Use __kvm_faultin_page() get the APIC access page so that KVM can
precisely release the refcounted page, i.e. to remove yet another user
of kvm_pfn_to_refcounted_page(). While the path isn't handling a guest
page fault, the semantics are effectively the same; KVM just happens to
be mapping the pfn into a VMCS field instead of a secondary MMU.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-52-seanjc@google.com>
Hold mmu_lock across kvm_release_pfn_clean() when refreshing the APIC
access page address to ensure that KVM doesn't mark a page/folio as
accessed after it has been unmapped. Practically speaking marking a folio
accesses is benign in this scenario, as KVM does hold a reference (it's
really just marking folios dirty that is problematic), but there's no
reason not to be paranoid (moving the APIC access page isn't a hot path),
and no reason to be different from other mmu_notifier-protected flows in
KVM.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-51-seanjc@google.com>
Move KVM x86's helper that "finishes" the faultin process to common KVM
so that the logic can be shared across all architectures. Note, not all
architectures implement a fast page fault path, but the gist of the
comment applies to all architectures.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-50-seanjc@google.com>
When finishing guest page faults, don't mark pages as accessed if KVM
is resuming the guest _without_ installing a mapping, i.e. if the page
isn't being used. While it's possible that marking the page accessed
could avoid minor thrashing due to reclaiming a page that the guest is
about to access, it's far more likely that the gfn=>pfn mapping was
was invalidated, e.g. due a memslot change, or because the corresponding
VMA is being modified.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-49-seanjc@google.com>
Now that all x86 page fault paths precisely track refcounted pages, use
Use kvm_page_fault.refcounted_page to put references to struct page memory
when finishing page faults. This is a baby step towards eliminating
kvm_pfn_to_refcounted_page().
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-48-seanjc@google.com>
Provide the "struct page" associated with a guest_memfd pfn as an output
from __kvm_gmem_get_pfn() so that KVM guest page fault handlers can
directly put the page instead of having to rely on
kvm_pfn_to_refcounted_page().
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-47-seanjc@google.com>
Convert KVM x86 to use the recently introduced __kvm_faultin_pfn().
Opportunstically capture the refcounted_page grabbed by KVM for use in
future changes.
No functional change intended.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-45-seanjc@google.com>
Move the marking of folios dirty from make_spte() out to its callers,
which have access to the _struct page_, not just the underlying pfn.
Once all architectures follow suit, this will allow removing KVM's ugly
hack where KVM elevates the refcount of VM_MIXEDMAP pfns that happen to
be struct page memory.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-42-seanjc@google.com>
Add a helper to finish/complete the handling of a guest page, e.g. to
mark the pages accessed and put any held references. In the near
future, this will allow improving the logic without having to copy+paste
changes into all page fault paths. And in the less near future, will
allow sharing the "finish" API across all architectures.
No functional change intended.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-41-seanjc@google.com>
Deduplicate the prefetching code for indirect and direct MMUs. The core
logic is the same, the only difference is that indirect MMUs need to
prefetch SPTEs one-at-a-time, as contiguous guest virtual addresses aren't
guaranteed to yield contiguous guest physical addresses.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-40-seanjc@google.com>
Use kvm_release_page_clean() to put prefeteched pages instead of calling
put_page() directly. This will allow de-duplicating the prefetch code
between indirect and direct MMUs.
Note, there's a small functional change as kvm_release_page_clean() marks
the page/folio as accessed. While it's not strictly guaranteed that the
guest will access the page, KVM won't intercept guest accesses, i.e. won't
mark the page accessed if it _is_ accessed by the guest (unless A/D bits
are disabled, but running without A/D bits is effectively limited to
pre-HSW Intel CPUs).
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-39-seanjc@google.com>
Prefix x86's faultin_pfn helpers with "mmu" so that the mmu-less names can
be used by common KVM for similar APIs.
No functional change intended.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-38-seanjc@google.com>
Drop the gfn_to_page() lookup when installing KVM's internal memslot for
the APIC access page, as KVM doesn't need to immediately fault-in the page
now that the page isn't pinned. In the extremely unlikely event the
kernel can't allocate a 4KiB page, KVM can just as easily return -EFAULT
on the future page fault.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-37-seanjc@google.com>
Now that all kvm_vcpu_{,un}map() users pass "true" for @dirty, have them
pass "true" as a @writable param to kvm_vcpu_map(), and thus create a
read-only mapping when possible.
Note, creating read-only mappings can be theoretically slower, as they
don't play nice with fast GUP due to the need to break CoW before mapping
the underlying PFN. But practically speaking, creating a mapping isn't
a super hot path, and getting a writable mapping for reading is weird and
confusing.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-34-seanjc@google.com>
Mark the APIC access page as dirty when unmapping it from KVM. The fact
that the page _shouldn't_ be written doesn't guarantee the page _won't_ be
written. And while the contents are likely irrelevant, the values _are_
visible to the guest, i.e. dropping writes would be visible to the guest
(though obviously highly unlikely to be problematic in practice).
Marking the map dirty will allow specifying the write vs. read-only when
*mapping* the memory, which in turn will allow creating read-only maps.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-33-seanjc@google.com>
Add a helper to dedup unmapping the vmcs12 pages. This will reduce the
amount of churn when a future patch refactors the kvm_vcpu_unmap() API.
No functional change intended.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-26-seanjc@google.com>
Remove vcpu_vmx.msr_bitmap_map and instead use an on-stack structure in
the one function that uses the map, nested_vmx_prepare_msr_bitmap().
