In the presence of both weak and strong function definitions, the
linker drops the weak symbol in favor of a strong symbol, but
leaves the code in place. Code in ignore_unreachable_insn() has
some heuristics to suppress the warning, but it does not work when
-ffunction-sections is enabled.
Suppose function foo has both strong and weak definitions.
Case 1: The strong definition has an annotated section name,
like .init.text. Only the weak definition will be placed into
.text.foo. But since the section has no symbols, there will be no
"hole" in the section.
Case 2: Both sections are without an annotated section name.
Both will be placed into .text.foo section, but there will be only one
symbol (the strong one). If the weak code is before the strong code,
there is no "hole" as it fails to find the right-most symbol before
the offset.
The fix is to use the first node to compute the hole if hole.sym
is empty. If there is no symbol in the section, the first node
will be NULL, in which case, -1 is returned to skip the whole
section.
Co-developed-by: Han Shen <shenhan@google.com>
Signed-off-by: Han Shen <shenhan@google.com>
Signed-off-by: Rong Xu <xur@google.com>
Suggested-by: Sriraman Tallam <tmsriram@google.com>
Suggested-by: Krzysztof Pszeniczny <kpszeniczny@google.com>
Tested-by: Yonghong Song <yonghong.song@linux.dev>
Tested-by: Yabin Cui <yabinc@google.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Kees Cook <kees@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
If one of the symbols processed by read_symbols() happens to have a
.cold variant with a name longer than objtool's MAX_NAME_LEN limit, the
build fails.
Avoid this problem by just using strndup() to copy the parent function's
name, rather than strncpy()ing it onto the stack.
Signed-off-by: Aaron Plattner <aplattner@nvidia.com>
Link: https://lore.kernel.org/r/41e94cfea1d9131b758dd637fecdeacd459d4584.1696355111.git.aplattner@nvidia.com
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Function elf_open_read() only zero initializes the initial part of
allocated struct elf; num_relocs member was recently added outside the
zeroed part so that it was left uninitialized, resulting in build failures
on some systems.
The partial initialization is a relic of times when struct elf had large
hash tables embedded. This is no longer the case so remove the trap and
initialize the whole structure instead.
Fixes: eb0481bbc4 ("objtool: Fix reloc_hash size")
Signed-off-by: Michal Kubecek <mkubecek@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20230629102051.42E8360467@lion.mk-sys.cz
Objtool doesn't use DWARF at all, and the DWARF sections' data take up a
lot of memory. Skip reading them.
Note this only skips the DWARF base sections, not the rela sections.
The relas are needed because their symbol references may need to be
reindexed if any local symbols get added by elf_create_symbol().
Also note the DWARF data will eventually be read by libelf anyway, when
writing the object file. But that's fine, the goal here is to reduce
*peak* memory usage, and the previous patch (which freed insn memory)
gave some breathing room. So the allocation gets shifted to a later
time, resulting in lower peak memory usage.
With allyesconfig + CONFIG_DEBUG_INFO:
- Before: peak heap memory consumption: 29.93G
- After: peak heap memory consumption: 25.47G
Link: https://lore.kernel.org/r/52a9698835861dd35f2ec35c49f96d0bb39fb177.1685464332.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
When creating an annotation section, allocate the reloc section data at
the beginning. This simplifies the data model a bit and also saves
memory due to the removal of malloc() in elf_rebuild_reloc_section().
With allyesconfig + CONFIG_DEBUG_INFO:
- Before: peak heap memory consumption: 53.49G
- After: peak heap memory consumption: 49.02G
Link: https://lore.kernel.org/r/048e908f3ede9b66c15e44672b6dda992b1dae3e.1685464332.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
The GElf_Rel[a] structs have more similarities than differences. It's
safe to hard-code the assumptions about their shared fields as they will
never change. Consolidate their handling where possible, getting rid of
duplicated code.
Also, at least for now we only ever create rela sections, so simplify
the relocation creation code to be rela-only.
Link: https://lore.kernel.org/r/dcabf6df400ca500ea929f1e4284f5e5ec0b27c8.1685464332.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
- The term "reloc" is overloaded to mean both "an instance of struct
reloc" and "a reloc section". Change the latter to "rsec".
- For variable names, use "sec" for regular sections and "rsec" for rela
sections to prevent them getting mixed up.
- For struct reloc variables, use "reloc" instead of "rel" everywhere
for consistency.
Link: https://lore.kernel.org/r/8b790e403df46f445c21003e7893b8f53b99a6f3.1685464332.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
By using calloc() instead of malloc() in a loop, libc does not have to
keep around bookkeeping information for each single structure.
This reduces maximum memory usage while processing vmlinux.o from
3153325 KB to 3035668 KB (-3.7%) on my notebooks "localmodconfig".
Note this introduces memory leaks, because some additional structs get
added to the lists later after reading the symbols and sections from the
original object. Luckily we don't really care about memory leaks in
objtool.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Link: https://lore.kernel.org/r/20221216-objtool-memory-v2-3-17968f85a464@weissschuh.net
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
- Add powerpc qspinlock implementation optimised for large system scalability and
paravirt. See the merge message for more details.
