// SPDX-License-Identifier: GPL-2.0 /* * Slab allocator functions that are independent of the allocator strategy * * (C) 2012 Christoph Lameter */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "slab.h" #define CREATE_TRACE_POINTS #include enum slab_state slab_state; LIST_HEAD(slab_caches); DEFINE_MUTEX(slab_mutex); struct kmem_cache *kmem_cache; static LIST_HEAD(slab_caches_to_rcu_destroy); static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); static DECLARE_WORK(slab_caches_to_rcu_destroy_work, slab_caches_to_rcu_destroy_workfn); /* * Set of flags that will prevent slab merging */ #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ SLAB_FAILSLAB | kasan_never_merge()) #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ SLAB_CACHE_DMA32 | SLAB_ACCOUNT) /* * Merge control. If this is set then no merging of slab caches will occur. */ static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); static int __init setup_slab_nomerge(char *str) { slab_nomerge = true; return 1; } static int __init setup_slab_merge(char *str) { slab_nomerge = false; return 1; } #ifdef CONFIG_SLUB __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); __setup_param("slub_merge", slub_merge, setup_slab_merge, 0); #endif __setup("slab_nomerge", setup_slab_nomerge); __setup("slab_merge", setup_slab_merge); /* * Determine the size of a slab object */ unsigned int kmem_cache_size(struct kmem_cache *s) { return s->object_size; } EXPORT_SYMBOL(kmem_cache_size); #ifdef CONFIG_DEBUG_VM static int kmem_cache_sanity_check(const char *name, unsigned int size) { if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { pr_err("kmem_cache_create(%s) integrity check failed\n", name); return -EINVAL; } WARN_ON(strchr(name, ' ')); /* It confuses parsers */ return 0; } #else static inline int kmem_cache_sanity_check(const char *name, unsigned int size) { return 0; } #endif /* * Figure out what the alignment of the objects will be given a set of * flags, a user specified alignment and the size of the objects. */ static unsigned int calculate_alignment(slab_flags_t flags, unsigned int align, unsigned int size) { /* * If the user wants hardware cache aligned objects then follow that * suggestion if the object is sufficiently large. * * The hardware cache alignment cannot override the specified * alignment though. If that is greater then use it. */ if (flags & SLAB_HWCACHE_ALIGN) { unsigned int ralign; ralign = cache_line_size(); while (size <= ralign / 2) ralign /= 2; align = max(align, ralign); } align = max(align, arch_slab_minalign()); return ALIGN(align, sizeof(void *)); } /* * Find a mergeable slab cache */ int slab_unmergeable(struct kmem_cache *s) { if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) return 1; if (s->ctor) return 1; if (s->usersize) return 1; /* * We may have set a slab to be unmergeable during bootstrap. */ if (s->refcount < 0) return 1; return 0; } struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, slab_flags_t flags, const char *name, void (*ctor)(void *)) { struct kmem_cache *s; if (slab_nomerge) return NULL; if (ctor) return NULL; size = ALIGN(size, sizeof(void *)); align = calculate_alignment(flags, align, size); size = ALIGN(size, align); flags = kmem_cache_flags(size, flags, name); if (flags & SLAB_NEVER_MERGE) return NULL; list_for_each_entry_reverse(s, &slab_caches, list) { if (slab_unmergeable(s)) continue; if (size > s->size) continue; if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) continue; /* * Check if alignment is compatible. * Courtesy of Adrian Drzewiecki */ if ((s->size & ~(align - 1)) != s->size) continue; if (s->size - size >= sizeof(void *)) continue; if (IS_ENABLED(CONFIG_SLAB) && align && (align > s->align || s->align % align)) continue; return s; } return NULL; } static struct kmem_cache *create_cache(const char *name, unsigned int object_size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *), struct kmem_cache *root_cache) { struct kmem_cache *s; int err; if (WARN_ON(useroffset + usersize > object_size)) useroffset = usersize = 0; err = -ENOMEM; s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); if (!s) goto out; s->name = name; s->size = s->object_size = object_size; s->align = align; s->ctor = ctor; s->useroffset = useroffset; s->usersize = usersize; err = __kmem_cache_create(s, flags); if (err) goto out_free_cache; s->refcount = 1; list_add(&s->list, &slab_caches); out: if (err) return ERR_PTR(err); return s; out_free_cache: kmem_cache_free(kmem_cache, s); goto out; } /** * kmem_cache_create_usercopy - Create a cache with a region suitable * for copying to userspace * @name: A string which is used in /proc/slabinfo to identify this cache. * @size: The size of objects to be created in this cache. * @align: The required alignment for the objects. * @flags: SLAB flags * @useroffset: Usercopy region offset * @usersize: Usercopy region size * @ctor: A constructor for the objects. * * Cannot be called within a interrupt, but can be interrupted. * The @ctor is run when new pages are allocated by the cache. * * The flags are * * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) * to catch references to uninitialised memory. * * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check * for buffer overruns. * * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware * cacheline. This can be beneficial if you're counting cycles as closely * as davem. * * Return: a pointer to the cache on success, NULL on failure. */ struct kmem_cache * kmem_cache_create_usercopy(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *)) { struct kmem_cache *s = NULL; const char *cache_name; int err; #ifdef CONFIG_SLUB_DEBUG /* * If no slub_debug was enabled globally, the static key is not yet * enabled by setup_slub_debug(). Enable it if the cache is being * created with any of the debugging flags passed explicitly. * It's also possible that this is the first cache created with * SLAB_STORE_USER and we should init stack_depot for it. */ if (flags & SLAB_DEBUG_FLAGS) static_branch_enable(&slub_debug_enabled); if (flags & SLAB_STORE_USER) stack_depot_init(); #endif mutex_lock(&slab_mutex); err = kmem_cache_sanity_check(name, size); if (err) { goto out_unlock; } /* Refuse requests with allocator specific flags */ if (flags & ~SLAB_FLAGS_PERMITTED) { err = -EINVAL; goto out_unlock; } /* * Some allocators will constraint the set of valid flags to a subset * of all flags. We expect them to define CACHE_CREATE_MASK in this * case, and we'll just provide them with a sanitized version of the * passed flags. */ flags &= CACHE_CREATE_MASK; /* Fail closed on bad usersize of useroffset values. */ if (WARN_ON(!usersize && useroffset) || WARN_ON(size < usersize || size - usersize < useroffset)) usersize = useroffset = 0; if (!usersize) s = __kmem_cache_alias(name, size, align, flags, ctor); if (s) goto out_unlock; cache_name = kstrdup_const(name, GFP_KERNEL); if (!cache_name) { err = -ENOMEM; goto out_unlock; } s = create_cache(cache_name, size, calculate_alignment(flags, align, size), flags, useroffset, usersize, ctor, NULL); if (IS_ERR(s)) { err = PTR_ERR(s); kfree_const(cache_name); } out_unlock: mutex_unlock(&slab_mutex); if (err) { if (flags & SLAB_PANIC) panic("%s: Failed to create slab '%s'. Error %d\n", __func__, name, err); else { pr_warn("%s(%s) failed with error %d\n", __func__, name, err); dump_stack(); } return NULL; } return s; } EXPORT_SYMBOL(kmem_cache_create_usercopy); /** * kmem_cache_create - Create a cache. * @name: A string which is used in /proc/slabinfo to identify this cache. * @size: The size of objects to be created in this cache. * @align: The required alignment for the