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-25-seanjc@google.com>
Remove the explicit evmptr12 validity check when deciding whether or not
to unmap the eVMCS pointer, and instead rely on kvm_vcpu_unmap() to play
nice with a NULL map->hva, i.e. to do nothing if the map is invalid.
Note, vmx->nested.hv_evmcs_map is zero-allocated along with the rest of
vcpu_vmx, i.e. the map starts out invalid/NULL.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-24-seanjc@google.com>
Drop @hva from __gfn_to_pfn_memslot() now that all callers pass NULL.
No functional change intended.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-19-seanjc@google.com>
Remove kvm_page_fault.hva as it is never read, only written. This will
allow removing the @hva param from __gfn_to_pfn_memslot().
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-18-seanjc@google.com>
Add a pfn error code to communicate that hva_to_pfn() failed because I/O
was needed and disallowed, and convert @async to a constant @no_wait
boolean. This will allow eliminating the @no_wait param by having callers
pass in FOLL_NOWAIT along with other FOLL_* flags.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: David Stevens <stevensd@chromium.org>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-17-seanjc@google.com>
Drop @atomic from the myriad "to_pfn" APIs now that all callers pass
"false", and remove a comment blurb about KVM running only the "GUP fast"
part in atomic context.
No functional change intended.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-13-seanjc@google.com>
Rename gfn_to_page_many_atomic() to kvm_prefetch_pages() to try and
communicate its true purpose, as the "atomic" aspect is essentially a
side effect of the fact that x86 uses the API while holding mmu_lock.
E.g. even if mmu_lock weren't held, KVM wouldn't want to fault-in pages,
as the goal is to opportunistically grab surrounding pages that have
already been accessed and/or dirtied by the host, and to do so quickly.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-12-seanjc@google.com>
Use gfn_to_page_many_atomic() instead of gfn_to_pfn_memslot_atomic() when
prefetching indirect PTEs (direct_pte_prefetch_many() already uses the
"to page" APIS). Functionally, the two are subtly equivalent, as the "to
pfn" API short-circuits hva_to_pfn() if hva_to_pfn_fast() fails, i.e. is
just a wrapper for get_user_page_fast_only()/get_user_pages_fast_only().
Switching to the "to page" API will allow dropping the @atomic parameter
from the entire hva_to_pfn() callchain.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-11-seanjc@google.com>
Now that KVM doesn't clobber Accessed bits of shadow-present SPTEs,
e.g. when prefetching, mark folios as accessed only when zapping leaf
SPTEs, which is a rough heuristic for "only in response to an mmu_notifier
invalidation". Page aging and LRUs are tolerant of false negatives, i.e.
KVM doesn't need to be precise for correctness, and re-marking folios as
accessed when zapping entire roots or when zapping collapsible SPTEs is
expensive and adds very little value.
E.g. when a VM is dying, all of its memory is being freed; marking folios
accessed at that time provides no known value. Similarly, because KVM
marks folios as accessed when creating SPTEs, marking all folios as
accessed when userspace happens to delete a memslot doesn't add value.
The folio was marked access when the old SPTE was created, and will be
marked accessed yet again if a vCPU accesses the pfn again after reloading
a new root. Zapping collapsible SPTEs is a similar story; marking folios
accessed just because userspace disable dirty logging is a side effect of
KVM behavior, not a deliberate goal.
As an intermediate step, a.k.a. bisection point, towards *never* marking
folios accessed when dropping SPTEs, mark folios accessed when the primary
MMU might be invalidating mappings, as such zappings are not KVM initiated,
i.e. might actually be related to page aging and LRU activity.
Note, x86 is the only KVM architecture that "double dips"; every other
arch marks pfns as accessed only when mapping into the guest, not when
mapping into the guest _and_ when removing from the guest.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-10-seanjc@google.com>
Mark pages/folios dirty when creating SPTEs to map PFNs into the guest,
not when zapping or modifying SPTEs, as marking folios dirty when zapping
or modifying SPTEs can be extremely inefficient. E.g. when KVM is zapping
collapsible SPTEs to reconstitute a hugepage after disbling dirty logging,
KVM will mark every 4KiB pfn as dirty, even though _at least_ 512 pfns are
guaranteed to be in a single folio (the SPTE couldn't potentially be huge
if that weren't the case). The problem only becomes worse for 1GiB
HugeTLB pages, as KVM can mark a single folio dirty 512*512 times.
Marking a folio dirty when mapping is functionally safe as KVM drops all
relevant SPTEs in response to an mmu_notifier invalidation, i.e. ensures
that the guest can't dirty a folio after access has been removed.
And because KVM already marks folios dirty when zapping/modifying SPTEs
for KVM reasons, i.e. not in response to an mmu_notifier invalidation,
there is no danger of "prematurely" marking a folio dirty. E.g. if a
filesystems cleans a folio without first removing write access, then there
already exists races where KVM could mark a folio dirty before remote TLBs
are flushed, i.e. before guest writes are guaranteed to stop. Furthermore,
x86 is literally the only architecture that marks folios dirty on the
backend; every other KVM architecture marks folios dirty at map time.
x86's unique behavior likely stems from the fact that x86's MMU predates
mmu_notifiers. Long, long ago, before mmu_notifiers were added, marking
pages dirty when zapping SPTEs was logical, and perhaps even necessary, as
KVM held references to pages, i.e. kept a page's refcount elevated while
the page was mapped into the guest. At the time, KVM's rmap_remove()
simply did:
if (is_writeble_pte(*spte))
kvm_release_pfn_dirty(pfn);
else
kvm_release_pfn_clean(pfn);
i.e. dropped the refcount and marked the page dirty at the same time.