- Enable objtool to be built on powerpc to generate mcount locations.
- Use a temporary mm for code patching with the Radix MMU, so the writable mapping is
restricted to the patching CPU.
- Add an option to build the 64-bit big-endian kernel with the ELFv2 ABI.
- Sanitise user registers on interrupt entry on 64-bit Book3S.
- Many other small features and fixes.
Thanks to: Aboorva Devarajan, Angel Iglesias, Benjamin Gray, Bjorn Helgaas, Bo Liu, Chen
Lifu, Christoph Hellwig, Christophe JAILLET, Christophe Leroy, Christopher M. Riedl, Colin
Ian King, Deming Wang, Disha Goel, Dmitry Torokhov, Finn Thain, Geert Uytterhoeven,
Gustavo A. R. Silva, Haowen Bai, Joel Stanley, Jordan Niethe, Julia Lawall, Kajol Jain,
Laurent Dufour, Li zeming, Miaoqian Lin, Michael Jeanson, Nathan Lynch, Naveen N. Rao,
Nayna Jain, Nicholas Miehlbradt, Nicholas Piggin, Pali Rohár, Randy Dunlap, Rohan McLure,
Russell Currey, Sathvika Vasireddy, Shaomin Deng, Stephen Kitt, Stephen Rothwell, Thomas
Weißschuh, Tiezhu Yang, Uwe Kleine-König, Xie Shaowen, Xiu Jianfeng, XueBing Chen, Yang
Yingliang, Zhang Jiaming, ruanjinjie, Jessica Yu, Wolfram Sang.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAmOfrj8THG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgIWtD/9mGF/ze2k+qFTo+30fb7bO8WJIDgsR
dIASnZjXV7q/45elvymhUdkQv4R7xL3pzC40P1+ZKtWzGTNe+zWUQLoALNwRK85j
8CsxZbqefGNKE5Z6ZHo9s37wsu3+jJu9yEQpGFo1LINyzeclCn5St5oqfRam+Hd/
cPF+VfvREwZ0+YOKGBhJ2EgC+Gc9xsFY7DLQsoYlu71iZZr6Z6rgZW/EY5h3RMGS
YKBoVwDsWaU0FpFWrr/rYTI6DqSr3AHr1+ftDg7ncCZMD6vQva6aMCCt94aLB1aE
vC+DNdhZlA558bXGa5yA7Wr//7aUBUIwyC60DogOeZ6vw3kD9tdEd1fbH5hmqNKY
K5bfqm28XU2959CTE8RDgsYYZvwDcfrjBIML14WZGdCQOTcGKpgOGp22o6yNb1Pq
JKpHHnVpvu2PZ/p2XdKSm9+etr2yI6lXZAEVTS7ehdtMukButjSHEVbSCEZ8tlWz
KokQt2J23BMHuSrXK6+67wWQBtdsLEk+LBOQmweiwarMocqvL/Zjz/5J7DR2DtH8
wlY3wOtB1+E5j7xZ+RgK3c3jNg5dH39ZwvFsSATWTI3P+iq6OK/bbk4q4LmZt2l9
ZIfH/CXPf9BvGCHzHa3AAd3UBbJLFwj17btMEv1wFVPS0T4LPUzkgTNTNUYeP6zL
h1e5QfgUxvKPuQ==
=7k3p
-----END PGP SIGNATURE-----
Merge tag 'powerpc-6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- Add powerpc qspinlock implementation optimised for large system
scalability and paravirt. See the merge message for more details
- Enable objtool to be built on powerpc to generate mcount locations
- Use a temporary mm for code patching with the Radix MMU, so the
writable mapping is restricted to the patching CPU
- Add an option to build the 64-bit big-endian kernel with the ELFv2
ABI
- Sanitise user registers on interrupt entry on 64-bit Book3S
- Many other small features and fixes
Thanks to Aboorva Devarajan, Angel Iglesias, Benjamin Gray, Bjorn
Helgaas, Bo Liu, Chen Lifu, Christoph Hellwig, Christophe JAILLET,
Christophe Leroy, Christopher M. Riedl, Colin Ian King, Deming Wang,
Disha Goel, Dmitry Torokhov, Finn Thain, Geert Uytterhoeven, Gustavo A.
R. Silva, Haowen Bai, Joel Stanley, Jordan Niethe, Julia Lawall, Kajol
Jain, Laurent Dufour, Li zeming, Miaoqian Lin, Michael Jeanson, Nathan
Lynch, Naveen N. Rao, Nayna Jain, Nicholas Miehlbradt, Nicholas Piggin,
Pali Rohár, Randy Dunlap, Rohan McLure, Russell Currey, Sathvika
Vasireddy, Shaomin Deng, Stephen Kitt, Stephen Rothwell, Thomas
Weißschuh, Tiezhu Yang, Uwe Kleine-König, Xie Shaowen, Xiu Jianfeng,
XueBing Chen, Yang Yingliang, Zhang Jiaming, ruanjinjie, Jessica Yu,
and Wolfram Sang.