objects. * @flags: SLAB flags * @ctor: A constructor for the objects. * * Cannot be called within a interrupt, but can be interrupted. * The @ctor is run when new pages are allocated by the cache. * * The flags are * * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) * to catch references to uninitialised memory. * * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check * for buffer overruns. * * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware * cacheline. This can be beneficial if you're counting cycles as closely * as davem. * * Return: a pointer to the cache on success, NULL on failure. */ struct kmem_cache * kmem_cache_create(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)) { return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, ctor); } EXPORT_SYMBOL(kmem_cache_create); #ifdef SLAB_SUPPORTS_SYSFS /* * For a given kmem_cache, kmem_cache_destroy() should only be called * once or there will be a use-after-free problem. The actual deletion * and release of the kobject does not need slab_mutex or cpu_hotplug_lock * protection. So they are now done without holding those locks. * * Note that there will be a slight delay in the deletion of sysfs files * if kmem_cache_release() is called indrectly from a work function. */ static void kmem_cache_release(struct kmem_cache *s) { sysfs_slab_unlink(s); sysfs_slab_release(s); } #else static void kmem_cache_release(struct kmem_cache *s) { slab_kmem_cache_release(s); } #endif static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) { LIST_HEAD(to_destroy); struct kmem_cache *s, *s2; /* * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the * @slab_caches_to_rcu_destroy list. The slab pages are freed * through RCU and the associated kmem_cache are dereferenced * while freeing the pages, so the kmem_caches should be freed only * after the pending RCU operations are finished. As rcu_barrier() * is a pretty slow operation, we batch all pending destructions * asynchronously. */ mutex_lock(&slab_mutex); list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); mutex_unlock(&slab_mutex); if (list_empty(&to_destroy)) return; rcu_barrier(); list_for_each_entry_safe(s, s2, &to_destroy, list) { debugfs_slab_release(s); kfence_shutdown_cache(s); kmem_cache_release(s); } } static int shutdown_cache(struct kmem_cache *s) { /* free asan quarantined objects */ kasan_cache_shutdown(s); if (__kmem_cache_shutdown(s) != 0) return -EBUSY; list_del(&s->list); if (s->flags & SLAB_TYPESAFE_BY_RCU) { list_add_tail(&s->list, &slab_caches_to_rcu_destroy); schedule_work(&slab_caches_to_rcu_destroy_work); } else { kfence_shutdown_cache(s); debugfs_slab_release(s); } return 0; } void slab_kmem_cache_release(struct kmem_cache *s) { __kmem_cache_release(s); kfree_const(s->name); kmem_cache_free(kmem_cache, s); } void kmem_cache_destroy(struct kmem_cache *s) { int refcnt; bool rcu_set; if (unlikely(!s) || !kasan_check_byte(s)) return; cpus_read_lock(); mutex_lock(&slab_mutex); rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU; refcnt = --s->refcount; if (refcnt) goto out_unlock; WARN(shutdown_cache(s), "%s %s: Slab cache still has objects when called from %pS", __func__, s->name, (void *)_RET_IP_); out_unlock: mutex_unlock(&slab_mutex); cpus_read_unlock(); if (!refcnt && !rcu_set) kmem_cache_release(s); } EXPORT_SYMBOL(kmem_cache_destroy); /** * kmem_cache_shrink - Shrink a cache. * @cachep: The cache to shrink. * * Releases as many slabs as possible for a cache. * To help debugging, a zero exit status indicates all slabs were released. * * Return: %0 if all slabs were released, non-zero otherwise */ int kmem_cache_shrink(struct kmem_cache *cachep) { kasan_cache_shrink(cachep); return __kmem_cache_shrink(cachep); } EXPORT_SYMBOL(kmem_cache_shrink); bool slab_is_available(void) { return slab_state >= UP; } #ifdef