
munlock(ptr, MAP_SIZE);
Inactive(anon): 4186252 kB
Unevictable: 19652 kB
mlock(ptr, MAP_SIZE);
Inactive(anon): 4198556 kB
Unevictable: 21684 kB
Notice that less than 2MB was added to the unevictable list; this is
because these pages in the range are not transparent hugepages since the
4GB range was allocated with mmap() and has no specific alignment. If
posix_memalign() were used instead, unevictable would not have grown at
all on the second mlock().
The fix is to call mlock_vma_page() so that the mlock bit is set and the
page is added to the unevictable list. With this patch:
mlock(ptr, MAP_SIZE);
Inactive(anon): 4056 kB
Unevictable: 4213940 kB
munlock(ptr, MAP_SIZE);
Inactive(anon): 4198268 kB
Unevictable: 19636 kB
mlock(ptr, MAP_SIZE);
Inactive(anon): 4008 kB
Unevictable: 4213940 kB
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
remove_memory() will be called when hot removing a memory device. But
even if offlining memory, we cannot notice it. So the patch updates the
memory block's state and sends notification to userspace.
Additionally, the memory device may contain more than one memory block.
If the memory block has been offlined, __offline_pages() will fail. So we
should try to offline one memory block at a time.
Thus remove_memory() also check each memory block's state. So there is no
need to check the memory block's state before calling remove_memory().
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
remove_memory() is called in two cases:
1. echo offline >/sys/devices/system/memory/memoryXX/state
2. hot remove a memory device
In the 1st case, the memory block's state is changed and the notification
that memory block's state changed is sent to userland after calling
remove_memory(). So user can notice memory block is changed.
But in the 2nd case, the memory block's state is not changed and the
notification is not also sent to userspcae even if calling
remove_memory(). So user cannot notice memory block is changed.
For adding the notification at memory hot remove, the patch just prepare
as follows:
1st case uses offline_pages() for offlining memory.
2nd case uses remove_memory() for offlining memory and changing memory block's
state and notifing the information.
The patch does not implement notification to remove_memory().
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Following section mismatch warning is thrown during build;
WARNING: vmlinux.o(.text+0x32408f): Section mismatch in reference from the function memblock_type_name() to the variable .meminit.data:memblock
The function memblock_type_name() references
the variable __meminitdata memblock.
This is often because memblock_type_name lacks a __meminitdata
annotation or the annotation of memblock is wrong.
This is because memblock_type_name makes reference to memblock variable
with attribute __meminitdata. Hence, the warning (even if the function is
inline).
[akpm@linux-foundation.org: remove inline]
Signed-off-by: Raghavendra D Prabhu <rprabhu@wnohang.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There was a general sentiment in a recent discussion (See
https://lkml.org/lkml/2012/9/18/258) that the __GFP flags should be
defined unconditionally. Currently, the only offender is GFP_NOTRACK,
which is conditional to KMEMCHECK.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
reclaim_clean_pages_from_list() reclaims clean pages before migration so
cc.nr_migratepages should be updated. Currently, there is no problem but
it can be wrong if we try to use the value in future.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently CMA cannot migrate mlocked pages so it ends up failing to allocate
contiguous memory space.
This patch makes mlocked pages be migrated out. Of course, it can affect
realtime processes but in CMA usecase, contiguous memory allocation failing
is far worse than access latency to an mlocked page being variable while
CMA is running. If someone wants to make the system realtime, he shouldn't
enable CMA because stalls can still happen at random times.
[akpm@linux-foundation.org: tweak comment text, per Mel]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KPF_THP can be set on non-huge compound pages (like slab pages or pages
allocated by drivers with __GFP_COMP) because PageTransCompound only
checks PG_head and PG_tail. Obviously this is a bug and breaks user space
applications which look for thp via /proc/kpageflags.
This patch rules out setting KPF_THP wrongly by additionally checking
PageLRU on the head pages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The parameter 'wb' is never used in this function.