* tag 'powerpc-6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (181 commits)
powerpc/code-patching: Fix oops with DEBUG_VM enabled
powerpc/qspinlock: Fix 32-bit build
powerpc/prom: Fix 32-bit build
powerpc/rtas: mandate RTAS syscall filtering
powerpc/rtas: define pr_fmt and convert printk call sites
powerpc/rtas: clean up includes
powerpc/rtas: clean up rtas_error_log_max initialization
powerpc/pseries/eeh: use correct API for error log size
powerpc/rtas: avoid scheduling in rtas_os_term()
powerpc/rtas: avoid device tree lookups in rtas_os_term()
powerpc/rtasd: use correct OF API for event scan rate
powerpc/rtas: document rtas_call()
powerpc/pseries: unregister VPA when hot unplugging a CPU
powerpc/pseries: reset the RCU watchdogs after a LPM
powerpc: Take in account addition CPU node when building kexec FDT
powerpc: export the CPU node count
powerpc/cpuidle: Set CPUIDLE_FLAG_POLLING for snooze state
powerpc/dts/fsl: Fix pca954x i2c-mux node names
cxl: Remove unnecessary cxl_pci_window_alignment()
selftests/powerpc: Fix resource leaks
...
In order to allow using objtool on cross-built kernels,
determine size of long from elf data instead of using
sizeof(long) at build time.
For the time being this covers only mcount.
[Sathvika Vasireddy: Rename variable "size" to "addrsize" and function
"elf_class_size()" to "elf_class_addrsize()", and modify
create_mcount_loc_sections() function to follow reverse christmas tree
format to order local variable declarations.]
Tested-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Sathvika Vasireddy <sv@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221114175754.1131267-11-sv@linux.ibm.com
When moving a symbol in the symtab its index changes and any reloc
referring that symtol-table-index will need to be rewritten too.
In order to facilitate this, objtool simply marks the whole reloc
section 'changed' which will cause the whole section to be
re-generated.
However, finding the relocs that use any given symbol is implemented
rather crudely -- a fully iteration of all sections and their relocs.
Given that some builds have over 20k sections (kallsyms etc..)
iterating all that for *each* symbol moved takes a bit of time.
Instead have each symbol keep a list of relocs that reference it.
This *vastly* improves build times for certain configs.
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/Y2LlRA7x+8UsE1xf@hirez.programming.kicks-ass.net
When code is compiled with:
-fpatchable-function-entry=${PADDING_BYTES},${PADDING_BYTES}
functions will have PADDING_BYTES of NOP in front of them. Unwinders
and other things that symbolize code locations will typically
attribute these bytes to the preceding function.
Given that these bytes nominally belong to the following symbol this
mis-attribution is confusing.
Inspired by the fact that CFI_CLANG emits __cfi_##name symbols to
claim these bytes, allow objtool to emit __pfx_##name symbols to do
the same.
Therefore add the objtool --prefix=N argument, to conditionally place
a __pfx_##name symbol at N bytes ahead of symbol 'name' when: all
these preceding bytes are NOP and name-N is an instruction boundary.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Yujie Liu <yujie.liu@intel.com>
Link: https://lkml.kernel.org/r/20221028194453.526899822@infradead.org
Due to how gelf_update_sym*() requires an Elf_Data pointer, and how
libelf keeps Elf_Data in a linked list per section,
elf_update_symbol() ends up having to iterate this list on each
update to find the correct Elf_Data for the index'ed symbol.
By allocating one Elf_Data per new symbol, the list grows per new
symbol, giving an effective O(n^2) insertion time. This is obviously
bloody terrible.
Therefore over-allocate the Elf_Data when an extention is needed.
Except it turns out libelf disregards Elf_Scn::sh_size in favour of
the sum of Elf_Data::d_size. IOW it will happily write out all the
unused space and fill it with:
0000000000000000 0 NOTYPE LOCAL DEFAULT UND
entries (aka zeros). Which obviously violates the STB_LOCAL placement
rule, and is a general pain in the backside for not being the desired
behaviour.
Manually fix-up the Elf_Data size to avoid this problem before calling
elf_update().
This significantly improves performance when adding a significant
number of symbols.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Yujie Liu <yujie.liu@intel.com>
Link: https://lkml.kernel.org/r/20221028194453.461658986@infradead.org
In order to facilitate creation of more symbol types, slice up
elf_create_section_symbol() to extract a generic helper that deals
with adding ELF symbols.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Yujie Liu <yujie.liu@intel.com>
Link: https://lkml.kernel.org/r/20221028194453.396634875@infradead.org
The current find_{symbol,func}_containing() functions are broken in
the face of overlapping symbols, exactly the case that is needed for a
new ibt/endbr supression.
