// SPDX-License-Identifier: GPL-2.0-only // // Copyright (C) 2020 NVIDIA CORPORATION. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define QSPI_COMMAND1 0x000 #define QSPI_BIT_LENGTH(x) (((x) & 0x1f) << 0) #define QSPI_PACKED BIT(5) #define QSPI_INTERFACE_WIDTH_MASK (0x03 << 7) #define QSPI_INTERFACE_WIDTH(x) (((x) & 0x03) << 7) #define QSPI_INTERFACE_WIDTH_SINGLE QSPI_INTERFACE_WIDTH(0) #define QSPI_INTERFACE_WIDTH_DUAL QSPI_INTERFACE_WIDTH(1) #define QSPI_INTERFACE_WIDTH_QUAD QSPI_INTERFACE_WIDTH(2) #define QSPI_SDR_DDR_SEL BIT(9) #define QSPI_TX_EN BIT(11) #define QSPI_RX_EN BIT(12) #define QSPI_CS_SW_VAL BIT(20) #define QSPI_CS_SW_HW BIT(21) #define QSPI_CS_POL_INACTIVE(n) (1 << (22 + (n))) #define QSPI_CS_POL_INACTIVE_MASK (0xF << 22) #define QSPI_CS_SEL_0 (0 << 26) #define QSPI_CS_SEL_1 (1 << 26) #define QSPI_CS_SEL_2 (2 << 26) #define QSPI_CS_SEL_3 (3 << 26) #define QSPI_CS_SEL_MASK (3 << 26) #define QSPI_CS_SEL(x) (((x) & 0x3) << 26) #define QSPI_CONTROL_MODE_0 (0 << 28) #define QSPI_CONTROL_MODE_3 (3 << 28) #define QSPI_CONTROL_MODE_MASK (3 << 28) #define QSPI_M_S BIT(30) #define QSPI_PIO BIT(31) #define QSPI_COMMAND2 0x004 #define QSPI_TX_TAP_DELAY(x) (((x) & 0x3f) << 10) #define QSPI_RX_TAP_DELAY(x) (((x) & 0xff) << 0) #define QSPI_CS_TIMING1 0x008 #define QSPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold)) #define QSPI_CS_TIMING2 0x00c #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1f) << 0) #define CS_ACTIVE_BETWEEN_PACKETS_0 BIT(5) #define QSPI_TRANS_STATUS 0x010 #define QSPI_BLK_CNT(val) (((val) >> 0) & 0xffff) #define QSPI_RDY BIT(30) #define QSPI_FIFO_STATUS 0x014 #define QSPI_RX_FIFO_EMPTY BIT(0) #define QSPI_RX_FIFO_FULL BIT(1) #define QSPI_TX_FIFO_EMPTY BIT(2) #define QSPI_TX_FIFO_FULL BIT(3) #define QSPI_RX_FIFO_UNF BIT(4) #define QSPI_RX_FIFO_OVF BIT(5) #define QSPI_TX_FIFO_UNF BIT(6) #define QSPI_TX_FIFO_OVF BIT(7) #define QSPI_ERR BIT(8) #define QSPI_TX_FIFO_FLUSH BIT(14) #define QSPI_RX_FIFO_FLUSH BIT(15) #define QSPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7f) #define QSPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7f) #define QSPI_FIFO_ERROR (QSPI_RX_FIFO_UNF | \ QSPI_RX_FIFO_OVF | \ QSPI_TX_FIFO_UNF | \ QSPI_TX_FIFO_OVF) #define QSPI_FIFO_EMPTY (QSPI_RX_FIFO_EMPTY | \ QSPI_TX_FIFO_EMPTY) #define QSPI_TX_DATA 0x018 #define QSPI_RX_DATA 0x01c #define QSPI_DMA_CTL 0x020 #define QSPI_TX_TRIG(n) (((n) & 0x3) << 15) #define QSPI_TX_TRIG_1 QSPI_TX_TRIG(0) #define QSPI_TX_TRIG_4 QSPI_TX_TRIG(1) #define QSPI_TX_TRIG_8 QSPI_TX_TRIG(2) #define QSPI_TX_TRIG_16 QSPI_TX_TRIG(3) #define QSPI_RX_TRIG(n) (((n) & 0x3) << 19) #define QSPI_RX_TRIG_1 QSPI_RX_TRIG(0) #define QSPI_RX_TRIG_4 QSPI_RX_TRIG(1) #define QSPI_RX_TRIG_8 QSPI_RX_TRIG(2) #define QSPI_RX_TRIG_16 QSPI_RX_TRIG(3) #define QSPI_DMA_EN BIT(31) #define QSPI_DMA_BLK 0x024 #define QSPI_DMA_BLK_SET(x) (((x) & 0xffff) << 0) #define QSPI_TX_FIFO 0x108 #define QSPI_RX_FIFO 0x188 #define QSPI_FIFO_DEPTH 64 #define QSPI_INTR_MASK 0x18c #define QSPI_INTR_RX_FIFO_UNF_MASK BIT(25) #define QSPI_INTR_RX_FIFO_OVF_MASK BIT(26) #define QSPI_INTR_TX_FIFO_UNF_MASK BIT(27) #define QSPI_INTR_TX_FIFO_OVF_MASK BIT(28) #define QSPI_INTR_RDY_MASK BIT(29) #define QSPI_INTR_RX_TX_FIFO_ERR (QSPI_INTR_RX_FIFO_UNF_MASK | \ QSPI_INTR_RX_FIFO_OVF_MASK | \ QSPI_INTR_TX_FIFO_UNF_MASK | \ QSPI_INTR_TX_FIFO_OVF_MASK) #define QSPI_MISC_REG 0x194 #define QSPI_NUM_DUMMY_CYCLE(x) (((x) & 0xff) << 0) #define QSPI_DUMMY_CYCLES_MAX 0xff #define QSPI_CMB_SEQ_CMD 0x19c #define QSPI_COMMAND_VALUE_SET(X) (((x) & 0xFF) << 0) #define QSPI_CMB_SEQ_CMD_CFG 0x1a0 #define QSPI_COMMAND_X1_X2_X4(x) (((x) & 0x3) << 13) #define QSPI_COMMAND_X1_X2_X4_MASK (0x03 << 13) #define QSPI_COMMAND_SDR_DDR BIT(12) #define QSPI_COMMAND_SIZE_SET(x) (((x) & 0xFF) << 0) #define QSPI_GLOBAL_CONFIG 0X1a4 #define QSPI_CMB_SEQ_EN BIT(0) #define QSPI_TPM_WAIT_POLL_EN BIT(1) #define QSPI_CMB_SEQ_ADDR 0x1a8 #define QSPI_ADDRESS_VALUE_SET(X) (((x) & 0xFFFF) << 0) #define QSPI_CMB_SEQ_ADDR_CFG 0x1ac #define QSPI_ADDRESS_X1_X2_X4(x) (((x) & 0x3) << 13) #define QSPI_ADDRESS_X1_X2_X4_MASK (0x03 << 13) #define QSPI_ADDRESS_SDR_DDR BIT(12) #define QSPI_ADDRESS_SIZE_SET(x) (((x) & 0xFF) << 0) #define DATA_DIR_TX BIT(0) #define DATA_DIR_RX BIT(1) #define QSPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) #define DEFAULT_QSPI_DMA_BUF_LEN (64 * 1024) #define CMD_TRANSFER 0 #define ADDR_TRANSFER 1 #define DATA_TRANSFER 2 struct tegra_qspi_soc_data { bool has_dma; bool cmb_xfer_capable; bool supports_tpm; unsigned int cs_count; }; struct tegra_qspi_client_data { int tx_clk_tap_delay; int rx_clk_tap_delay; }; struct tegra_qspi { struct device *dev; struct spi_controller *host; /* lock to protect data accessed by irq */ spinlock_t lock; struct clk *clk; void __iomem *base; phys_addr_t phys; unsigned int irq; u32 cur_speed; unsigned int cur_pos; unsigned int words_per_32bit; unsigned int bytes_per_word; unsigned int curr_dma_words; unsigned int cur_direction; unsigned int cur_rx_pos; unsigned int cur_tx_pos; unsigned int dma_buf_size; unsigned int max_buf_size; bool is_curr_dma_xfer; struct completion rx_dma_complete; struct completion tx_dma_complete; u32 tx_status; u32 rx_status; u32 status_reg; bool is_packed; bool use_dma; u32 command1_reg; u32 dma_control_reg; u32 def_command1_reg; u32 def_command2_reg; u32 spi_cs_timing1; u32 spi_cs_timing2; u8 dummy_cycles; struct completion xfer_completion; struct spi_transfer *curr_xfer; struct dma_chan *rx_dma_chan; u32 *rx_dma_buf; dma_addr_t rx_dma_phys; struct dma_async_tx_descriptor *rx_dma_desc; struct dma_chan *tx_dma_chan; u32 *tx_dma_buf; dma_addr_t tx_dma_phys; struct dma_async_tx_descriptor *tx_dma_desc; const struct tegra_qspi_soc_data *soc_data; }; static inline u32 tegra_qspi_readl(struct tegra_qspi *tqspi, unsigned long offset) { return readl(tqspi->base + offset); } static inline void tegra_qspi_writel(struct tegra_qspi *tqspi, u32 value, unsigned long offset) { writel(value, tqspi->base + offset); /* read back register to make sure that register writes completed */ if (offset != QSPI_TX_FIFO) readl(tqspi->base + QSPI_COMMAND1); } static void tegra_qspi_mask_clear_irq(struct tegra_qspi *tqspi) { u32 value; /* write 1 to clear status register */ value = tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS); tegra_qspi_writel(tqspi, value, QSPI_TRANS_STATUS); value = tegra_qspi_readl(tqspi, QSPI_INTR_MASK); if (!(value & QSPI_INTR_RDY_MASK)) { value |= (QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR); tegra_qspi_writel(tqspi, value, QSPI_INTR_MASK); } /* clear fifo status error if any */ value = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS); if (value & QSPI_ERR) tegra_qspi_writel(tqspi, QSPI_ERR | QSPI_FIFO_ERROR, QSPI_FIFO_STATUS); } static unsigned int tegra_qspi_calculate_curr_xfer_param(struct tegra_qspi *tqspi, struct spi_transfer *t) { unsigned int max_word, max_len, total_fifo_words; unsigned int remain_len = t->len - tqspi->cur_pos; unsigned int bits_per_word = t->bits_per_word; tqspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8); /* * Tegra QSPI controller supports packed or unpacked mode transfers. * Packed mode is used for data transfers using 8, 16, or 32 bits per * word with a minimum transfer of 1 word and for all other transfers * unpacked mode will be used. */ if ((bits_per_word == 8 || bits_per_word == 16 || bits_per_word == 32) && t->len > 3) { tqspi->is_packed = true; tqspi->words_per_32bit = 32 / bits_per_word; } else { tqspi->is_packed = false; tqspi->words_per_32bit = 1; } if (tqspi->is_packed) { max_len = min(remain_len, tqspi->max_buf_size); tqspi->curr_dma_words = max_len / tqspi->bytes_per_word; total_fifo_words = (max_len + 3) / 4; } else { max_word = (remain_len - 1) / tqspi->bytes_per_word + 1; max_word = min(max_word, tqspi->max_buf_size / 4); tqspi->curr_dma_words = max_word; total_fifo_words = max_word; } return total_fifo_words; } static unsigned int tegra_qspi_fill_tx_fifo_from_client_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t) { unsigned int written_words, fifo_words_left, count; unsigned int len, tx_empty_count, max_n_32bit, i; u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos; u32 fifo_status; fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS); tx_empty_count = QSPI_TX_FIFO_EMPTY_COUNT(fifo_status); if (tqspi->is_packed) { fifo_words_left = tx_empty_count * tqspi->words_per_32bit; written_words = min(fifo_words_left, tqspi->curr_dma_words); len = written_words * tqspi->bytes_per_word; max_n_32bit = DIV_ROUND_UP(len, 4); for (count = 0; count < max_n_32bit; count++) { u32 x = 0; for (i = 0; (i < 4) && len; i++, len--) x |= (u32)(*tx_buf++) << (i * 8); tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO); } tqspi->cur_tx_pos += written_words * tqspi->bytes_per_word; } else { unsigned int write_bytes; u8 bytes_per_word = tqspi->bytes_per_word; max_n_32bit = min(tqspi->curr_dma_words, tx_empty_count); written_words = max_n_32bit; len = written_words * tqspi->bytes_per_word; if (len > t->len - tqspi->cur_pos) len = t->len - tqspi->cur_pos; write_bytes = len; for (count = 0; count < max_n_32bit; count++) { u32 x = 0; for (i = 0; len && (i < bytes_per_word); i++, len--) x |= (u32)(*tx_buf++) << (i * 8); tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO); } tqspi->cur_tx_pos += write_bytes; } return written_words; } static unsigned int tegra_qspi_read_rx_fifo_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t) { u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos; unsigned int len, rx_full_count, count, i; unsigned int read_words = 0; u32 fifo_status, x; fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS); rx_full_count = QSPI_RX_FIFO_FULL_COUNT(fifo_status); if (tqspi->is_packed) { len = tqspi->curr_dma_words * tqspi->bytes_per_word; for (count = 0; count < rx_full_count; count++) { x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO); for (i = 0; len && (i < 4); i++, len--) *rx_buf++ = (x >> i * 8) & 0xff; } read_words += tqspi->curr_dma_words; tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word; } else { u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; u8 bytes_per_word = tqspi->bytes_per_word; unsigned int read_bytes; len = rx_full_count * bytes_per_word; if (len > t->len - tqspi->cur_pos) len = t->len - tqspi->cur_pos; read_bytes = len; for (count = 0; count < rx_full_count; count++) { x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO) & rx_mask; for (i = 0; len && (i < bytes_per_word); i++, len--) *rx_buf++ = (x >> (i * 8)) & 0xff; } read_words += rx_full_count; tqspi->cur_rx_pos += read_bytes; } return read_words; } static void tegra_qspi_copy_client_txbuf_to_qspi_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t) { dma_sync_single_for_cpu(tqspi->dev, tqspi->tx_dma_phys, tqspi->dma_buf_size, DMA_TO_DEVICE); /* * In packed mode, each word in FIFO may contain multiple packets * based on bits per word. So all bytes in each FIFO word are valid. * * In unpacked mode, each word in