After mmu_notifiers were introduced, commit acb66dd051 ("KVM: MMU:
don't hold pagecount reference for mapped sptes pages") removed the
refcount logic, but kept the dirty logic, i.e. converted the above to:
if (is_writeble_pte(*spte))
kvm_release_pfn_dirty(pfn);
And for KVM x86, that's essentially how things have stayed over the last
~15 years, without anyone revisiting *why* KVM marks pages/folios dirty at
zap/modification time, e.g. the behavior was blindly carried forward to
the TDP MMU.
Practically speaking, the only downside to marking a folio dirty during
mapping is that KVM could trigger writeback of memory that was never
actually written. Except that can't actually happen if KVM marks folios
dirty if and only if a writable SPTE is created (as done here), because
KVM always marks writable SPTEs as dirty during make_spte(). See commit
9b51a63024 ("KVM: MMU: Explicitly set D-bit for writable spte."), circa
2015.
Note, KVM's access tracking logic for prefetched SPTEs is a bit odd. If a
guest PTE is dirty and writable, KVM will create a writable SPTE, but then
mark the SPTE for access tracking. Which isn't wrong, just a bit odd, as
it results in _more_ precise dirty tracking for MMUs _without_ A/D bits.
To keep things simple, mark the folio dirty before access tracking comes
into play, as an access-tracked SPTE can be restored in the fast page
fault path, i.e. without holding mmu_lock. While writing SPTEs and
accessing memslots outside of mmu_lock is safe, marking a folio dirty is
not. E.g. if the fast path gets interrupted _just_ after setting a SPTE,
the primary MMU could theoretically invalidate and free a folio before KVM
marks it dirty. Unlike the shadow MMU, which waits for CPUs to respond to
an IPI, the TDP MMU only guarantees the page tables themselves won't be
freed (via RCU).
Opportunistically update a few stale comments.
Cc: David Matlack <dmatlack@google.com>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-9-seanjc@google.com>
Set the Accessed bit when making a "new" SPTE during SPTE synchronization,
as _clearing_ the Accessed bit is counter-productive, and even if the
Accessed bit wasn't set in the old SPTE, odds are very good the guest will
access the page in the near future, as the most common case where KVM
synchronizes a shadow-present SPTE is when the guest is making the gPTE
read-only for Copy-on-Write (CoW).
Preserving the Accessed bit will allow dropping the logic that propagates
the Accessed bit to the underlying struct page when overwriting an existing
SPTE, without undue risk of regressing page aging.
Note, KVM's current behavior is very deliberate, as SPTE synchronization
was the only "speculative" access type as of commit 947da53830 ("KVM:
MMU: Set the accessed bit on non-speculative shadow ptes").
But, much has changed since 2008, and more changes are on the horizon.
Spurious clearing of the Accessed (and Dirty) was mitigated by commit
e6722d9211 ("KVM: x86/mmu: Reduce the update to the spte in
FNAME(sync_spte)"), which changed FNAME(sync_spte) to only overwrite SPTEs
if the protections are actually changing. I.e. KVM is already preserving
Accessed information for SPTEs that aren't dropping protections.
And with the aforementioned future change to NOT mark the page/folio as
accessed, KVM's SPTEs will become the "source of truth" so to speak, in
which case clearing the Accessed bit outside of page aging becomes very
undesirable.
Suggested-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-8-seanjc@google.com>
Invert the polarity of "can_unsync" and rename the parameter to
"synchronizing" to allow a future change to set the Accessed bit if KVM
is synchronizing an existing SPTE. Querying "can_unsync" in that case is
nonsensical, as the fact that KVM can't unsync SPTEs doesn't provide any
justification for setting the Accessed bit.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-7-seanjc@google.com>
Treat attempts to prefetch/prefault MMU SPTEs as spurious if there's an
existing shadow-present SPTE, as overwriting a SPTE that may have been
create by a "real" fault is at best confusing, and at worst potentially
harmful. E.g. mmu_try_to_unsync_pages() doesn't unsync when prefetching,
which creates a scenario where KVM could try to replace a Writable SPTE
with a !Writable SPTE, as sp->unsync is checked prior to acquiring
mmu_unsync_pages_lock.
Note, this applies to three of the four flavors of "prefetch" in KVM:
- KVM_PRE_FAULT_MEMORY
- Async #PF (host or PV)
- Prefetching
The fourth flavor, SPTE synchronization, i.e. FNAME(sync_spte), _only_
overwrites shadow-present SPTEs when calling make_spte(). But SPTE
synchronization specifically uses mmu_spte_update(), and so naturally
avoids the @prefetch check in mmu_set_spte().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-6-seanjc@google.com>
Apply make_spte()'s optimization to skip trying to unsync shadow pages if
and only if the old SPTE was a leaf SPTE, as non-leaf SPTEs in direct MMUs
are always writable, i.e. could trigger a false positive and incorrectly
lead to KVM creating a SPTE without write-protecting or marking shadow
pages unsync.
This bug only affects the TDP MMU, as the shadow MMU only overwrites a
shadow-present SPTE when synchronizing SPTEs (and only 4KiB SPTEs can be
unsync). Specifically, mmu_set_spte() drops any non-leaf SPTEs *before*
calling make_spte(), whereas the TDP MMU can do a direct replacement of a
page table with the leaf SPTE.
Opportunistically update the comment to explain why skipping the unsync
stuff is safe, as opposed to simply saying "it's someone else's problem".
Cc: stable@vger.kernel.org
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-5-seanjc@google.com>
Remove KVM_ERR_PTR_BAD_PAGE and instead return NULL, as "bad page" is just
a leftover bit of weirdness from days of old when KVM stuffed a "bad" page
into the guest instead of actually handling missing pages. See commit
cea7bb2128 ("KVM: MMU: Make gfn_to_page() always safe").