Signed-off-by: Yan Hong <clouds.yan@gmail.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simply remove UNEVICTABLE_MLOCKFREED and unevictable_pgs_mlockfreed line
from /proc/vmstat: Johannes and Mel point out that it was very unlikely to
have been used by any tool, and of course we can restore it easily enough
if that turns out to be wrong.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During memory-hotplug, I found NR_ISOLATED_[ANON|FILE] are increasing,
causing the kernel to hang. When the system doesn't have enough free
pages, it enters reclaim but never reclaim any pages due to
too_many_isolated()==true and loops forever.
The cause is that when we do memory-hotadd after memory-remove,
__zone_pcp_update() clears a zone's ZONE_STAT_ITEMS in setup_pageset()
although the vm_stat_diff of all CPUs still have values.
In addtion, when we offline all pages of the zone, we reset them in
zone_pcp_reset without draining so we loss some zone stat item.
Reviewed-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 0def08e3acc2 because check_range can't fail in
migrate_to_node with considering current usecases.
Quote from Johannes
: I think it makes sense to revert. Not because of the semantics, but I
: just don't see how check_range() could even fail for this callsite:
:
: 1. we pass mm->mmap->vm_start in there, so we should not fail due to
: find_vma()
:
: 2. we pass MPOL_MF_DISCONTIG_OK, so the discontig checks do not apply
: and so can not fail
:
: 3. we pass MPOL_MF_MOVE | MPOL_MF_MOVE_ALL, the page table loops will
: continue until addr == end, so we never fail with -EIO
And I added a new VM_BUG_ON for checking migrate_to_node's future usecase
which might pass to MPOL_MF_STRICT.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vasiliy Kulikov <segooon@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to allow sleeping during invalidate_page mmu notifier calls, we
need to avoid calling when holding the PT lock. In addition to its direct
calls, invalidate_page can also be called as a substitute for a change_pte
call, in case the notifier client hasn't implemented change_pte.
This patch drops the invalidate_page call from change_pte, and instead
wraps all calls to change_pte with invalidate_range_start and
invalidate_range_end calls.
Note that change_pte still cannot sleep after this patch, and that clients
implementing change_pte should not take action on it in case the number of
outstanding invalidate_range_start calls is larger than one, otherwise
they might miss a later invalidation.
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Andrea Arcangeli <andrea@qumranet.com>
Cc: Sagi Grimberg <sagig@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to allow sleeping during mmu notifier calls, we need to avoid
invoking them under the page table spinlock. This patch solves the
problem by calling invalidate_page notification after releasing the lock
(but before freeing the page itself), or by wrapping the page invalidation
with calls to invalidate_range_begin and invalidate_range_end.
To prevent accidental changes to the invalidate_range_end arguments after
the call to invalidate_range_begin, the patch introduces a convention of
saving the arguments in consistently named locals:
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
...
mmun_start = ...
mmun_end = ...
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
...
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
The patch changes code to use this convention for all calls to
mmu_notifier_invalidate_range_start/end, except those where the calls are
close enough so that anyone who glances at the code can see the values
aren't changing.
This patchset is a preliminary step towards on-demand paging design to be
added to the RDMA stack.
Why do we want on-demand paging for Infiniband?
Applications register memory with an RDMA adapter using system calls,
and subsequently post IO operations that refer to the corresponding
virtual addresses directly to HW. Until now, this was achieved by
pinning the memory during the registration calls. The goal of on demand
paging is to avoid pinning the pages of registered memory regions (MRs).
This will allow users the same flexibility they get when swapping any
other part of their processes address spaces. Instead of requiring the
entire MR to fit in physical memory, we can allow the MR to be larger,
and only fit the current working set in physical memory.
Why should anyone care? What problems are users currently experiencing?
This can make programming with RDMA much simpler. Today, developers
that are working with more data than their RAM can hold need either to
deregister and reregister memory regions throughout their process's
life, or keep a single memory region and copy the data to it. On demand
paging will allow these developers to register a single MR at the
beginning of their process's life, and let the operating system manage
which pages needs to be fetched at a given time. In the future, we
might be able to provide a single memory access key for each process
that would provide the entire process's address as one large memory
region, and the developers wouldn't need to register memory regions at
all.