Import interval_tree_generic.h into the tools tree and convert the
symbol tree to an interval tree to support proper range stabs.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111146.330203761@infradead.org
elf_update_symbol fails to preserve the special st_shndx values
between [SHN_LORESERVE, SHN_HIRESERVE], which results in it
converting SHN_ABS entries into SHN_UNDEF, for example. Explicitly
check for the special indexes and ensure these symbols are not
marked undefined.
Fixes: ead165fa10 ("objtool: Fix symbol creation")
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-17-samitolvanen@google.com
Commit c087c6e7b5 ("objtool: Fix type of reloc::addend") failed to
appreciate cross building from ILP32 hosts, where 'int' == 'long' and
the issue persists.
As such, use s64/int64_t/Elf64_Sxword for this field and suffer the
pain that is ISO C99 printf formats for it.
Fixes: c087c6e7b5 ("objtool: Fix type of reloc::addend")
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
[peterz: reword changelog, s/long long/s64/]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/alpine.LRH.2.02.2205161041260.11556@file01.intranet.prod.int.rdu2.redhat.com
Nathan reported objtool failing with the following messages:
warning: objtool: no non-local symbols !?
warning: objtool: gelf_update_symshndx: invalid section index
The problem is due to commit 4abff6d48d ("objtool: Fix code relocs
vs weak symbols") failing to consider the case where an object would
have no non-local symbols.
The problem that commit tries to address is adding a STB_LOCAL symbol
to the symbol table in light of the ELF spec's requirement that:
In each symbol table, all symbols with STB_LOCAL binding preced the
weak and global symbols. As ``Sections'' above describes, a symbol
table section's sh_info section header member holds the symbol table
index for the first non-local symbol.
The approach taken is to find this first non-local symbol, move that
to the end and then re-use the freed spot to insert a new local symbol
and increment sh_info.
Except it never considered the case of object files without global
symbols and got a whole bunch of details wrong -- so many in fact that
it is a wonder it ever worked :/
Specifically:
- It failed to re-hash the symbol on the new index, so a subsequent
find_symbol_by_index() would not find it at the new location and a
query for the old location would now return a non-deterministic
choice between the old and new symbol.
- It failed to appreciate that the GElf wrappers are not a valid disk
format (it works because GElf is basically Elf64 and we only
support x86_64 atm.)
- It failed to fully appreciate how horrible the libelf API really is
and got the gelf_update_symshndx() call pretty much completely
wrong; with the direct consequence that if inserting a second
STB_LOCAL symbol would require moving the same STB_GLOBAL symbol
again it would completely come unstuck.
Write a new elf_update_symbol() function that wraps all the magic
required to update or create a new symbol at a given index.
Specifically, gelf_update_sym*() require an @ndx argument that is
relative to the @data argument; this means you have to manually
iterate the section data descriptor list and update @ndx.
Fixes: 4abff6d48d ("objtool: Fix code relocs vs weak symbols")
Reported-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/YoPCTEYjoPqE4ZxB@hirez.programming.kicks-ass.net
The '--lto' option is a confusing way of telling objtool to do stack
validation despite it being a linked object. It's no longer needed now
that an explicit '--stackval' option exists. The '--vmlinux' option is
also redundant.
Remove both options in favor of a straightforward '--link' option which
identifies a linked object.
Also, implicitly set '--link' with a warning if the user forgets to do
so and we can tell that it's a linked object. This makes it easier for
manual vmlinux runs.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lkml.kernel.org/r/dcd3ceffd15a54822c6183e5766d21ad06082b45.1650300597.git.jpoimboe@redhat.com
Split the existing options into two groups: actions, which actually do
something; and options, which modify the actions in some way.
Also there's no need to have short flags for all the non-action options.
Reserve short flags for the more important actions.
While at it:
- change a few of the short flags to be more intuitive
- make option descriptions more consistently descriptive
- sort options in the source like they are when printed
- move options to a global struct
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lkml.kernel.org/r/9dcaa752f83aca24b1b21f0b0eeb28a0c181c0b0.1650300597.git.jpoimboe@redhat.com
Occasionally objtool driven code patching (think .static_call_sites
.retpoline_sites etc..) goes sideways and it tries to patch an
instruction that doesn't match.
Much head-scatching and cursing later the problem is as outlined below
and affects every section that objtool generates for us, very much
including the ORC data. The below uses .static_call_sites because it's
convenient for demonstration purposes, but as mentioned the ORC
sections, .retpoline_sites and __mount_loc are all similarly affected.