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-2-seanjc@google.com>
Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits
4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't
enforce 32-byte alignment of nCR3.
In the absolute worst case scenario, failure to ignore bits 4:0 can result
in an out-of-bounds read, e.g. if the target page is at the end of a
memslot, and the VMM isn't using guard pages.
Per the APM:
The CR3 register points to the base address of the page-directory-pointer
table. The page-directory-pointer table is aligned on a 32-byte boundary,
with the low 5 address bits 4:0 assumed to be 0.
And the SDM's much more explicit:
4:0 Ignored
Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow
that is broken.
Fixes: e4e517b4be ("KVM: MMU: Do not unconditionally read PDPTE from guest memory")
Reported-by: Kirk Swidowski <swidowski@google.com>
Cc: Andy Nguyen <theflow@google.com>
Cc: 3pvd <3pvd@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241009140838.1036226-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reset the segment cache after segment initialization in vmx_vcpu_reset()
to harden KVM against caching stale/uninitialized data. Without the
recent fix to bypass the cache in kvm_arch_vcpu_put(), the following
scenario is possible:
- vCPU is just created, and the vCPU thread is preempted before
SS.AR_BYTES is written in vmx_vcpu_reset().
- When scheduling out the vCPU task, kvm_arch_vcpu_in_kernel() =>
vmx_get_cpl() reads and caches '0' for SS.AR_BYTES.
- vmx_vcpu_reset() => seg_setup() configures SS.AR_BYTES, but doesn't
invoke vmx_segment_cache_clear() to invalidate the cache.
As a result, KVM retains a stale value in the cache, which can be read,
e.g. via KVM_GET_SREGS. Usually this is not a problem because the VMX
segment cache is reset on each VM-Exit, but if the userspace VMM (e.g KVM
selftests) reads and writes system registers just after the vCPU was
created, _without_ modifying SS.AR_BYTES, userspace will write back the
stale '0' value and ultimately will trigger a VM-Entry failure due to
incorrect SS segment type.
Invalidating the cache after writing the VMCS doesn't address the general
issue of cache accesses from IRQ context being unsafe, but it does prevent
KVM from clobbering the VMCS, i.e. mitigates the harm done _if_ KVM has a
bug that results in an unsafe cache access.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Fixes: 2fb92db1ec ("KVM: VMX: Cache vmcs segment fields")
[sean: rework changelog to account for previous patch]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241009175002.1118178-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a lockdep assertion in kvm_unmap_gfn_range() to ensure that either
mmu_invalidate_in_progress is elevated, or that the range is being zapped
due to memslot removal (loosely detected by slots_lock being held).
Zapping SPTEs without mmu_invalidate_{in_progress,seq} protection is unsafe
as KVM's page fault path snapshots state before acquiring mmu_lock, and
thus can create SPTEs with stale information if vCPUs aren't forced to
retry faults (due to seeing an in-progress or past MMU invalidation).
Memslot removal is a special case, as the memslot is retrieved outside of
mmu_invalidate_seq, i.e. doesn't use the "standard" protections, and
instead relies on SRCU synchronization to ensure any in-flight page faults
are fully resolved before zapping SPTEs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241009192345.1148353-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When performing a targeted zap on memslot removal, zap only MMU pages that
shadow guest PTEs, as zapping all SPs that "match" the gfn is inexact and
unnecessary. Furthermore, for_each_gfn_valid_sp() arguably shouldn't
exist, because it doesn't do what most people would it expect it to do.
The "round gfn for level" adjustment that is done for direct SPs (no gPTE)
means that the exact gfn comparison will not get a match, even when a SP
does "cover" a gfn, or was even created specifically for a gfn.
For memslot deletion specifically, KVM's behavior will vary significantly
based on the size and alignment of a memslot, and in weird ways. E.g. for
a 4KiB memslot, KVM will zap more SPs if the slot is 1GiB aligned than if
it's only 4KiB aligned. And as described below, zapping SPs in the
aligned case overzaps for direct MMUs, as odds are good the upper-level
SPs are serving other memslots.
To iterate over all potentially-relevant gfns, KVM would need to make a
pass over the hash table for each level, with the gfn used for lookup
rounded for said level. And then check that the SP is of the correct
level, too, e.g. to avoid over-zapping.
But even then, KVM would massively overzap, as processing every level is
all but guaranteed to zap SPs that serve other memslots, especially if the
memslot being removed is relatively small. KVM could mitigate that issue
by processing only levels that can be possible guest huge pages, i.e. are
less likely to be re-used for other memslot, but while somewhat logical,
that's quite arbitrary and would be a bit of a mess to implement.
So, zap only SPs with gPTEs, as the resulting behavior is easy to describe,
is predictable, and is explicitly minimal, i.e. KVM only zaps SPs that
absolutely must be zapped.
Cc: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Tested-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241009192345.1148353-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD SEV-SNP and Intel TDX have limited access to MTRR: either it is not
advertised in CPUID or it cannot be programmed (on TDX, due to #VE on
CR0.CD clear).
This results in guests using uncached mappings where it shouldn't and
pmd/pud_set_huge() failures due to non-uniform memory type reported by
mtrr_type_lookup().