FIFO contains single packet and * based on bits per word any remaining bits in FIFO word will be * ignored by the hardware and are invalid bits. */ if (tqspi->is_packed) { tqspi->cur_tx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word; } else { u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos; unsigned int i, count, consume, write_bytes; /* * Fill tx_dma_buf to contain single packet in each word based * on bits per word from SPI core tx_buf. */ consume = tqspi->curr_dma_words * tqspi->bytes_per_word; if (consume > t->len - tqspi->cur_pos) consume = t->len - tqspi->cur_pos; write_bytes = consume; for (count = 0; count < tqspi->curr_dma_words; count++) { u32 x = 0; for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--) x |= (u32)(*tx_buf++) << (i * 8); tqspi->tx_dma_buf[count] = x; } tqspi->cur_tx_pos += write_bytes; } dma_sync_single_for_device(tqspi->dev, tqspi->tx_dma_phys, tqspi->dma_buf_size, DMA_TO_DEVICE); } static void tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t) { dma_sync_single_for_cpu(tqspi->dev, tqspi->rx_dma_phys, tqspi->dma_buf_size, DMA_FROM_DEVICE); if (tqspi->is_packed) { tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word; } else { unsigned char *rx_buf = t->rx_buf + tqspi->cur_rx_pos; u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; unsigned int i, count, consume, read_bytes; /* * Each FIFO word contains single data packet. * Skip invalid bits in each FIFO word based on bits per word * and align bytes while filling in SPI core rx_buf. */ consume = tqspi->curr_dma_words * tqspi->bytes_per_word; if (consume > t->len - tqspi->cur_pos) consume = t->len - tqspi->cur_pos; read_bytes = consume; for (count = 0; count < tqspi->curr_dma_words; count++) { u32 x = tqspi->rx_dma_buf[count] & rx_mask; for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--) *rx_buf++ = (x >> (i * 8)) & 0xff; } tqspi->cur_rx_pos += read_bytes; } dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys, tqspi->dma_buf_size, DMA_FROM_DEVICE); } static void tegra_qspi_dma_complete(void *args) { struct completion *dma_complete = args; complete(dma_complete); } static int tegra_qspi_start_tx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len) { dma_addr_t tx_dma_phys; reinit_completion(&tqspi->tx_dma_complete); if (tqspi->is_packed) tx_dma_phys = t->tx_dma; else tx_dma_phys = tqspi->tx_dma_phys; tqspi->tx_dma_desc = dmaengine_prep_slave_single(tqspi->tx_dma_chan, tx_dma_phys, len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tqspi->tx_dma_desc) { dev_err(tqspi->dev, "Unable to get TX descriptor\n"); return -EIO; } tqspi->tx_dma_desc->callback = tegra_qspi_dma_complete; tqspi->tx_dma_desc->callback_param = &tqspi->tx_dma_complete; dmaengine_submit(tqspi->tx_dma_desc); dma_async_issue_pending(tqspi->tx_dma_chan); return 0; } static int tegra_qspi_start_rx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len) { dma_addr_t rx_dma_phys; reinit_completion(&tqspi->rx_dma_complete); if (tqspi->is_packed) rx_dma_phys = t->rx_dma; else rx_dma_phys = tqspi->rx_dma_phys; tqspi->rx_dma_desc = dmaengine_prep_slave_single(tqspi->rx_dma_chan, rx_dma_phys, len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tqspi->rx_dma_desc) { dev_err(tqspi->dev, "Unable to get RX descriptor\n"); return -EIO; } tqspi->rx_dma_desc->callback = tegra_qspi_dma_complete; tqspi->rx_dma_desc->callback_param = &tqspi->rx_dma_complete; dmaengine_submit(tqspi->rx_dma_desc); dma_async_issue_pending(tqspi->rx_dma_chan); return 0; } static int tegra_qspi_flush_fifos(struct tegra_qspi *tqspi, bool atomic) { void __iomem *addr = tqspi->base + QSPI_FIFO_STATUS; u32 val; val = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS); if ((val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY) return 0; val |= QSPI_RX_FIFO_FLUSH | QSPI_TX_FIFO_FLUSH; tegra_qspi_writel(tqspi, val, QSPI_FIFO_STATUS); if (!atomic) return readl_relaxed_poll_timeout(addr, val, (val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY, 1000, 1000000); return readl_relaxed_poll_timeout_atomic(addr, val, (val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY, 1000, 1000000); } static void tegra_qspi_unmask_irq(struct tegra_qspi *tqspi) { u32 intr_mask; intr_mask = tegra_qspi_readl(tqspi, QSPI_INTR_MASK); intr_mask &= ~(QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR); tegra_qspi_writel(tqspi, intr_mask, QSPI_INTR_MASK); } static int tegra_qspi_dma_map_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t) { u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos; u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos; unsigned int len; len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4; if (t->tx_buf) { t->tx_dma = dma_map_single(tqspi->dev, (void *)tx_buf, len, DMA_TO_DEVICE); if (dma_mapping_error(tqspi->dev, t->tx_dma)) return -ENOMEM; } if (t->rx_buf) { t->rx_dma = dma_map_single(tqspi->dev, (void *)rx_buf, len, DMA_FROM_DEVICE); if (dma_mapping_error(tqspi->dev, t->rx_dma)) { dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE); return -ENOMEM; } } return 0; } static void tegra_qspi_dma_unmap_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t) { unsigned int len; len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4; dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE); dma_unmap_single(tqspi->dev, t->rx_dma, len, DMA_FROM_DEVICE); } static int tegra_qspi_start_dma_based_transfer(struct tegra_qspi *tqspi, struct spi_transfer *t) { struct dma_slave_config dma_sconfig = { 0 }; unsigned