Consider:
foo-weak.c:
extern void __SCT__foo(void);
__attribute__((weak)) void foo(void)
{
return __SCT__foo();
}
foo.c:
extern void __SCT__foo(void);
extern void my_foo(void);
void foo(void)
{
my_foo();
return __SCT__foo();
}
These generate the obvious code
(gcc -O2 -fcf-protection=none -fno-asynchronous-unwind-tables -c foo*.c):
foo-weak.o:
0000000000000000 <foo>:
0: e9 00 00 00 00 jmpq 5 <foo+0x5> 1: R_X86_64_PLT32 __SCT__foo-0x4
foo.o:
0000000000000000 <foo>:
0: 48 83 ec 08 sub $0x8,%rsp
4: e8 00 00 00 00 callq 9 <foo+0x9> 5: R_X86_64_PLT32 my_foo-0x4
9: 48 83 c4 08 add $0x8,%rsp
d: e9 00 00 00 00 jmpq 12 <foo+0x12> e: R_X86_64_PLT32 __SCT__foo-0x4
Now, when we link these two files together, you get something like
(ld -r -o foos.o foo-weak.o foo.o):
foos.o:
0000000000000000 <foo-0x10>:
0: e9 00 00 00 00 jmpq 5 <foo-0xb> 1: R_X86_64_PLT32 __SCT__foo-0x4
5: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1)
f: 90 nop
0000000000000010 <foo>:
10: 48 83 ec 08 sub $0x8,%rsp
14: e8 00 00 00 00 callq 19 <foo+0x9> 15: R_X86_64_PLT32 my_foo-0x4
19: 48 83 c4 08 add $0x8,%rsp
1d: e9 00 00 00 00 jmpq 22 <foo+0x12> 1e: R_X86_64_PLT32 __SCT__foo-0x4
Noting that ld preserves the weak function text, but strips the symbol
off of it (hence objdump doing that funny negative offset thing). This
does lead to 'interesting' unused code issues with objtool when ran on
linked objects, but that seems to be working (fingers crossed).
So far so good.. Now lets consider the objtool static_call output
section (readelf output, old binutils):
foo-weak.o:
Relocation section '.rela.static_call_sites' at offset 0x2c8 contains 1 entry:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000200000002 R_X86_64_PC32 0000000000000000 .text + 0
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
foo.o:
Relocation section '.rela.static_call_sites' at offset 0x310 contains 2 entries:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000200000002 R_X86_64_PC32 0000000000000000 .text + d
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
foos.o:
Relocation section '.rela.static_call_sites' at offset 0x430 contains 4 entries:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000100000002 R_X86_64_PC32 0000000000000000 .text + 0
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
0000000000000008 0000000100000002 R_X86_64_PC32 0000000000000000 .text + 1d
000000000000000c 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
So we have two patch sites, one in the dead code of the weak foo and one
in the real foo. All is well.
*HOWEVER*, when the toolchain strips unused section symbols it
generates things like this (using new enough binutils):
foo-weak.o:
Relocation section '.rela.static_call_sites' at offset 0x2c8 contains 1 entry:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000200000002 R_X86_64_PC32 0000000000000000 foo + 0
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
foo.o:
Relocation section '.rela.static_call_sites' at offset 0x310 contains 2 entries:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000200000002 R_X86_64_PC32 0000000000000000 foo + d
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
foos.o:
Relocation section '.rela.static_call_sites' at offset 0x430 contains 4 entries:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000100000002 R_X86_64_PC32 0000000000000000 foo + 0
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
0000000000000008 0000000100000002 R_X86_64_PC32 0000000000000000 foo + d
000000000000000c 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
And now we can see how that foos.o .static_call_sites goes side-ways, we
now have _two_ patch sites in foo. One for the weak symbol at foo+0
(which is no longer a static_call site!) and one at foo+d which is in
fact the right location.
This seems to happen when objtool cannot find a section symbol, in which
case it falls back to any other symbol to key off of, however in this
case that goes terribly wrong!
As such, teach objtool to create a section symbol when there isn't
one.
Fixes: 44f6a7c075 ("objtool: Fix seg fault with Clang non-section symbols")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20220419203807.655552918@infradead.org
There's a fun implementation detail on linking STB_WEAK symbols. When
the linker combines two translation units, where one contains a weak
function and the other an override for it. It simply strips the
STB_WEAK symbol from the symbol table, but doesn't actually remove the
code.
The result is that when objtool is ran in a whole-archive kind of way,
it will encounter *heaps* of unused (and unreferenced) code. All
rudiments of weak functions.
Additionally, when a weak implementation is split into a .cold
subfunction that .cold symbol is left in place, even though completely
unused.
Teach objtool to ignore such rudiments by searching for symbol holes;
that is, code ranges that fall outside the given symbol bounds.
Specifically, ignore a sequence of unreachable instruction iff they
occupy a single hole, additionally ignore any .cold subfunctions
referenced.
Both ld.bfd and ld.lld behave like this. LTO builds otoh can (and do)
properly DCE weak functions.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154319.232019347@infradead.org
Add a --dry-run argument to skip writing the modifications. This is
convenient for debugging.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154317.282720146@infradead.org
Boris reported that in one of his randconfig builds, objtool got
infinitely stuck. Turns out there's trivial list corruption in the
pv_ops tracking when a function is both in a static table and in a code
assignment.