Override MTRR state, making it WB by default as the kernel does for
Hyper-V guests.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: Binbin Wu <binbin.wu@intel.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Message-ID: <20241015095818.357915-1-kirill.shutemov@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix pKVM error path on init, making sure we do not change critical
system registers as we're about to fail
- Make sure that the host's vector length is at capped by a value
common to all CPUs
- Fix kvm_has_feat*() handling of "negative" features, as the current
code is pretty broken
- Promote Joey to the status of official reviewer, while James steps
down -- hopefully only temporarly
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmb++hkACgkQI9DQutE9
ekNDyQ/9GwamcXC4KfYFtfQrcNRl/6RtlF/PFC0R6iiD1OoqNFHv2D/zscxtOj5a
nw3gbof1Y59eND/6dubDzk82/A1Ff6bXpygybSQ6LG6Jba7H+01XxvvB0SMTLJ1S
7hREe6m1EBHG/4VJk2Mx8iHJ7OjgZiTivojjZ1tY2Ez3nSUecL8prjqBFft3lAhg
rFb20iJiijoZDgEjFZq/gWDxPq5m3N51tushqPRIMJ6wt8TeLYx3uUd2DTO0MzG/
1K2vGbc1O6010jiR+PO3szi7uJFZfb58IsKCx7/w2e9AbzpYx4BXHKCax00DlGAP
0PiuEMqG82UXR5a58UQrLC2aonh5VNj7J1Lk3qLb0NCimu6PdYWyIGNsKzAF/f4s
tRVTRqcPr0RN/IIoX9vFjK3CKF9FcwAtctoO7IbxLKp+OGbPXk7Fk/gmhXKRubPR
+4L4DCcARTcBflnWDzdLaz02fr13UfhM80mekJXlS1YHlSArCfbrsvjNrh4iL+G0
UDamq8+8ereN0kT+ZM2jw3iw+DaF2kg24OEEfEQcBHZTS9HqBNVPplqqNSWRkjTl
WSB79q1G6iOYzMUQdULP4vFRv1OePgJzg/voqMRZ6fUSuNgkpyXT0fLf5X12weq9
NBnJ09Eh5bWfRIpdMzI1E1Qjfsm7E6hEa79DOnHmiLgSdVk3M9o=
=Rtrz
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-6.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.12, take #1
- Fix pKVM error path on init, making sure we do not change critical
system registers as we're about to fail
- Make sure that the host's vector length is at capped by a value
common to all CPUs
- Fix kvm_has_feat*() handling of "negative" features, as the current
code is pretty broken
- Promote Joey to the status of official reviewer, while James steps
down -- hopefully only temporarly
Guard them with CONFIG_KVM_X86_COMMON rather than the two vendor modules.
In practice this has no functional change, because CONFIG_KVM_X86_COMMON
is set if and only if at least one vendor-specific module is being built.
However, it is cleaner to specify CONFIG_KVM_X86_COMMON for functions that
are used in kvm.ko.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Fixes: 590b09b1d8 ("KVM: x86: Register "emergency disable" callbacks when virt is enabled")
Fixes: 6d55a94222 ("x86/reboot: Unconditionally define cpu_emergency_virt_cb typedef")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm.ko is nothing but library code shared by kvm-intel.ko and kvm-amd.ko.
It provides no functionality on its own and it is unnecessary unless one
of the vendor-specific module is compiled. In particular, /dev/kvm is
not created until one of kvm-intel.ko or kvm-amd.ko is loaded.
Use CONFIG_KVM to decide if it is built-in or a module, but use the
vendor-specific modules for the actual decision on whether to build it.
This also fixes a build failure when CONFIG_KVM_INTEL and CONFIG_KVM_AMD
are both disabled. The cpu_emergency_register_virt_callback() function
is called from kvm.ko, but it is only defined if at least one of
CONFIG_KVM_INTEL and CONFIG_KVM_AMD is provided.
Fixes: 590b09b1d8 ("KVM: x86: Register "emergency disable" callbacks when virt is enabled")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As was tried in commit 4e103134b8 ("KVM: x86/mmu: Zap only the relevant
pages when removing a memslot"), all shadow pages, i.e. non-leaf SPTEs,
need to be zapped. All of the accounting for a shadow page is tied to the
memslot, i.e. the shadow page holds a reference to the memslot, for all
intents and purposes. Deleting the memslot without removing all relevant
shadow pages, as is done when KVM_X86_QUIRK_SLOT_ZAP_ALL is disabled,
results in NULL pointer derefs when tearing down the VM.
Reintroduce from that commit the code that walks the whole memslot when
there are active shadow MMU pages.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The cpu_emergency_register_virt_callback() function is used
unconditionally by the x86 kvm code, but it is declared (and defined)
conditionally:
#if IS_ENABLED(CONFIG_KVM_INTEL) || IS_ENABLED(CONFIG_KVM_AMD)
void cpu_emergency_register_virt_callback(cpu_emergency_virt_cb *callback);
...
leading to a build error when neither KVM_INTEL nor KVM_AMD support is
enabled:
arch/x86/kvm/x86.c: In function ‘kvm_arch_enable_virtualization’:
arch/x86/kvm/x86.c:12517:9: error: implicit declaration of function ‘cpu_emergency_register_virt_callback’ [-Wimplicit-function-declaration]
12517 | cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
arch/x86/kvm/x86.c: In function ‘kvm_arch_disable_virtualization’:
arch/x86/kvm/x86.c:12522:9: error: implicit declaration of function ‘cpu_emergency_unregister_virt_callback’ [-Wimplicit-function-declaration]
12522 | cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fix the build by defining empty helper functions the same way the old
cpu_emergency_disable_virtualization() function was dealt with for the
same situation.
Maybe we could instead have made the call sites conditional, since the
callers (kvm_arch_{en,dis}able_virtualization()) have an empty weak
fallback. I'll leave that to the kvm people to argue about, this at
least gets the build going for that particular config.