CONFIG_PRINTK /** * kmem_valid_obj - does the pointer reference a valid slab object? * @object: pointer to query. * * Return: %true if the pointer is to a not-yet-freed object from * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer * is to an already-freed object, and %false otherwise. */ bool kmem_valid_obj(void *object) { struct folio *folio; /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) return false; folio = virt_to_folio(object); return folio_test_slab(folio); } EXPORT_SYMBOL_GPL(kmem_valid_obj); static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) { if (__kfence_obj_info(kpp, object, slab)) return; __kmem_obj_info(kpp, object, slab); } /** * kmem_dump_obj - Print available slab provenance information * @object: slab object for which to find provenance information. * * This function uses pr_cont(), so that the caller is expected to have * printed out whatever preamble is appropriate. The provenance information * depends on the type of object and on how much debugging is enabled. * For a slab-cache object, the fact that it is a slab object is printed, * and, if available, the slab name, return address, and stack trace from * the allocation and last free path of that object. * * This function will splat if passed a pointer to a non-slab object. * If you are not sure what type of object you have, you should instead * use mem_dump_obj(). */ void kmem_dump_obj(void *object) { char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; int i; struct slab *slab; unsigned long ptroffset; struct kmem_obj_info kp = { }; if (WARN_ON_ONCE(!virt_addr_valid(object))) return; slab = virt_to_slab(object); if (WARN_ON_ONCE(!slab)) { pr_cont(" non-slab memory.\n"); return; } kmem_obj_info(&kp, object, slab); if (kp.kp_slab_cache) pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); else pr_cont(" slab%s", cp); if (is_kfence_address(object)) pr_cont(" (kfence)"); if (kp.kp_objp) pr_cont(" start %px", kp.kp_objp); if (kp.kp_data_offset) pr_cont(" data offset %lu", kp.kp_data_offset); if (kp.kp_objp) { ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; pr_cont(" pointer offset %lu", ptroffset); } if (kp.kp_slab_cache && kp.kp_slab_cache->usersize) pr_cont(" size %u", kp.kp_slab_cache->usersize); if (kp.kp_ret) pr_cont(" allocated at %pS\n", kp.kp_ret); else pr_cont("\n"); for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { if (!kp.kp_stack[i]) break; pr_info(" %pS\n", kp.kp_stack[i]); } if (kp.kp_free_stack[0]) pr_cont(" Free path:\n"); for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { if (!kp.kp_free_stack[i]) break; pr_info(" %pS\n", kp.kp_free_stack[i]); } } EXPORT_SYMBOL_GPL(kmem_dump_obj); #endif #ifndef CONFIG_SLOB /* Create a cache during boot when no slab services are available yet */ void __init create_boot_cache(struct kmem_cache *s, const char *name, unsigned int size, slab_flags_t flags, unsigned int useroffset, unsigned int usersize) { int err; unsigned int align = ARCH_KMALLOC_MINALIGN; s->name = name; s->size = s->object_size = size; /* * For power of two sizes, guarantee natural alignment for kmalloc * caches, regardless of SL*B debugging options. */ if (is_power_of_2(size)) align = max(align, size); s->align = calculate_alignment(flags, align, size); s->useroffset = useroffset; s->usersize = usersize; err = __kmem_cache_create(s, flags); if (err) panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", name, size, err); s->refcount = -1; /* Exempt from merging for now */ } struct kmem_cache *__init create_kmalloc_cache(const char *name, unsigned int size, slab_flags_t flags, unsigned int useroffset, unsigned int usersize) { struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); if (!s) panic("Out of memory when creating slab %s\n", name); create_boot_cache(s, name, size, flags, useroffset, usersize); kasan_cache_create_kmalloc(s); list_add(&s->list, &slab_caches); s->refcount = 1; return s; } struct kmem_cache * kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; EXPORT_SYMBOL(kmalloc_caches); /* * Conversion table for small slabs sizes / 8 to the index in the * kmalloc array. This is necessary for slabs < 192 since we have non power * of two cache sizes there. The size of larger slabs can be determined using * fls. */ static u8 size_index[24] __ro_after_init = { 3, /* 8 */ 4, /* 16 */ 5, /* 24 */ 5, /* 32 */ 6, /* 40 */ 6, /* 48 */ 6, /* 56 */ 6, /* 64 */ 1, /* 72 */ 1, /* 80 */ 1, /* 88 */ 1, /* 96 */ 7, /* 104 */ 7, /* 112 */ 7, /* 120 */ 7, /* 128 */ 2, /* 136 */ 2, /* 144 */ 2, /* 152 */ 2, /* 160 */ 2, /* 168 */ 2, /* 176 */ 2, /* 184 */ 2 /* 192 */ }; static inline unsigned int size_index_elem(unsigned int bytes) { return (bytes - 1) / 8; } /* * Find the kmem_cache structure that serves a given size of * allocation */ struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) { unsigned int index; if (size <= 192) { if (!size) return ZERO_SIZE_PTR; index = size_index[size_index_elem(size)]; } else { if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) return NULL; index = fls(size - 1); } return kmalloc_caches[kmalloc_type(flags)][index]; } #ifdef CONFIG_ZONE_DMA #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz, #else #define KMALLOC_DMA_NAME(sz) #endif #ifdef CONFIG_MEMCG_KMEM #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, #else #define KMALLOC_CGROUP_NAME(sz) #endif #define INIT_KMALLOC_INFO(__size, __short_size) \ { \ .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ KMALLOC_CGROUP_NAME(__short_size) \ KMALLOC_DMA_NAME(__short_size) \ .size = __size, \ } /* * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is * kmalloc-32M. */ const struct kmalloc_info_struct kmalloc_info[] __initconst = { INIT_KMALLOC_INFO(0, 0), INIT_KMALLOC_INFO(96, 96), INIT_KMALLOC_INFO(192, 192), INIT_KMALLOC_INFO(8, 8), INIT_KMALLOC_INFO(16, 16), INIT_KMALLOC_INFO(32, 32), INIT_KMALLOC_INFO(64, 64), INIT_KMALLOC_INFO(128, 128), INIT_KMALLOC_INFO(256, 256), INIT_KMALLOC_INFO(512, 512), INIT_KMALLOC_INFO(1024, 1k), INIT_KMALLOC_INFO(2048, 2k), INIT_KMALLOC_INFO(4096, 4k), INIT_KMALLOC_INFO(8192, 8k), INIT_KMALLOC_INFO(16384, 16k), INIT_KMALLOC_INFO(32768, 32k), INIT_KMALLOC_INFO(65536, 64k), INIT_KMALLOC_INFO(131072, 128k), INIT_KMALLOC_INFO(262144, 256k), INIT_KMALLOC_INFO(524288, 512k), INIT_KMALLOC_INFO(1048576, 1M), INIT_KMALLOC_INFO(2097152, 2M), INIT_KMALLOC_INFO(4194304, 4M), INIT_KMALLOC_INFO(8388608, 8M), INIT_KMALLOC_INFO(16777216, 16M), INIT_KMALLOC_INFO(33554432, 32M) }; /* * Patch up the size_index table if we have strange large alignment * requirements for the kmalloc array. This is only the case for * MIPS it seems. The standard arches will not generate any code here. * * Largest permitted alignment is 256 bytes due to the way we * handle the index determination for the smaller caches. * * Make sure that nothing crazy happens if someone starts tinkering * around with ARCH_KMALLOC_MINALIGN */ void __init setup_kmalloc_cache_index_table(void) { unsigned int i; BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || !is_power_of_2(KMALLOC_MIN_SIZE)); for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { unsigned int elem = size_index_elem(i); if (elem >= ARRAY_SIZE(size_index)) break; size_index[elem] = KMALLOC_SHIFT_LOW; } if (KMALLOC_MIN_SIZE >= 64) { /* * The 96 byte sized cache is not used if the alignment * is 64 byte. */ for (i = 64 + 8; i <= 96; i += 8) size_index[size_index_elem(i)] = 7; } if (KMALLOC_MIN_SIZE >= 128) { /* * The 192 byte sized cache is not used if the alignment * is 128 byte. Redirect kmalloc to use the 256 byte cache * instead. */ for (i = 128 + 8; i <= 192; i += 8) size_index[size_index_elem(i)] = 8; } } static