Avoid re-adding function to the pv_ops[] lists when they're already on
it.
Fixes: db2b0c5d7b ("objtool: Support pv_opsindirect calls for noinstr")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20211202204534.GA16608@worktop.programming.kicks-ass.net
- Improve retpoline code patching by separating it from alternatives which
reduces memory footprint and allows to do better optimizations in the
actual runtime patching.
- Add proper retpoline support for x86/BPF
- Address noinstr warnings in x86/kvm, lockdep and paravirtualization code
- Add support to handle pv_opsindirect calls in the noinstr analysis
- Classify symbols upfront and cache the result to avoid redundant
str*cmp() invocations.
- Add a CFI hash to reduce memory consumption which also reduces runtime
on a allyesconfig by ~50%
- Adjust XEN code to make objtool handling more robust and as a side
effect to prevent text fragmentation due to placement of the hypercall
page.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/GFgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoc1JD/0Sz6seP2OUMxbMT3gCcFo9sMvYTdsM
7WuGFbBbnCIo7g8JH7k0zRRBigptMp2eUtQXKkgaaIbWN4JbuVKf8KxN5/qXxLi4
fJ12QnNTGH9N2jtzl5wKmpjaKJnnJMD9D10XwoR+T6gn6NHd+AgLEs7GxxuQUlgo
eC9oEXhNHC8uNhiZc38EwfwmItI1bRgaLrnZWIL4rYGSMxfCK1/cEOpWrFfX9wmj
/diB6oqMyPXZXMCtgpX7TniUr5XOTCcUkeO9mQv5bmyq/YM/8hrTbcVSJlsVYLvP
EsBnUSHAcfLFiHXwa1RNiIGdbiPjbN+UYeXGAvqF58f3e5dTIHtN/UmWo7OH93If
9rLMVNcMpsfPx7QRk2IxEPumLCkyfwjzfKrVDM6P6TKEIUzD1og4IK9gTlfykVsh
56G5XiCOC/X2x8IMxKTLGuBiAVLFHXK/rSwoqhvNEWBFKDbP13QWs0LurBcW09Sa
/kQI9pIBT1xFA/R+OY5Xy1cqNVVK1Gxmk8/bllCijA9pCFSCFM4hLZE5CevdrBCV
h5SdqEK5hIlzFyypXfsCik/4p/+rfvlGfUKtFsPctxx29SPe+T0orx+l61jiWQok
rZOflwMawK5lDuASHrvNHGJcWaTwoo3VcXMQDnQY0Wulc43J5IFBaPxkZzgyd+S1
4lktHxatrCMUgw==
=pfZi
-----END PGP SIGNATURE-----
Merge tag 'objtool-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Thomas Gleixner:
- Improve retpoline code patching by separating it from alternatives
which reduces memory footprint and allows to do better optimizations
in the actual runtime patching.
- Add proper retpoline support for x86/BPF
- Address noinstr warnings in x86/kvm, lockdep and paravirtualization
code
- Add support to handle pv_opsindirect calls in the noinstr analysis
- Classify symbols upfront and cache the result to avoid redundant
str*cmp() invocations.
- Add a CFI hash to reduce memory consumption which also reduces
runtime on a allyesconfig by ~50%
- Adjust XEN code to make objtool handling more robust and as a side
effect to prevent text fragmentation due to placement of the
hypercall page.
* tag 'objtool-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
bpf,x86: Respect X86_FEATURE_RETPOLINE*
bpf,x86: Simplify computing label offsets
x86,bugs: Unconditionally allow spectre_v2=retpoline,amd
x86/alternative: Add debug prints to apply_retpolines()
x86/alternative: Try inline spectre_v2=retpoline,amd
x86/alternative: Handle Jcc __x86_indirect_thunk_\reg
x86/alternative: Implement .retpoline_sites support
x86/retpoline: Create a retpoline thunk array
x86/retpoline: Move the retpoline thunk declarations to nospec-branch.h
x86/asm: Fixup odd GEN-for-each-reg.h usage
x86/asm: Fix register order
x86/retpoline: Remove unused replacement symbols
objtool,x86: Replace alternatives with .retpoline_sites
objtool: Shrink struct instruction
objtool: Explicitly avoid self modifying code in .altinstr_replacement
objtool: Classify symbols
objtool: Support pv_opsindirect calls for noinstr
x86/xen: Rework the xen_{cpu,irq,mmu}_opsarrays
x86/xen: Mark xen_force_evtchn_callback() noinstr
x86/xen: Make irq_disable() noinstr
...