Fixes: 590b09b1d8 ("KVM: x86: Register "emergency disable" callbacks when virt is enabled")
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Kai Huang <kai.huang@intel.com>
Cc: Chao Gao <chao.gao@intel.com>
Cc: Farrah Chen <farrah.chen@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
for "Pantherlake" and "Diamond Rapids".
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmb4/iURHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gawg//dj6dX4ft7pV2OICGg9oqIsqoFRZfppAW
i9SvqsBWRXcj8QS3pd4U6vcQgOexolinJbNEGxaQUuOOUS3FJ/un1frnlpK8bGGp
JP8jY3QK2QlVg8Gb5lGPzO2PSmSaUBDpU0aFI36DTA+p07Fv9qiaiByOxfoSn8WL
YwKVvacPp2j2SAVi92hcgQAiXc4jsZtg3Jbi2yN2MrMDUhEvF+CP/g5QHf1VStdY
jR1TCkDMDB/o0zWn5CpMkcBQIdPe3izYPTr7peX6LkRYdxNSM7wynApcOdFLo8/z
HjMOIyL6F+lEtznlH01cscNyKd7VLKRRG1NAOj9Rx3l0F3jFYsAvTPdb2SPfxstN
pLn8ierFN/+y9kNZrigdB/6r7zJAV5RJ4oyy/O41dT0NozbirYyah5eqCj3UqglE
k9Mwj+gNpGH04OBv6Qh+J6yLVlojrP5AXfQsC2RbiTrUjH4D39xnfbcuuR5ONXfQ
61yeBSe0FoK+E4B+gbH4KBi1zmwG+07lNchLC1F0+sy8x104OBYl6YSUcORyBnny
adyFRDXMQ2qh1Ab929DhkPwULcP6wulryKuKmXOep00iGv8VJy3O3vWhTLsAcTmn
dhcRToeZ95sUfjShdJJwkNNvB+PN3k5rR1S5MYwCHnSdKAgdCou7OsxpdLETBk4m
Mwim6c3sQW4=
=XM4E
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2024-09-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"Fix TDX MMIO #VE fault handling, and add two new Intel model numbers
for 'Pantherlake' and 'Diamond Rapids'"
* tag 'x86-urgent-2024-09-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Add two Intel CPU model numbers
x86/tdx: Fix "in-kernel MMIO" check
* KVM currently invalidates the entirety of the page tables, not just
those for the memslot being touched, when a memslot is moved or deleted.
The former does not have particularly noticeable overhead, but Intel's
TDX will require the guest to re-accept private pages if they are
dropped from the secure EPT, which is a non starter. Actually,
the only reason why this is not already being done is a bug which
was never fully investigated and caused VM instability with assigned
GeForce GPUs, so allow userspace to opt into the new behavior.
* Advertise AVX10.1 to userspace (effectively prep work for the "real" AVX10
functionality that is on the horizon).
* Rework common MSR handling code to suppress errors on userspace accesses to
unsupported-but-advertised MSRs. This will allow removing (almost?) all of
KVM's exemptions for userspace access to MSRs that shouldn't exist based on
the vCPU model (the actual cleanup is non-trivial future work).
* Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC) splits the
64-bit value into the legacy ICR and ICR2 storage, whereas Intel (APICv)
stores the entire 64-bit value at the ICR offset.
* Fix a bug where KVM would fail to exit to userspace if one was triggered by
a fastpath exit handler.
* Add fastpath handling of HLT VM-Exit to expedite re-entering the guest when
there's already a pending wake event at the time of the exit.
* Fix a WARN caused by RSM entering a nested guest from SMM with invalid guest
state, by forcing the vCPU out of guest mode prior to signalling SHUTDOWN
(the SHUTDOWN hits the VM altogether, not the nested guest)
* Overhaul the "unprotect and retry" logic to more precisely identify cases
where retrying is actually helpful, and to harden all retry paths against
putting the guest into an infinite retry loop.
* Add support for yielding, e.g. to honor NEED_RESCHED, when zapping rmaps in
the shadow MMU.
* Refactor pieces of the shadow MMU related to aging SPTEs in prepartion for
adding multi generation LRU support in KVM.
* Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is enabled,
i.e. when the CPU has already flushed the RSB.
* Trace the per-CPU host save area as a VMCB pointer to improve readability
and cleanup the retrieval of the SEV-ES host save area.
* Remove unnecessary accounting of temporary nested VMCB related allocations.
* Set FINAL/PAGE in the page fault error code for EPT violations if and only
if the GVA is valid. If the GVA is NOT valid, there is no guest-side page
table walk and so stuffing paging related metadata is nonsensical.
* Fix a bug where KVM would incorrectly synthesize a nested VM-Exit instead of
emulating posted interrupt delivery to L2.
* Add a lockdep assertion to detect unsafe accesses of vmcs12 structures.
* Harden eVMCS loading against an impossible NULL pointer deref (really truly
should be impossible).
* Minor SGX fix and a cleanup.
* Misc cleanups
Generic:
* Register KVM's cpuhp and syscore callbacks when enabling virtualization in
hardware, as the sole purpose of said callbacks is to disable and re-enable
virtualization as needed.
* Enable virtualization when KVM is loaded, not right before the first VM
is created. Together with the previous change, this simplifies a
lot the logic of the callbacks, because their very existence implies
virtualization is enabled.
* Fix a bug that results in KVM prematurely exiting to userspace for coalesced
MMIO/PIO in many cases, clean up the related code, and add a testcase.