void __init new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags) { if (type == KMALLOC_RECLAIM) { flags |= SLAB_RECLAIM_ACCOUNT; } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) { if (mem_cgroup_kmem_disabled()) { kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; return; } flags |= SLAB_ACCOUNT; } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) { flags |= SLAB_CACHE_DMA; } kmalloc_caches[type][idx] = create_kmalloc_cache( kmalloc_info[idx].name[type], kmalloc_info[idx].size, flags, 0, kmalloc_info[idx].size); /* * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for * KMALLOC_NORMAL caches. */ if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL)) kmalloc_caches[type][idx]->refcount = -1; } /* * Create the kmalloc array. Some of the regular kmalloc arrays * may already have been created because they were needed to * enable allocations for slab creation. */ void __init create_kmalloc_caches(slab_flags_t flags) { int i; enum kmalloc_cache_type type; /* * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined */ for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) { for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { if (!kmalloc_caches[type][i]) new_kmalloc_cache(i, type, flags); /* * Caches that are not of the two-to-the-power-of size. * These have to be created immediately after the * earlier power of two caches */ if (KMALLOC_MIN_SIZE <= 32 && i == 6 && !kmalloc_caches[type][1]) new_kmalloc_cache(1, type, flags); if (KMALLOC_MIN_SIZE <= 64 && i == 7 && !kmalloc_caches[type][2]) new_kmalloc_cache(2, type, flags); } } /* Kmalloc array is now usable */ slab_state = UP; } #endif /* !CONFIG_SLOB */ gfp_t kmalloc_fix_flags(gfp_t flags) { gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; flags &= ~GFP_SLAB_BUG_MASK; pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", invalid_mask, &invalid_mask, flags, &flags); dump_stack(); return flags; } /* * To avoid unnecessary overhead, we pass through large allocation requests * directly to the page allocator. We use __GFP_COMP, because we will need to * know the allocation order to free the pages properly in kfree. */ void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) { void *ret = NULL; struct page *page; if (unlikely(flags & GFP_SLAB_BUG_MASK)) flags = kmalloc_fix_flags(flags); flags |= __GFP_COMP; page = alloc_pages(flags, order); if (likely(page)) { ret = page_address(page); mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, PAGE_SIZE << order); } ret = kasan_kmalloc_large(ret, size, flags); /* As ret might get tagged, call kmemleak hook after KASAN. */ kmemleak_alloc(ret, size, 1, flags); return ret; } EXPORT_SYMBOL(kmalloc_order); #ifdef CONFIG_TRACING void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { void *ret = kmalloc_order(size, flags, order); trace_kmalloc(_RET_IP_, ret, NULL, size, PAGE_SIZE << order, flags); return ret; } EXPORT_SYMBOL(kmalloc_order_trace); #endif #ifdef CONFIG_SLAB_FREELIST_RANDOM /* Randomize a generic freelist */ static void freelist_randomize(struct rnd_state *state, unsigned int *list, unsigned int count) { unsigned int rand; unsigned int i; for (i = 0; i < count; i++) list[i] = i; /* Fisher-Yates shuffle */ for (i = count - 1; i > 0; i--) { rand = prandom_u32_state(state); rand %= (i + 1); swap(list[i], list[rand]); } } /* Create a random sequence per cache */ int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, gfp_t gfp) { struct rnd_state state; if (count < 2 || cachep->random_seq) return 0; cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); if (!cachep->random_seq) return -ENOMEM; /* Get best entropy at this stage of boot */ prandom_seed_state(&state, get_random_long()); freelist_randomize(&state, cachep->random_seq, count); return 0; } /* Destroy the per-cache random freelist sequence */ void