Instead of writing complete alternatives, simply provide a list of all
the retpoline thunk calls. Then the kernel is free to do with them as
it pleases. Simpler code all-round.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120309.850007165@infradead.org
The libelf implementation from elftoolchain has a safety check in
gelf_update_rel[a] to check that the data corresponds to a section
that has type SHT_REL[A] [0]. If the relocation is updated before
the section header is updated with the proper type, this check
fails.
To fix this, update the section header first, before the relocations.
Previously, the section size was calculated in elf_rebuild_reloc_section
by counting the number of entries in the reloc_list. However, we
now need the size during elf_write so instead keep a running total
and add to it for every new relocation.
[0] https://sourceforge.net/p/elftoolchain/mailman/elftoolchain-developers/thread/CAGw6cBtkZro-8wZMD2ULkwJ39J+tHtTtAWXufMjnd3cQ7XG54g@mail.gmail.com/
Signed-off-by: Michael Forney <mforney@mforney.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20210509000103.11008-2-mforney@mforney.org
Otherwise, if these fail we end up with garbage data in the
.rela.orc_unwind_ip section, leading to errors like
ld: fs/squashfs/namei.o: bad reloc symbol index (0x7f16 >= 0x12) for offset 0x7f16d5c82cc8 in section `.orc_unwind_ip'
Signed-off-by: Michael Forney <mforney@mforney.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20210509000103.11008-1-mforney@mforney.org
The section structure already contains sh_size, so just remove the extra
'len' member that requires extra mirroring and potential confusion.
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20210822225037.54620-3-joe.lawrence@redhat.com
Cc: Andy Lavr <andy.lavr@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
kernel tooling such as kpatch-build.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZYv4RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ipeBAAhJPS/kCQ17Y5zGyMB0/6yfCWIifODoS7
9J+6/mqKHPDdV07yzPtOXuTTmpKV4OHPi8Yj8kaXs5L5fOmQ1uAwITwZNF5hU0a5
CiFIsubUCJmglf9b6L9EH5pBEQ72Cq4u8zIhJ9LmZ4t625AHJAm2ikZgascc4U67
RvVoGr5sYTo0YEsc1IDM1wUtnUhXBNjS1VwkXNnCFFTXYHju47MeY1sPHq2hvkzO
iJGC9A+hxfM1eQt9/qC/2L/6F/XECN61gcR9Get8TkWeEGHmPG+FthmPLd4oO9Ho
03J4JfMbmXumWosAeilYBNUkfii/M5Em78Wpv/cB94iSt67rq7Eb+8gm4D5svmfN
l+utsPY/HYB+uWV0hy2cV/ORRiwcJnon54dEWL6912YkKz+OIb3DK/7l9ex5lW+D
r3o8NP0s6S+RgUkOFxz5VaYK1giu6fiaFysWdKeflvwlvY/64owMepQ1QfPBbeB7
3DTzvuYZ4Cb1x/vR6WBbFqGcuJKZ1CsZIBLCblveUs+G0wlu147K5E1qlXg/Wvq7
5Vzznc4fmRng8np5hxAw8ieLkatWg7szyryUV/4H2Ubs/jWGcH628ZYbapaCb7EM
Eson65xzbVfhnz16z8sN13XIF1lGe8sb0+qiFSclEfyDUnZDuhwMn6d9Ubqxrg5J
uTULEzmY/rI=
=MvPd
-----END PGP SIGNATURE-----
mergetag object d33b9035e1
type commit
tag objtool-core-2021-06-28
tagger Ingo Molnar <mingo@kernel.org> 1624859477 +0200
The biggest change in this cycle is the new code to handle
and rewrite variable sized jump labels - which results in
slightly tighter code generation in hot paths, through the
use of short(er) NOPs.
Also a number of cleanups and fixes, and a change to the
generic include/linux/compiler.h to handle a s390 GCC quirk.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZZGcRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1goYg/7BxUIJXP0F5wbrMbAvJIDRgR/j3TA+ztk
uNU1yabBGluMxCqJ87HadJ+A5d010G+GRUn/birVr7w1UuwWv8HOda78dnyG7tme
xm78/1FlOnstuOTQxhK6rjbb2cp+QOmdsAQkq1TF4SOxArBQiwtjiOvytHjb5yNx
7LrlbtuZ7Dtc0qd2evkG4ma4QkGoDhBS1dRogrItc27ZLuFIQoNnEd2K2QNMgczw
a/Jx8fgNmdoJSq+vkBn9TnS/cJYUW/PAlPNtO3ac8yE857aDIVnjXFRzveAP/nTh
rwFD6aCGnJAqyqP7A8ElNjySos5O+ebYApxe7rEx0TNLbrc55qSP9lpdIO+vgytV
Xzy4O7z6o+lailQ4EoF8Qf+rlPeue0kLF23SsNbZY1uT0vjX1Uv70xgKbkuyPygp
GNXAy6dOXK0AfaZYL/Wa50yVnJnkYDjes/hHr+HEam5Oad566pqIyQNP8yWSPqaf
KHkL//1pb5C2RKwot4IYv/ftHfZB5QftoFq6bhGBc1GXUd/FiqivvGHPW/6g7rxi
ZIrXs+Fqm/5KP9mssNONfyz5XEvbcUTD1CbeqX9eyVbiYZbLp1oWSgtogiRW9ya+
HR7t0Dt/UFzFWbilb6EZff/Hdr1NZBZLdrfpvVDoMf5tR9J0BIOyjddTu89g/FIO
KcfJ5yyjJBU=
=+HAB
-----END PGP SIGNATURE-----
Merge tags 'objtool-urgent-2021-06-28' and 'objtool-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool fix and updates from Ingo Molnar:
"An ELF format fix for a section flags mismatch bug that breaks kernel
tooling such as kpatch-build.