* Fix a bug in kvm_clear_guest() where it would trigger a buffer overflow _if_
the gpa+len crosses a page boundary, which thankfully is guaranteed to not
happen in the current code base. Add WARNs in more helpers that read/write
guest memory to detect similar bugs.
Selftests:
* Fix a goof that caused some Hyper-V tests to be skipped when run on bare
metal, i.e. NOT in a VM.
* Add a regression test for KVM's handling of SHUTDOWN for an SEV-ES guest.
* Explicitly include one-off assets in .gitignore. Past Sean was completely
wrong about not being able to detect missing .gitignore entries.
* Verify userspace single-stepping works when KVM happens to handle a VM-Exit
in its fastpath.
* Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmb201AUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOM1gf+Ij7dpCh0KwoNYlHfW2aCHAv3PqQd
cKMDSGxoCernbJEyPO/3qXNUK+p4zKedk3d92snW3mKa+cwxMdfthJ3i9d7uoNiw
7hAgcfKNHDZGqAQXhx8QcVF3wgp+diXSyirR+h1IKrGtCCmjMdNC8ftSYe6voEkw
VTVbLL+tER5H0Xo5UKaXbnXKDbQvWLXkdIqM8dtLGFGLQ2PnF/DdMP0p6HYrKf1w
B7LBu0rvqYDL8/pS82mtR3brHJXxAr9m72fOezRLEUbfUdzkTUi/b1vEe6nDCl0Q
i/PuFlARDLWuetlR0VVWKNbop/C/l4EmwCcKzFHa+gfNH3L9361Oz+NzBw==
=Q7kz
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull x86 kvm updates from Paolo Bonzini:
"x86:
- KVM currently invalidates the entirety of the page tables, not just
those for the memslot being touched, when a memslot is moved or
deleted.
This does not traditionally have particularly noticeable overhead,
but Intel's TDX will require the guest to re-accept private pages
if they are dropped from the secure EPT, which is a non starter.
Actually, the only reason why this is not already being done is a
bug which was never fully investigated and caused VM instability
with assigned GeForce GPUs, so allow userspace to opt into the new
behavior.
- Advertise AVX10.1 to userspace (effectively prep work for the
"real" AVX10 functionality that is on the horizon)
- Rework common MSR handling code to suppress errors on userspace
accesses to unsupported-but-advertised MSRs
This will allow removing (almost?) all of KVM's exemptions for
userspace access to MSRs that shouldn't exist based on the vCPU
model (the actual cleanup is non-trivial future work)
- Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC)
splits the 64-bit value into the legacy ICR and ICR2 storage,
whereas Intel (APICv) stores the entire 64-bit value at the ICR
offset
- Fix a bug where KVM would fail to exit to userspace if one was
triggered by a fastpath exit handler
- Add fastpath handling of HLT VM-Exit to expedite re-entering the
guest when there's already a pending wake event at the time of the
exit
- Fix a WARN caused by RSM entering a nested guest from SMM with
invalid guest state, by forcing the vCPU out of guest mode prior to
signalling SHUTDOWN (the SHUTDOWN hits the VM altogether, not the
nested guest)
- Overhaul the "unprotect and retry" logic to more precisely identify
cases where retrying is actually helpful, and to harden all retry
paths against putting the guest into an infinite retry loop
- Add support for yielding, e.g. to honor NEED_RESCHED, when zapping
rmaps in the shadow MMU
- Refactor pieces of the shadow MMU related to aging SPTEs in
prepartion for adding multi generation LRU support in KVM
- Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is
enabled, i.e. when the CPU has already flushed the RSB
- Trace the per-CPU host save area as a VMCB pointer to improve
readability and cleanup the retrieval of the SEV-ES host save area
- Remove unnecessary accounting of temporary nested VMCB related
allocations
- Set FINAL/PAGE in the page fault error code for EPT violations if
and only if the GVA is valid. If the GVA is NOT valid, there is no
guest-side page table walk and so stuffing paging related metadata
is nonsensical
- Fix a bug where KVM would incorrectly synthesize a nested VM-Exit
instead of emulating posted interrupt delivery to L2
- Add a lockdep assertion to detect unsafe accesses of vmcs12
structures
- Harden eVMCS loading against an impossible NULL pointer deref
(really truly should be impossible)
- Minor SGX fix and a cleanup
- Misc cleanups
Generic:
- Register KVM's cpuhp and syscore callbacks when enabling
virtualization in hardware, as the sole purpose of said callbacks
is to disable and re-enable virtualization as needed
- Enable virtualization when KVM is loaded, not right before the
first VM is created
Together with the previous change, this simplifies a lot the logic
of the callbacks, because their very existence implies
virtualization is enabled
- Fix a bug that results in KVM prematurely exiting to userspace for
coalesced MMIO/PIO in many cases, clean up the related code, and
add a testcase
- Fix a bug in kvm_clear_guest() where it would trigger a buffer
overflow _if_ the gpa+len crosses a page boundary, which thankfully
is guaranteed to not happen in the current code base. Add WARNs in
more helpers that read/write guest memory to detect similar bugs