cache_random_seq_destroy(struct kmem_cache *cachep) { kfree(cachep->random_seq); cachep->random_seq = NULL; } #endif /* CONFIG_SLAB_FREELIST_RANDOM */ #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) #ifdef CONFIG_SLAB #define SLABINFO_RIGHTS (0600) #else #define SLABINFO_RIGHTS (0400) #endif static void print_slabinfo_header(struct seq_file *m) { /* * Output format version, so at least we can change it * without _too_ many complaints. */ #ifdef CONFIG_DEBUG_SLAB seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); #else seq_puts(m, "slabinfo - version: 2.1\n"); #endif seq_puts(m, "# name "); seq_puts(m, " : tunables "); seq_puts(m, " : slabdata "); #ifdef CONFIG_DEBUG_SLAB seq_puts(m, " : globalstat "); seq_puts(m, " : cpustat "); #endif seq_putc(m, '\n'); } static void *slab_start(struct seq_file *m, loff_t *pos) { mutex_lock(&slab_mutex); return seq_list_start(&slab_caches, *pos); } static void *slab_next(struct seq_file *m, void *p, loff_t *pos) { return seq_list_next(p, &slab_caches, pos); } static void slab_stop(struct seq_file *m, void *p) { mutex_unlock(&slab_mutex); } static void cache_show(struct kmem_cache *s, struct seq_file *m) { struct slabinfo sinfo; memset(&sinfo, 0, sizeof(sinfo)); get_slabinfo(s, &sinfo); seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, sinfo.active_objs, sinfo.num_objs, s->size, sinfo.objects_per_slab, (1 << sinfo.cache_order)); seq_printf(m, " : tunables %4u %4u %4u", sinfo.limit, sinfo.batchcount, sinfo.shared); seq_printf(m, " : slabdata %6lu %6lu %6lu", sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); slabinfo_show_stats(m, s); seq_putc(m, '\n'); } static int slab_show(struct seq_file *m, void *p) { struct kmem_cache *s = list_entry(p, struct kmem_cache, list); if (p == slab_caches.next) print_slabinfo_header(m); cache_show(s, m); return 0; } void dump_unreclaimable_slab(void) { struct kmem_cache *s; struct slabinfo sinfo; /* * Here acquiring slab_mutex is risky since we don't prefer to get * sleep in oom path. But, without mutex hold, it may introduce a * risk of crash. * Use mutex_trylock to protect the list traverse, dump nothing * without acquiring the mutex. */ if (!mutex_trylock(&slab_mutex)) { pr_warn("excessive unreclaimable slab but cannot dump stats\n"); return; } pr_info("Unreclaimable slab info:\n"); pr_info("Name Used Total\n"); list_for_each_entry(s, &slab_caches, list) { if (s->flags & SLAB_RECLAIM_ACCOUNT) continue; get_slabinfo(s, &sinfo); if (sinfo.num_objs > 0) pr_info("%-17s %10luKB %10luKB\n", s->name, (sinfo.active_objs * s->size) / 1024, (sinfo.num_objs * s->size) / 1024); } mutex_unlock(&slab_mutex); } /* * slabinfo_op - iterator that generates /proc/slabinfo * * Output layout: * cache-name * num-active-objs * total-objs * object size * num-active-slabs * total-slabs * num-pages-per-slab * + further values on SMP and with statistics enabled */ static const struct seq_operations slabinfo_op = { .start = slab_start, .next = slab_next, .stop = slab_stop, .show = slab_show, }; static int slabinfo_open(struct inode *inode, struct file *file) { return seq_open(file, &slabinfo_op); } static const struct proc_ops slabinfo_proc_ops = { .proc_flags = PROC_ENTRY_PERMANENT, .proc_open = slabinfo_open, .proc_read = seq_read, .proc_write = slabinfo_write, .proc_lseek = seq_lseek, .proc_release = seq_release, }; static int __init slab_proc_init(void) { proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); return 0; } module_init(slab_proc_init); #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ static __always_inline void *__do_krealloc(const void *p, size_t new_size, gfp_t flags) { void *ret; size_t ks; /* Don't use instrumented ksize to allow precise KASAN poisoning. */ if (likely(!ZERO_OR_NULL_PTR(p))) { if (!kasan_check_byte(p)) return NULL; ks = kfence_ksize(p) ?: __ksize(p); } else ks = 0; /* If the object still fits, repoison it precisely. */ if (ks >= new_size) { p = kasan_krealloc((void *)p, new_size, flags); return (void *)p; } ret = kmalloc_track_caller(new_size, flags); if (ret && p) { /* Disable KASAN checks as the object's redzone is accessed. */ kasan_disable_current(); memcpy(ret, kasan_reset_tag(p), ks); kasan_enable_current(); } return ret; } /** * krealloc - reallocate memory. The contents will remain unchanged. * @p: object to reallocate memory for. * @new_size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * The contents of the object pointed to are preserved up to the * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored). * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size * is 0 and @p is not a %NULL pointer, the object pointed to is freed. * * Return: pointer to the allocated memory or %NULL in case of error */ void *krealloc(const void *p, size_t new_size, gfp_t flags) { void *ret; if (unlikely(!new_size)) { kfree(p); return ZERO_SIZE_PTR; } ret = __do_krealloc(p, new_size, flags); if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) kfree(p); return ret; } EXPORT_SYMBOL(krealloc); /** * kfree_sensitive - Clear sensitive information in memory before freeing * @p: object to free memory of * * The memory of the object @p points to is zeroed before freed. * If @p is %NULL, kfree_sensitive() does nothing. * * Note: this function zeroes the whole allocated buffer which can be a good * deal bigger than the requested buffer size passed to kmalloc(). So be * careful when using this function in performance sensitive code. */ void kfree_sensitive(const void *p) { size_t ks; void *mem = (void *)p; ks = ksize(mem); if (ks) memzero_explicit(mem, ks); kfree(mem); } EXPORT_SYMBOL(kfree_sensitive); /** * ksize - get the actual amount of memory allocated for a given object * @objp: Pointer to the object * * kmalloc may internally round up allocations and return more memory * than requested. ksize() can be used to determine the actual amount of * memory allocated. The caller may use this additional memory, even though * a smaller amount of memory was initially specified with the kmalloc call. * The caller must guarantee that objp points to a valid object previously * allocated with either kmalloc() or kmem_cache_alloc(). The object * must not be freed during the duration of the call. * * Return: size of the actual memory used by @objp in bytes */ size_t ksize(const void *objp) { size_t size; /* * We need to first check that the pointer to the object is valid, and * only then unpoison the memory. The report printed from ksize() is * more useful, then when it's printed later when the behaviour could * be undefined due to a potential use-after-free or double-free. * * We use kasan_check_byte(), which is supported for the hardware * tag-based KASAN mode, unlike kasan_check_read/write(). * * If the pointed to memory is invalid, we return 0 to avoid users of * ksize() writing to and potentially corrupting the memory region. * * We want to perform the check before __ksize(), to avoid potentially * crashing in __ksize() due to accessing invalid metadata. */ if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) return 0; size = kfence_ksize(objp) ?: __ksize(objp); /* * We assume that ksize callers could use whole allocated area, * so we need to unpoison this area. */ kasan_unpoison_range(objp, size); return size; } EXPORT_SYMBOL(ksize); /* Tracepoints definitions. */ EXPORT_TRACEPOINT_SYMBOL(kmalloc); EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); EXPORT_TRACEPOINT_SYMBOL(kfree); EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); int should_failslab(struct kmem_cache *s, gfp_t gfpflags) { if (__should_failslab(s, gfpflags)) return -ENOMEM; return 0; } ALLOW_ERROR_INJECTION(should_failslab, ERRNO);