int len; u8 dma_burst; int ret = 0; u32 val; if (tqspi->is_packed) { ret = tegra_qspi_dma_map_xfer(tqspi, t); if (ret < 0) return ret; } val = QSPI_DMA_BLK_SET(tqspi->curr_dma_words - 1); tegra_qspi_writel(tqspi, val, QSPI_DMA_BLK); tegra_qspi_unmask_irq(tqspi); if (tqspi->is_packed) len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4; else len = tqspi->curr_dma_words * 4; /* set attention level based on length of transfer */ val = 0; if (len & 0xf) { val |= QSPI_TX_TRIG_1 | QSPI_RX_TRIG_1; dma_burst = 1; } else if (((len) >> 4) & 0x1) { val |= QSPI_TX_TRIG_4 | QSPI_RX_TRIG_4; dma_burst = 4; } else { val |= QSPI_TX_TRIG_8 | QSPI_RX_TRIG_8; dma_burst = 8; } tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL); tqspi->dma_control_reg = val; dma_sconfig.device_fc = true; if (tqspi->cur_direction & DATA_DIR_TX) { dma_sconfig.dst_addr = tqspi->phys + QSPI_TX_FIFO; dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.dst_maxburst = dma_burst; ret = dmaengine_slave_config(tqspi->tx_dma_chan, &dma_sconfig); if (ret < 0) { dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret); return ret; } tegra_qspi_copy_client_txbuf_to_qspi_txbuf(tqspi, t); ret = tegra_qspi_start_tx_dma(tqspi, t, len); if (ret < 0) { dev_err(tqspi->dev, "failed to starting TX DMA: %d\n", ret); return ret; } } if (tqspi->cur_direction & DATA_DIR_RX) { dma_sconfig.src_addr = tqspi->phys + QSPI_RX_FIFO; dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.src_maxburst = dma_burst; ret = dmaengine_slave_config(tqspi->rx_dma_chan, &dma_sconfig); if (ret < 0) { dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret); return ret; } dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys, tqspi->dma_buf_size, DMA_FROM_DEVICE); ret = tegra_qspi_start_rx_dma(tqspi, t, len); if (ret < 0) { dev_err(tqspi->dev, "failed to start RX DMA: %d\n", ret); if (tqspi->cur_direction & DATA_DIR_TX) dmaengine_terminate_all(tqspi->tx_dma_chan); return ret; } } tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1); tqspi->is_curr_dma_xfer = true; tqspi->dma_control_reg = val; val |= QSPI_DMA_EN; tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL); return ret; } static int tegra_qspi_start_cpu_based_transfer(struct tegra_qspi *qspi, struct spi_transfer *t) { u32 val; unsigned int cur_words; if (qspi->cur_direction & DATA_DIR_TX) cur_words = tegra_qspi_fill_tx_fifo_from_client_txbuf(qspi, t); else cur_words = qspi->curr_dma_words; val = QSPI_DMA_BLK_SET(cur_words - 1); tegra_qspi_writel(qspi, val, QSPI_DMA_BLK); tegra_qspi_unmask_irq(qspi); qspi->is_curr_dma_xfer = false; val = qspi->command1_reg; val |= QSPI_PIO; tegra_qspi_writel(qspi, val, QSPI_COMMAND1); return 0; } static void tegra_qspi_deinit_dma(struct tegra_qspi *tqspi) { if (!tqspi->soc_data->has_dma) return; if (tqspi->tx_dma_buf) { dma_free_coherent(tqspi->dev, tqspi->dma_buf_size, tqspi->tx_dma_buf, tqspi->tx_dma_phys); tqspi->tx_dma_buf = NULL; } if (tqspi->tx_dma_chan) { dma_release_channel(tqspi->tx_dma_chan); tqspi->tx_dma_chan = NULL; } if (tqspi->rx_dma_buf) { dma_free_coherent(tqspi->dev, tqspi->dma_buf_size, tqspi->rx_dma_buf, tqspi->rx_dma_phys); tqspi->rx_dma_buf = NULL; } if (tqspi->rx_dma_chan) { dma_release_channel(tqspi->rx_dma_chan); tqspi->rx_dma_chan = NULL; } } static int tegra_qspi_init_dma(struct tegra_qspi *tqspi) { struct dma_chan *dma_chan; dma_addr_t dma_phys; u32 *dma_buf; int err; if (!tqspi->soc_data->has_dma) return 0; dma_chan = dma_request_chan(tqspi->dev, "rx"); if (IS_ERR(dma_chan)) { err = PTR_ERR(dma_chan); goto err_out; } tqspi->rx_dma_chan = dma_chan; dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL); if (!dma_buf) { err = -ENOMEM; goto err_out; } tqspi->rx_dma_buf = dma_buf; tqspi->rx_dma_phys = dma_phys; dma_chan = dma_request_chan(tqspi->dev, "tx"); if (IS_ERR(dma_chan)) { err = PTR_ERR(dma_chan); goto err_out; } tqspi->tx_dma_chan = dma_chan; dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL); if (!dma_buf) { err = -ENOMEM; goto err_out; } tqspi->tx_dma_buf = dma_buf; tqspi->tx_dma_phys = dma_phys; tqspi->use_dma = true; return 0; err_out: tegra_qspi_deinit_dma(tqspi); if (err != -EPROBE_DEFER) { dev_err(tqspi->dev, "cannot use DMA: %d\n", err); dev_err(tqspi->dev, "falling back to PIO\n"); return 0; } return err; } static u32 tegra_qspi_setup_transfer_one(struct spi_device *spi, struct spi_transfer *t, bool is_first_of_msg) { struct tegra_qspi *tqspi = spi_controller_get_devdata(spi->controller); struct tegra_qspi_client_data *cdata = spi->controller_data; u32 command1, command2, speed = t->speed_hz; u8 bits_per_word = t->bits_per_word; u32 tx_tap = 0, rx_tap = 0; int req_mode; if (!has_acpi_companion(tqspi->dev) && speed != tqspi->cur_speed) { clk_set_rate(tqspi->clk, speed); tqspi->cur_speed = speed; } tqspi->cur_pos = 0; tqspi->cur_rx_pos = 0; tqspi->cur_tx_pos = 0; tqspi->curr_xfer = t; if (is_first_of_msg) { tegra_qspi_mask_clear_irq(tqspi); command1 = tqspi->def_command1_reg; command1 |= QSPI_CS_SEL(spi_get_chipselect(spi, 0)); command1 |= QSPI_BIT_LENGTH(bits_per_word - 1); command1 &= ~QSPI_CONTROL_MODE_MASK; req_mode = spi->mode & 0x3; if (req_mode == SPI_MODE_3) command1 |= QSPI_CONTROL_MODE_3; else command1 |= QSPI_CONTROL_MODE_0; if (spi->mode & SPI_CS_HIGH) command1 |= QSPI_CS_SW_VAL; else command1 &= ~QSPI_CS_SW_VAL; tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1); if (cdata && cdata->tx_clk_tap_delay) tx_tap = cdata->tx_clk_tap_delay; if (cdata && cdata->rx_clk_tap_delay) rx_tap = cdata->rx_clk_tap_delay; command2 = QSPI_TX_TAP_DELAY(tx_tap) | QSPI_RX_TAP_DELAY(rx_tap); if (command2 != tqspi->def_command2_reg) tegra_qspi_writel(tqspi, command2, QSPI_COMMAND2); } else { command1 = tqspi->command1_reg; command1 &= ~QSPI_BIT_LENGTH(~0); command1 |= QSPI_BIT_LENGTH(bits_per_word - 1); } command1 &= ~QSPI_SDR_DDR_SEL; return command1; } static int tegra_qspi_start_transfer_one(struct spi_device *spi, struct spi_transfer *t, u32 command1) { struct tegra_qspi *tqspi = spi_controller_get_devdata(spi->controller); unsigned int total_fifo_words; u8 bus_width = 0; int ret; total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t); command1 &= ~QSPI_PACKED; if (tqspi->is_packed) command1 |= QSPI_PACKED; tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1); tqspi->cur_direction = 0; command1 &= ~(QSPI_TX_EN | QSPI_RX_EN); if (t->rx_buf) { command1 |= QSPI_RX_EN; tqspi->cur_direction |= DATA_DIR_RX; bus_width = t->rx_nbits; } if (t->tx_buf) { command1 |= QSPI_TX_EN; tqspi->cur_direction |= DATA_DIR_TX; bus_width = t->tx_nbits; } command1 &= ~QSPI_INTERFACE_WIDTH_MASK; if (bus_width == SPI_NBITS_QUAD) command1 |= QSPI_INTERFACE_WIDTH_QUAD; else if (bus_width == SPI_NBITS_DUAL) command1 |= QSPI_INTERFACE_WIDTH_DUAL; else command1 |= QSPI_INTERFACE_WIDTH_SINGLE; tqspi->command1_reg = command1; tegra_qspi_writel(tqspi, QSPI_NUM_DUMMY_CYCLE(tqspi->dummy_cycles), QSPI_MISC_REG); ret = tegra_qspi_flush_fifos(tqspi, false); if (ret < 0) return ret; if (tqspi->use_dma && total_fifo_words > QSPI_FIFO_DEPTH) ret = tegra_qspi_start_dma_based_transfer(tqspi, t); else ret = tegra_qspi_start_cpu_based_transfer(tqspi, t); return ret; } static struct tegra_qspi_client_data *tegra_qspi_parse_cdata_dt(struct spi_device *spi) { struct tegra_qspi_client_data *cdata; struct tegra_qspi *tqspi = spi_controller_get_devdata(spi->controller); cdata = devm_kzalloc(tqspi->dev, sizeof(*cdata), GFP_KERNEL); if (!cdata) return NULL; device_property_read_u32(&spi->dev, "nvidia,tx-clk-tap-delay", &cdata->tx_clk_tap_delay); device_property_read_u32(&spi->dev, "nvidia,rx-clk-tap-delay", &cdata->rx_clk_tap_delay); return cdata; } static int tegra_qspi_setup(struct spi_device *spi) { struct tegra_qspi *tqspi = spi_controller_get_devdata(spi->controller); struct tegra_qspi_client_data *cdata = spi->controller_data; unsigned long flags; u32 val; int ret; ret = pm_runtime_resume_and_get(tqspi->dev); if (ret < 0) { dev_err(tqspi->dev, "failed to get runtime PM: %d\n", ret); return ret; } if (!cdata) { cdata = tegra_qspi_parse_cdata_dt(spi); spi->controller_data = cdata; } spin_lock_irqsave(&tqspi->lock, flags); /* keep default cs state to inactive */ val = tqspi->def_command1_reg; val |= QSPI_CS_SEL(spi_get_chipselect(spi, 0)); if (spi->mode & SPI_CS_HIGH) val &= ~QSPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0)); else val |= QSPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0)); tqspi->def_command1_reg = val; tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1); spin_unlock_irqrestore(&tqspi->lock, flags); pm_runtime_put(tqspi->dev); return 0; } static void tegra_qspi_dump_regs(struct tegra_qspi *tqspi) { dev_dbg(tqspi->dev, "============ QSPI REGISTER DUMP ============\n"); dev_dbg(tqspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n", tegra_qspi_readl(tqspi, QSPI_COMMAND1), tegra_qspi_readl(tqspi, QSPI_COMMAND2)); dev_dbg(tqspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n", tegra_qspi_readl(tqspi, QSPI_DMA_CTL), tegra_qspi_readl(tqspi, QSPI_DMA_BLK)); dev_dbg(tqspi->dev, "INTR_MASK: 0x%08x | MISC: 0x%08x\n", tegra_qspi_readl(tqspi, QSPI_INTR_MASK), tegra_qspi_readl(tqspi, QSPI_MISC_REG)); dev_dbg(tqspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n", tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS), tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS)); } static void tegra_qspi_handle_error(struct tegra_qspi *tqspi) { dev_err(tqspi->dev, "error in transfer, fifo status 0x%08x\n", tqspi->status_reg); tegra_qspi_dump_regs(tqspi); tegra_qspi_flush_fifos(tqspi, true); if (device_reset(tqspi->dev) < 0) dev_warn_once(tqspi->dev, "device reset failed\n"); } static void tegra_qspi_transfer_end(struct spi_device *spi) { struct tegra_qspi *tqspi = spi_controller_get_devdata(spi->controller); int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1; if (cs_val) tqspi->command1_reg |= QSPI_CS_SW_VAL; else tqspi->command1_reg &= ~QSPI_CS_SW_VAL; tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1); tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1); } static u32 tegra_qspi_cmd_config(bool is_ddr, u8 bus_width, u8 len) { u32 cmd_config = 0; /* Extract Command configuration and value */ if (is_ddr) cmd_config |= QSPI_COMMAND_SDR_DDR; else cmd_config &= ~QSPI_COMMAND_SDR_DDR; cmd_config |= QSPI_COMMAND_X1_X2_X4(bus_width); cmd_config |= QSPI_COMMAND_SIZE_SET((len * 8) - 1); return cmd_config; } static u32 tegra_qspi_addr_config(bool is_ddr, u8 bus_width, u8 len) { u32 addr_config = 0; /* Extract Address configuration and value */ is_ddr = 0; //Only SDR mode supported bus_width = 0; //X1 mode if (is_ddr) addr_config |= QSPI_ADDRESS_SDR_DDR; else addr_config &= ~QSPI_ADDRESS_SDR_DDR; addr_config |= QSPI_ADDRESS_X1_X2_X4(bus_width); addr_config |= QSPI_ADDRESS_SIZE_SET((len * 8) - 1); return addr_config; } static int tegra_qspi_combined_seq_xfer(struct tegra_qspi *tqspi, struct spi_message *msg) { bool is_first_msg = true; struct spi_transfer *xfer; struct spi_device *spi = msg->spi; u8 