The biggest change in this cycle is the new code to handle and rewrite
variable sized jump labels - which results in slightly tighter code
generation in hot paths, through the use of short(er) NOPs.
Also a number of cleanups and fixes, and a change to the generic
include/linux/compiler.h to handle a s390 GCC quirk"
* tag 'objtool-urgent-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Don't make .altinstructions writable
* tag 'objtool-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Improve reloc hash size guestimate
instrumentation.h: Avoid using inline asm operand modifiers
compiler.h: Avoid using inline asm operand modifiers
kbuild: Fix objtool dependency for 'OBJECT_FILES_NON_STANDARD_<obj> := n'
objtool: Reflow handle_jump_alt()
jump_label/x86: Remove unused JUMP_LABEL_NOP_SIZE
jump_label, x86: Allow short NOPs
objtool: Provide stats for jump_labels
objtool: Rewrite jump_label instructions
objtool: Decode jump_entry::key addend
jump_label, x86: Emit short JMP
jump_label: Free jump_entry::key bit1 for build use
jump_label, x86: Add variable length patching support
jump_label, x86: Introduce jump_entry_size()
jump_label, x86: Improve error when we fail expected text
jump_label, x86: Factor out the __jump_table generation
jump_label, x86: Strip ASM jump_label support
x86, objtool: Dont exclude arch/x86/realmode/
objtool: Rewrite hashtable sizing
Nathan reported that LLVM ThinLTO builds have a performance regression
with commit 25cf0d8aa2 ("objtool: Rewrite hashtable sizing"). Sami
was quick to note that this is due to their use of -ffunction-sections.
As a result the .text section is small and basing the number of relocs
off of that no longer works. Instead have read_sections() compute the
sum of all SHF_EXECINSTR sections and use that.
Fixes: 25cf0d8aa2 ("objtool: Rewrite hashtable sizing")
Reported-by: Nathan Chancellor <nathan@kernel.org>
Debugged-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lkml.kernel.org/r/YMJpGLuGNsGtA5JJ@hirez.programming.kicks-ass.net
When an ELF object uses extended symbol section indexes (IOW it has a
.symtab_shndx section), these must be kept in sync with the regular
symbol table (.symtab).
So for every new symbol we emit, make sure to also emit a
.symtab_shndx value to keep the arrays of equal size.
Note: since we're writing an UNDEF symbol, most GElf_Sym fields will
be 0 and we can repurpose one (st_size) to host the 0 for the xshndx
value.
Fixes: 2f2f7e47f0 ("objtool: Add elf_create_undef_symbol()")
Reported-by: Nick Desaulniers <ndesaulniers@google.com>
Suggested-by: Fangrui Song <maskray@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lkml.kernel.org/r/YL3q1qFO9QIRL/BA@hirez.programming.kicks-ass.net
Currently x86 cross-compilation fails on big endian system with:
x86_64-cross-ld: init/main.o: invalid string offset 488112128 >= 6229 for section `.strtab'
Mark new ELF data in elf_create_undef_symbol() as symbol, so that libelf
does endianness handling correctly.
Fixes: 2f2f7e47f0 ("objtool: Add elf_create_undef_symbol()")
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/patch-1.thread-6c9df9.git-d39264656387.your-ad-here.call-01620841104-ext-2554@work.hours
Currently objtool has 5 hashtables and sizes them 16 or 20 bits
depending on the --vmlinux argument.
However, a single side doesn't really work well for the 5 tables,
which among them, cover 3 different uses. Also, while vmlinux is
larger, there is still a very wide difference between a defconfig and
allyesconfig build, which again isn't optimally covered by a single
size.
Another aspect is the cost of elf_hash_init(), which for large tables
dominates the runtime for small input files. It turns out that all it
does it assign NULL, something that is required when using malloc().
However, when we allocate memory using mmap(), we're guaranteed to get
zero filled pages.
Therefore, rewrite the whole thing to:
1) use more dynamic sized tables, depending on the input file,
2) avoid the need for elf_hash_init() entirely by using mmap().
This speeds up a regular kernel build (100s to 98s for
x86_64-defconfig), and potentially dramatically speeds up vmlinux
processing.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210506194157.452881700@infradead.org