Is there any prospect that any other subsystems will utilise these
infrastructural changes? If so, which and how, etc?
As for other subsystems, I understand that XPMEM wanted to sleep in
MMU notifiers, as Christoph Lameter wrote at
http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
perhaps Andrea knows about other use cases.
Scheduling in mmu notifications is required since we need to sync the
hardware with the secondary page tables change. A TLB flush of an IO
device is inherently slower than a CPU TLB flush, so our design works by
sending the invalidation request to the device, and waiting for an
interrupt before exiting the mmu notifier handler.
Avi said:
kvm may be a buyer. kvm::mmu_lock, which serializes guest page
faults, also protects long operations such as destroying large ranges.
It would be good to convert it into a spinlock, but as it is used inside
mmu notifiers, this cannot be done.
(there are alternatives, such as keeping the spinlock and using a
generation counter to do the teardown in O(1), which is what the "may"
is doing up there).
[akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 0c176d52b0b2 ("mm: hugetlb: fix pgoff computation when unmapping
page from vma") fixed pgoff calculation but it has replaced it by
vma_hugecache_offset() which is not approapriate for offsets used for
vma_prio_tree_foreach() because that one expects index in page units
rather than in huge_page_shift.
Johannes said:
: The resulting index may not be too big, but it can be too small: assume
: hpage size of 2M and the address to unmap to be 0x200000. This is regular
: page index 512 and hpage index 1. If you have a VMA that maps the file
: only starting at the second huge page, that VMAs vm_pgoff will be 512 but
: you ask for offset 1 and miss it even though it does map the page of
: interest. hugetlb_cow() will try to unmap, miss the vma, and retry the
: cow until the allocation succeeds or the skipped vma(s) go away.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In many places !pmd_present has been converted to pmd_none. For pmds
that's equivalent and pmd_none is quicker so using pmd_none is better.
However (unless we delete pmd_present) we should provide an accurate
pmd_present too. This will avoid the risk of code thinking the pmd is non
present because it's under __split_huge_page_map, see the pmd_mknotpresent
there and the comment above it.
If the page has been mprotected as PROT_NONE, it would also lead to a
pmd_present false negative in the same way as the race with
split_huge_page.
Because the PSE bit stays on at all times (both during split_huge_page and
when the _PAGE_PROTNONE bit get set), we could only check for the PSE bit,
but checking the PROTNONE bit too is still good to remember pmd_present
must always keep PROT_NONE into account.
This explains a not reproducible BUG_ON that was seldom reported on the
lists.
The same issue is in pmd_large, it would go wrong with both PROT_NONE and
if it races with split_huge_page.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andi removed some outedated documentation from Documentation/memory.txt
back in 2009 by commit 3b2b9a875ddc ("Documentation/memory.txt: remove
some very outdated recommendations"), but the resulting document is not
in a nice shape either.
It seems to me like we are not losing anything by completely removing the
file now.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RECLAIM_DISTANCE represents the distance between nodes at which it is
deemed too costly to allocate from; it's preferred to try to reclaim from
a local zone before falling back to allocating on a remote node with such
a distance.
To do this, zone_reclaim_mode is set if the distance between any two
nodes on the system is greather than this distance. This, however, ends
up causing the page allocator to reclaim from every zone regardless of
its affinity.
What we really want is to reclaim only from zones that are closer than
RECLAIM_DISTANCE. This patch adds a nodemask to each node that
represents the set of nodes that are within this distance. During the
zone iteration, if the bit for a zone's node is set for the local node,
then reclaim is attempted; otherwise, the zone is skipped.
[akpm@linux-foundation.org: fix CONFIG_NUMA=n build]
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should not be seeing non-0 unevictable_pgs_mlockfreed any longer. So
remove free_page_mlock() from the page freeing paths: __PG_MLOCKED is
already in PAGE_FLAGS_CHECK_AT_FREE, so free_pages_check() will now be
checking it, reporting "BUG: Bad page state" if it's ever found set.