transfer_phase = 0; u32 cmd1 = 0, dma_ctl = 0; int ret = 0; u32 address_value = 0; u32 cmd_config = 0, addr_config = 0; u8 cmd_value = 0, val = 0; /* Enable Combined sequence mode */ val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG); if (spi->mode & SPI_TPM_HW_FLOW) { if (tqspi->soc_data->supports_tpm) val |= QSPI_TPM_WAIT_POLL_EN; else return -EIO; } val |= QSPI_CMB_SEQ_EN; tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG); /* Process individual transfer list */ list_for_each_entry(xfer, &msg->transfers, transfer_list) { switch (transfer_phase) { case CMD_TRANSFER: /* X1 SDR mode */ cmd_config = tegra_qspi_cmd_config(false, 0, xfer->len); cmd_value = *((const u8 *)(xfer->tx_buf)); break; case ADDR_TRANSFER: /* X1 SDR mode */ addr_config = tegra_qspi_addr_config(false, 0, xfer->len); address_value = *((const u32 *)(xfer->tx_buf)); break; case DATA_TRANSFER: /* Program Command, Address value in register */ tegra_qspi_writel(tqspi, cmd_value, QSPI_CMB_SEQ_CMD); tegra_qspi_writel(tqspi, address_value, QSPI_CMB_SEQ_ADDR); /* Program Command and Address config in register */ tegra_qspi_writel(tqspi, cmd_config, QSPI_CMB_SEQ_CMD_CFG); tegra_qspi_writel(tqspi, addr_config, QSPI_CMB_SEQ_ADDR_CFG); reinit_completion(&tqspi->xfer_completion); cmd1 = tegra_qspi_setup_transfer_one(spi, xfer, is_first_msg); ret = tegra_qspi_start_transfer_one(spi, xfer, cmd1); if (ret < 0) { dev_err(tqspi->dev, "Failed to start transfer-one: %d\n", ret); return ret; } is_first_msg = false; ret = wait_for_completion_timeout (&tqspi->xfer_completion, QSPI_DMA_TIMEOUT); if (WARN_ON(ret == 0)) { dev_err(tqspi->dev, "QSPI Transfer failed with timeout: %d\n", ret); if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_TX)) dmaengine_terminate_all (tqspi->tx_dma_chan); if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_RX)) dmaengine_terminate_all (tqspi->rx_dma_chan); /* Abort transfer by resetting pio/dma bit */ if (!tqspi->is_curr_dma_xfer) { cmd1 = tegra_qspi_readl (tqspi, QSPI_COMMAND1); cmd1 &= ~QSPI_PIO; tegra_qspi_writel (tqspi, cmd1, QSPI_COMMAND1); } else { dma_ctl = tegra_qspi_readl (tqspi, QSPI_DMA_CTL); dma_ctl &= ~QSPI_DMA_EN; tegra_qspi_writel(tqspi, dma_ctl, QSPI_DMA_CTL); } /* Reset controller if timeout happens */ if (device_reset(tqspi->dev) < 0) dev_warn_once(tqspi->dev, "device reset failed\n"); ret = -EIO; goto exit; } if (tqspi->tx_status || tqspi->rx_status) { dev_err(tqspi->dev, "QSPI Transfer failed\n"); tqspi->tx_status = 0; tqspi->rx_status = 0; ret = -EIO; goto exit; } if (!xfer->cs_change) { tegra_qspi_transfer_end(spi); spi_transfer_delay_exec(xfer); } break; default: ret = -EINVAL; goto exit; } msg->actual_length += xfer->len; transfer_phase++; } ret = 0; exit: msg->status = ret; if (ret < 0) { tegra_qspi_transfer_end(spi); spi_transfer_delay_exec(xfer); } return ret; } static int tegra_qspi_non_combined_seq_xfer(struct tegra_qspi *tqspi, struct spi_message *msg) { struct spi_device *spi = msg->spi; struct spi_transfer *transfer; bool is_first_msg = true; int ret = 0, val = 0; msg->status = 0; msg->actual_length = 0; tqspi->tx_status = 0; tqspi->rx_status = 0; /* Disable Combined sequence mode */ val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG); val &= ~QSPI_CMB_SEQ_EN; if (tqspi->soc_data->supports_tpm) val &= ~QSPI_TPM_WAIT_POLL_EN; tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG); list_for_each_entry(transfer, &msg->transfers, transfer_list) { struct spi_transfer *xfer = transfer; u8 dummy_bytes = 0; u32 cmd1; tqspi->dummy_cycles = 0; /* * Tegra QSPI hardware supports dummy bytes transfer after actual transfer * bytes based on programmed dummy clock cycles in the QSPI_MISC register. * So, check if the next transfer is dummy data transfer and program dummy * clock cycles along with the current transfer and skip next transfer. */ if (!list_is_last(&xfer->transfer_list, &msg->transfers)) { struct spi_transfer *next_xfer; next_xfer = list_next_entry(xfer, transfer_list); if (next_xfer->dummy_data) { u32 dummy_cycles = next_xfer->len * 8 / next_xfer->tx_nbits; if (dummy_cycles <= QSPI_DUMMY_CYCLES_MAX) { tqspi->dummy_cycles = dummy_cycles; dummy_bytes = next_xfer->len; transfer = next_xfer; } } } reinit_completion(&tqspi->xfer_completion); cmd1 = tegra_qspi_setup_transfer_one(spi, xfer, is_first_msg); ret = tegra_qspi_start_transfer_one(spi, xfer, cmd1); if (ret < 0) { dev_err(tqspi->dev, "failed to start transfer: %d\n", ret); goto complete_xfer; } ret = wait_for_completion_timeout(&tqspi->xfer_completion, QSPI_DMA_TIMEOUT); if (WARN_ON(ret == 0)) { dev_err(tqspi->dev, "transfer timeout\n"); if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_TX)) dmaengine_terminate_all(tqspi->tx_dma_chan); if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_RX)) dmaengine_terminate_all(tqspi->rx_dma_chan); tegra_qspi_handle_error(tqspi); ret = -EIO; goto complete_xfer; } if (tqspi->tx_status || tqspi->rx_status) { tegra_qspi_handle_error(tqspi); ret = -EIO; goto complete_xfer; } msg->actual_length += xfer->len + dummy_bytes; complete_xfer: if (ret < 0) { tegra_qspi_transfer_end(spi); spi_transfer_delay_exec(xfer); goto exit; } if (list_is_last(&xfer->transfer_list, &msg->transfers)) { /* de-activate CS after last transfer only when cs_change is not set */ if (!xfer->cs_change) { tegra_qspi_transfer_end(spi); spi_transfer_delay_exec(xfer); } } else if (xfer->cs_change) { /* de-activated CS between the transfers only when cs_change is set */ tegra_qspi_transfer_end(spi); spi_transfer_delay_exec(xfer); } } ret = 0; exit: msg->status = ret; return ret; } static bool tegra_qspi_validate_cmb_seq(struct tegra_qspi *tqspi, struct spi_message *msg) { int transfer_count = 0; struct spi_transfer *xfer; list_for_each_entry(xfer, &msg->transfers, transfer_list) { transfer_count++; } if (!tqspi->soc_data->cmb_xfer_capable || transfer_count != 3) return false; xfer = list_first_entry(&msg->transfers, typeof(*xfer), transfer_list); if (xfer->len > 2) return false; xfer = list_next_entry(xfer, transfer_list); if (xfer->len > 4 || xfer->len < 3) return false; xfer = list_next_entry(xfer, transfer_list); if (!tqspi->soc_data->has_dma && xfer->len > (QSPI_FIFO_DEPTH << 2)) return false; return true; } static int tegra_qspi_transfer_one_message(struct spi_controller *host, struct spi_message *msg) { struct tegra_qspi *tqspi = spi_controller_get_devdata(host); int ret; if (tegra_qspi_validate_cmb_seq(tqspi, msg)) ret = tegra_qspi_combined_seq_xfer(tqspi, msg); else ret = tegra_qspi_non_combined_seq_xfer(tqspi, msg); spi_finalize_current_message(host); return ret; } static irqreturn_t handle_cpu_based_xfer(struct tegra_qspi *tqspi) { struct spi_transfer *t = tqspi->curr_xfer; unsigned long flags; spin_lock_irqsave(&tqspi->lock, flags); if (tqspi->tx_status || tqspi->rx_status) { tegra_qspi_handle_error(tqspi); complete(&tqspi->xfer_completion); goto exit; } if (tqspi->cur_direction & DATA_DIR_RX) tegra_qspi_read_rx_fifo_to_client_rxbuf(tqspi, t); if (tqspi->cur_direction & DATA_DIR_TX) tqspi->cur_pos = tqspi->cur_tx_pos; else tqspi->cur_pos = tqspi->cur_rx_pos; if (tqspi->cur_pos == t->len) { complete(&tqspi->xfer_completion); goto exit; } tegra_qspi_calculate_curr_xfer_param(tqspi, t); tegra_qspi_start_cpu_based_transfer(tqspi, t); exit: spin_unlock_irqrestore(&tqspi->lock, flags); return IRQ_HANDLED; } static irqreturn_t handle_dma_based_xfer(struct tegra_qspi *tqspi) { struct spi_transfer *t = tqspi->curr_xfer; unsigned int total_fifo_words; unsigned long flags; long wait_status; int err = 0; if (tqspi->cur_direction & DATA_DIR_TX) { if (tqspi->tx_status) { dmaengine_terminate_all(tqspi->tx_dma_chan); err += 1; } else { wait_status = wait_for_completion_interruptible_timeout( &tqspi->tx_dma_complete, QSPI_DMA_TIMEOUT); if (wait_status <= 0) { dmaengine_terminate_all(tqspi->tx_dma_chan); dev_err(tqspi->dev, "failed TX DMA transfer\n"); err += 1; } } } if (tqspi->cur_direction & DATA_DIR_RX) { if (tqspi->rx_status) { dmaengine_terminate_all(tqspi->rx_dma_chan); err += 2; } else { wait_status = wait_for_completion_interruptible_timeout( &tqspi->rx_dma_complete, QSPI_DMA_TIMEOUT); if (wait_status <= 0) { dmaengine_terminate_all(tqspi->rx_dma_chan); dev_err(tqspi->dev, "failed RX DMA transfer\n"); err += 2; } } } spin_lock_irqsave(&tqspi->lock, flags); if (err) { tegra_qspi_dma_unmap_xfer(tqspi, t); tegra_qspi_handle_error(tqspi); complete(&tqspi->xfer_completion); goto exit; } if (tqspi->cur_direction & DATA_DIR_RX) tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(tqspi, t); if (tqspi->cur_direction & DATA_DIR_TX) tqspi->cur_pos = tqspi->cur_tx_pos; else tqspi->cur_pos = tqspi->cur_rx_pos; if (tqspi->cur_pos == t->len) { tegra_qspi_dma_unmap_xfer(tqspi, t); complete(&tqspi->xfer_completion); goto exit; } tegra_qspi_dma_unmap_xfer(tqspi, t); /* continue transfer in current message */ total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t); if (total_fifo_words > QSPI_FIFO_DEPTH) err = tegra_qspi_start_dma_based_transfer(tqspi, t); else err = tegra_qspi_start_cpu_based_transfer(tqspi, t); exit: spin_unlock_irqrestore(&tqspi->lock, flags); return IRQ_HANDLED; } static irqreturn_t tegra_qspi_isr_thread(int irq, void *context_data) { struct tegra_qspi *tqspi = context_data; tqspi->status_reg = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS); if (tqspi->cur_direction & DATA_DIR_TX) tqspi->tx_status = tqspi->status_reg & (QSPI_TX_FIFO_UNF | QSPI_TX_FIFO_OVF); if (tqspi->cur_direction & DATA_DIR_RX) tqspi->rx_status = tqspi->status_reg & (QSPI_RX_FIFO_OVF | QSPI_RX_FIFO_UNF); tegra_qspi_mask_clear_irq(tqspi); if (!tqspi->is_curr_dma_xfer) return handle_cpu_based_xfer(tqspi); return handle_dma_based_xfer(tqspi); } static struct tegra_qspi_soc_data tegra210_qspi_soc_data = { .has_dma = true, .cmb_xfer_capable = false, .supports_tpm = false, .cs_count = 1, }; static struct tegra_qspi_soc_data tegra186_qspi_soc_data = { .has_dma = true, .cmb_xfer_capable = true, .supports_tpm = false, .cs_count = 1, }; static struct tegra_qspi_soc_data tegra234_qspi_soc_data = { .has_dma = false, .cmb_xfer_capable = true, .supports_tpm = true, .cs_count = 1, }; static struct tegra_qspi_soc_data tegra241_qspi_soc_data = { .has_dma = false, .cmb_xfer_capable = true, .supports_tpm = true, .cs_count = 4, }; static const struct of_device_id tegra_qspi_of_match[] = { { .compatible = "nvidia,tegra210-qspi", .data = &tegra210_qspi_soc_data, }, { .compatible = "nvidia,tegra186-qspi", .data = &tegra186_qspi_soc_data, }, { .compatible = "nvidia,tegra194-qspi", .data = &tegra186_qspi_soc_data, }, { .compatible = "nvidia,tegra234-qspi", .data = &tegra234_qspi_soc_data, }, { .compatible = "nvidia,tegra241-qspi", .data = &tegra241_qspi_soc_data, }, {} }; MODULE_DEVICE_TABLE(of, tegra_qspi_of_match); #ifdef CONFIG_ACPI static const struct acpi_device_id tegra_qspi_acpi_match[] = { { .id = "NVDA1213", .driver_data = (kernel_ulong_t)&tegra210_qspi_soc_data, }, { .id = "NVDA1313", .driver_data = (kernel_ulong_t)&tegra186_qspi_soc_data, }, { .id = "NVDA1413", .driver_data = (kernel_ulong_t)&tegra234_qspi_soc_data, }, { .id = "NVDA1513", .driver_data = (kernel_ulong_t)&tegra241_qspi_soc_data, }, {} }; MODULE_DEVICE_TABLE(acpi, tegra_qspi_acpi_match); #endif static int tegra_qspi_probe(struct platform_device *pdev) { struct spi_controller *host; struct tegra_qspi *tqspi; struct resource *r; int ret, qspi_irq; int bus_num; host = devm_spi_alloc_host(&pdev->dev, sizeof(*tqspi)); if (!host) return -ENOMEM; platform_set_drvdata(pdev, host); tqspi = spi_controller_get_devdata(host); host->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_CS_HIGH | SPI_TX_DUAL | SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD; host->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8); host->flags = SPI_CONTROLLER_HALF_DUPLEX; host->setup = tegra_qspi_setup; host->transfer_one_message = tegra_qspi_transfer_one_message; host->num_chipselect = 1; host->auto_runtime_pm = true; bus_num = of_alias_get_id(pdev->dev.of_node, "spi"); if (bus_num >= 0) host->bus_num = bus_num; tqspi->host = host; tqspi->dev = &pdev->dev; spin_lock_init(&tqspi->lock); tqspi->soc_data = device_get_match_data(&pdev->dev); host->num_chipselect = tqspi->soc_data->cs_count; tqspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r); if (IS_ERR(tqspi->base)) return PTR_ERR(tqspi->base); tqspi->phys = r->start; qspi_irq = platform_get_irq(pdev, 0); if (qspi_irq < 0) return qspi_irq; tqspi->irq = qspi_irq; if (!has_acpi_companion(tqspi->dev)) { tqspi->clk = devm_clk_get(&pdev->dev, "qspi"); if (IS_ERR(tqspi->clk)) { ret = PTR_ERR(tqspi->clk); dev_err(&pdev->dev, "failed to get clock: %d\n", ret); return ret; } } tqspi->max_buf_size = QSPI_FIFO_DEPTH << 2; tqspi->dma_buf_size = DEFAULT_QSPI_DMA_BUF_LEN; ret = tegra_qspi_init_dma(tqspi); if (ret < 0) return ret; if (tqspi->use_dma) tqspi->max_buf_size = tqspi->dma_buf_size; init_completion(&tqspi->tx_dma_complete); init_completion(&tqspi->rx_dma_complete); init_completion(&tqspi->xfer_completion); pm_runtime_enable(&pdev->dev); ret = pm_runtime_resume_and_get(&pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "failed to get runtime PM: %d\n", ret); goto exit_pm_disable; } if (device_reset(tqspi->dev) < 0) dev_warn_once(tqspi->dev, "device reset failed\n"); tqspi->def_command1_reg = QSPI_M_S | QSPI_CS_SW_HW | QSPI_CS_SW_VAL; tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1); tqspi->spi_cs_timing1 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING1); tqspi->spi_cs_timing2 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING2); tqspi->def_command2_reg = tegra_qspi_readl(tqspi, QSPI_COMMAND2); pm_runtime_put(&pdev->dev); ret = request_threaded_irq(tqspi->irq, NULL, tegra_qspi_isr_thread, IRQF_ONESHOT, dev_name(&pdev->dev), tqspi); if (ret < 0) { dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", tqspi->irq, ret); goto exit_pm_disable; } host->dev.of_node = pdev->dev.of_node; ret = spi_register_controller(host); if (ret < 0) { dev_err(&pdev->dev, "failed to register host: %d\n", ret); goto exit_free_irq; } return 0; exit_free_irq: free_irq(qspi_irq, tqspi); exit_pm_disable: pm_runtime_force_suspend(&pdev->dev); tegra_qspi_deinit_dma(tqspi); return ret; } static void tegra_qspi_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); struct tegra_qspi *tqspi = spi_controller_get_devdata(host); spi_unregister_controller(host); free_irq(tqspi->irq, tqspi); pm_runtime_force_suspend(&pdev->dev); tegra_qspi_deinit_dma(tqspi); } static int __maybe_unused tegra_qspi_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); return spi_controller_suspend(host); } static int __maybe_unused tegra_qspi_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct tegra_qspi *tqspi = spi_controller_get_devdata(host); int ret; ret = pm_runtime_resume_and_get(dev); if (ret < 0) { dev_err(dev, "failed to get runtime PM: %d\n", ret); return ret; } tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1); tegra_qspi_writel(tqspi, tqspi->def_command2_reg, QSPI_COMMAND2); pm_runtime_put(dev); return spi_controller_resume(host); } static int __maybe_unused tegra_qspi_runtime_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct tegra_qspi *tqspi = spi_controller_get_devdata(host); /* Runtime pm disabled with ACPI */ if (has_acpi_companion(tqspi->dev)) return 0; /* flush all write which are in PPSB queue by reading back */ tegra_qspi_readl(tqspi, QSPI_COMMAND1); clk_disable_unprepare(tqspi->clk); return 0; } static int __maybe_unused tegra_qspi_runtime_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct tegra_qspi *tqspi = spi_controller_get_devdata(host); int ret; /* Runtime pm disabled with ACPI */ if (has_acpi_companion(tqspi->dev)) return 0; ret = clk_prepare_enable(tqspi->clk); if (ret < 0) dev_err(tqspi->dev, "failed to enable clock: %d\n", ret); return ret; } static const struct dev_pm_ops tegra_qspi_pm_ops = { SET_RUNTIME_PM_OPS(tegra_qspi_runtime_suspend, tegra_qspi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(tegra_qspi_suspend, tegra_qspi_resume) }; static struct platform_driver tegra_qspi_driver = { .driver = { .name = "tegra-qspi", .pm = &tegra_qspi_pm_ops, .of_match_table = tegra_qspi_of_match, .acpi_match_table = ACPI_PTR(tegra_qspi_acpi_match), }, .probe = tegra_qspi_probe, .remove = tegra_qspi_remove, }; module_platform_driver(tegra_qspi_driver); MODULE_ALIAS("platform:qspi-tegra"); MODULE_DESCRIPTION("NVIDIA Tegra QSPI Controller Driver"); MODULE_AUTHOR("Sowjanya Komatineni "); MODULE_LICENSE("GPL v2");