The aim of this patch is to make two separate cpumasks
for padata parallel and serial workers respectively.
It allows user to make more thin and sophisticated configurations
of padata framework. For example user may bind parallel and serial workers to non-intersecting
CPU groups to gain better performance. Also each padata instance has notifiers chain for its
cpumasks now. If either parallel or serial or both masks were changed all
interested subsystems will get notification about that. It's especially useful
if padata user uses algorithm for callback CPU selection according to serial cpumask.
Signed-off-by: Dan Kruchinin <dkruchinin@acm.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We count the number of processed objects on a percpu basis,
so we need to go through all the percpu reorder queues to calculate
the sequence number of the next object that needs serialization.
This patch changes this to count the number of processed objects
global. So we can calculate the sequence number and the percpu
reorder queue of the next object that needs serialization without
searching through the percpu reorder queues. This avoids some
accesses to memory of foreign cpus.
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the PADATA_INVALID flag which is
checked on padata start. This will be used to mark a padata
instance as invalid, if the padata cpumask does not intersect
with the active cpumask. we change padata_start to return an
error if the PADATA_INVALID is set. Also we adapt the only
padata user, pcrypt to this change.
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
padata_get_next needs to check whether the next object that
need serialization must be parallel processed by the local cpu.
This check was wrong implemented and returned always true,
so the try_again loop in padata_reorder was never taken. This
can lead to object leaks in some rare cases due to a race that
appears with the trylock in padata_reorder. The try_again loop
was not a good idea after all, because a cpu could take that
loop frequently, so we handle this with a timer instead.
This patch adds a timer to handle the race that appears with
the trylock. If cpu1 queues an object to the reorder queue while
cpu2 holds the pd->lock but left the while loop in padata_reorder
already, cpu2 can't care for this object and cpu1 exits because
it can't get the lock. Usually the next cpu that takes the lock
cares for this object too. We need the timer just if this object
was the last one that arrives to the reorder queues. The timer
function sends it out in this case.
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces an interface to process data objects
in parallel. The parallelized objects return after serialization
in the same order as they were before the parallelization.
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>