Comment UNEVICTABLE_MLOCKFREED and unevictable_pgs_mlockfreed always 0.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We had thought that pages could no longer get freed while still marked as
mlocked; but Johannes Weiner posted this program to demonstrate that
truncating an mlocked private file mapping containing COWed pages is still
mishandled:
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
int main(void)
{
char *map;
int fd;
system("grep mlockfreed /proc/vmstat");
fd = open("chigurh", O_CREAT|O_EXCL|O_RDWR);
unlink("chigurh");
ftruncate(fd, 4096);
map = mmap(NULL, 4096, PROT_WRITE, MAP_PRIVATE, fd, 0);
map[0] = 11;
mlock(map, sizeof(fd));
ftruncate(fd, 0);
close(fd);
munlock(map, sizeof(fd));
munmap(map, 4096);
system("grep mlockfreed /proc/vmstat");
return 0;
}
The anon COWed pages are not caught by truncation's clear_page_mlock() of
the pagecache pages; but unmap_mapping_range() unmaps them, so we ought to
look out for them there in page_remove_rmap(). Indeed, why should
truncation or invalidation be doing the clear_page_mlock() when removing
from pagecache? mlock is a property of mapping in userspace, not a
property of pagecache: an mlocked unmapped page is nonsensical.
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_evictable(page, vma) is an irritant: almost all its callers pass
NULL for vma. Remove the vma arg and use mlocked_vma_newpage(vma, page)
explicitly in the couple of places it's needed. But in those places we
don't even need page_evictable() itself! They're dealing with a freshly
allocated anonymous page, which has no "mapping" and cannot be mlocked yet.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In fuzzing with trinity, lockdep protested "possible irq lock inversion
dependency detected" when isolate_lru_page() reenabled interrupts while
still holding the supposedly irq-safe tree_lock:
invalidate_inode_pages2
invalidate_complete_page2
spin_lock_irq(&mapping->tree_lock)
clear_page_mlock
isolate_lru_page
spin_unlock_irq(&zone->lru_lock)
isolate_lru_page() is correct to enable interrupts unconditionally:
invalidate_complete_page2() is incorrect to call clear_page_mlock() while
holding tree_lock, which is supposed to nest inside lru_lock.
Both truncate_complete_page() and invalidate_complete_page() call
clear_page_mlock() before taking tree_lock to remove page from radix_tree.
I guess invalidate_complete_page2() preferred to test PageDirty (again)
under tree_lock before committing to the munlock; but since the page has
already been unmapped, its state is already somewhat inconsistent, and no
worse if clear_page_mlock() moved up.
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Deciphered-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmem code uses this function and it is better to not use forward
declarations for static inline functions as some (older) compilers don't
like it:
gcc version 4.3.4 [gcc-4_3-branch revision 152973] (SUSE Linux)
mm/memcontrol.c:421: warning: `mem_cgroup_is_root' declared inline after being called
mm/memcontrol.c:421: warning: previous declaration of `mem_cgroup_is_root' was here
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
TCP kmem accounting is currently guarded by CONFIG_MEMCG_KMEM ifdefs but
the code is not used if !CONFIG_INET so we should rather test for both.
The same applies to net/sock.h, net/ip.h and net/tcp_memcontrol.h but
let's keep those outside of any ifdefs because it is considered safer wrt.
future maintainability.
Tested with
- CONFIG_INET && CONFIG_MEMCG_KMEM
- !CONFIG_INET && CONFIG_MEMCG_KMEM
- CONFIG_INET && !CONFIG_MEMCG_KMEM
- !CONFIG_INET && !CONFIG_MEMCG_KMEM
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While reading through Documentation/cgroups/memory.txt, I found a number
of minor wordos and typos. The patch below is a conservative handling of
some of these: it provides just a number of "obviously correct" fixes to
the English that improve the readability of the document somewhat.
Obviously some more significant fixes need to be made to the document, but
some of those may not be in the "obvious correct" category.
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>