Selftests:
- Fix a goof that caused some Hyper-V tests to be skipped when run on
bare metal, i.e. NOT in a VM
- Add a regression test for KVM's handling of SHUTDOWN for an SEV-ES
guest
- Explicitly include one-off assets in .gitignore. Past Sean was
completely wrong about not being able to detect missing .gitignore
entries
- Verify userspace single-stepping works when KVM happens to handle a
VM-Exit in its fastpath
- Misc cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
Documentation: KVM: fix warning in "make htmldocs"
s390: Enable KVM_S390_UCONTROL config in debug_defconfig
selftests: kvm: s390: Add VM run test case
KVM: SVM: let alternatives handle the cases when RSB filling is required
KVM: VMX: Set PFERR_GUEST_{FINAL,PAGE}_MASK if and only if the GVA is valid
KVM: x86/mmu: Use KVM_PAGES_PER_HPAGE() instead of an open coded equivalent
KVM: x86/mmu: Add KVM_RMAP_MANY to replace open coded '1' and '1ul' literals
KVM: x86/mmu: Fold mmu_spte_age() into kvm_rmap_age_gfn_range()
KVM: x86/mmu: Morph kvm_handle_gfn_range() into an aging specific helper
KVM: x86/mmu: Honor NEED_RESCHED when zapping rmaps and blocking is allowed
KVM: x86/mmu: Add a helper to walk and zap rmaps for a memslot
KVM: x86/mmu: Plumb a @can_yield parameter into __walk_slot_rmaps()
KVM: x86/mmu: Move walk_slot_rmaps() up near for_each_slot_rmap_range()
KVM: x86/mmu: WARN on MMIO cache hit when emulating write-protected gfn
KVM: x86/mmu: Detect if unprotect will do anything based on invalid_list
KVM: x86/mmu: Subsume kvm_mmu_unprotect_page() into the and_retry() version
KVM: x86: Rename reexecute_instruction()=>kvm_unprotect_and_retry_on_failure()
KVM: x86: Update retry protection fields when forcing retry on emulation failure
KVM: x86: Apply retry protection to "unprotect on failure" path
KVM: x86: Check EMULTYPE_WRITE_PF_TO_SP before unprotecting gfn
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCZvZ8dgAKCRCAXGG7T9hj
vhirAQCR1LAU+czZlqmx6jmKRPTGff1ss66vh04XbtgTjH+8PQEA8O5KvD/KnnxY
AnrOvrx6fTLwR6iTN7ANVvPO3kGK/w0=
=0Tol
-----END PGP SIGNATURE-----
Merge tag 'for-linus-6.12-rc1a-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull more xen updates from Juergen Gross:
"A second round of Xen related changes and features:
- a small fix of the xen-pciback driver for a warning issued by
sparse
- support PCI passthrough when using a PVH dom0
- enable loading the kernel in PVH mode at arbitrary addresses,
avoiding conflicts with the memory map when running as a Xen dom0
using the host memory layout"
* tag 'for-linus-6.12-rc1a-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
x86/pvh: Add 64bit relocation page tables
x86/kernel: Move page table macros to header
x86/pvh: Set phys_base when calling xen_prepare_pvh()
x86/pvh: Make PVH entrypoint PIC for x86-64
xen: sync elfnote.h from xen tree
xen/pciback: fix cast to restricted pci_ers_result_t and pci_power_t
xen/privcmd: Add new syscall to get gsi from dev
xen/pvh: Setup gsi for passthrough device
xen/pci: Add a function to reset device for xen
no_llseek had been defined to NULL two years ago, in commit 868941b144
("fs: remove no_llseek")
To quote that commit,
At -rc1 we'll need do a mechanical removal of no_llseek -
git grep -l -w no_llseek | grep -v porting.rst | while read i; do
sed -i '/\<no_llseek\>/d' $i
done
would do it.
Unfortunately, that hadn't been done. Linus, could you do that now, so
that we could finally put that thing to rest? All instances are of the
form
.llseek = no_llseek,
so it's obviously safe.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These are only two small patches, one cleanup for arch/alpha
and a preparation patch cleaning up the handling of runtime
constants in the linker scripts.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEiK/NIGsWEZVxh/FrYKtH/8kJUicFAmboHV0ACgkQYKtH/8kJ
UifHfhAAqTHHxxe+HiphGBPHN0ODyLVUs7fOQHtLOSmJlQa6x1TCR/+1nL1kTDbe
j6EcIRxZrllQZ+jZBA8z2XsAmjjBLUxCB4yu6oxYJh8OdFyqeVM/myZEr2TAyb0o
A3D9b+rfnY8sr9XaFHSHGWbh4c33cGQhACumHVAjtPvU06Voskq4pAf9ZnpGkNBe
AdKNTVG6+w84dKUNuzXcexP8d7SnsXNfd6T9+evtW/M+fziWzs3aPQr+GZED96E5
8IRldXi2nzIwm9LT5IzZAt+QvpVb2Qob1+rej9p5WpptGp840CROTo61SwaYHCMV
DDxTlmADsApWJQ3B5gDu6QS2jXT4eeOrY3JI2baeCyOV6auj15UXKiWc2QVoHOVU
6+PzlSFuLatI6WsxXfOcD0o3bfQXMKS6zCC/4eD7Y/SmmMqBbL5+d9sU5lwkiOFl
swoswF4HTwo5d6NdkSuJOt6KA/V8a68lBhKYBXHu2yuLi/LDNOaipEvBHQLzfnlY
91e5DtDiHK9CYDNkwiR+bV9rQnhA535JSlfR8VtpU/SJTTjyF+dkt9JGPdivXoIA
8Zv+DN/oyrahUtCrgzzPXahOuBrfD/WfIajsvpEK6vNPuBhscsZFg/thc70FMIXo
qn8Dmpi/CnDWFNOy0xO0cbYWrGBGn9E7kzbSZ78tUIjPUmmEKfk=
=OOMl
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic updates from Arnd Bergmann:
"These are only two small patches, one cleanup for arch/alpha and a
preparation patch cleaning up the handling of runtime constants in the
linker scripts"
* tag 'asm-generic-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
runtime constants: move list of constants to vmlinux.lds.h
alpha: no need to include asm/xchg.h twice