// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_foreground.h" #include "bkey_methods.h" #include "btree_cache.h" #include "btree_gc.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_io.h" #include "btree_iter.h" #include "btree_locking.h" #include "buckets.h" #include "error.h" #include "extents.h" #include "journal.h" #include "journal_reclaim.h" #include "keylist.h" #include "replicas.h" #include "super-io.h" #include "trace.h" #include /* Debug code: */ /* * Verify that child nodes correctly span parent node's range: */ static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) { #ifdef CONFIG_BCACHEFS_DEBUG struct bpos next_node = b->data->min_key; struct btree_node_iter iter; struct bkey_s_c k; struct bkey_s_c_btree_ptr_v2 bp; struct bkey unpacked; char buf1[100], buf2[100]; BUG_ON(!b->c.level); if (!test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags)) return; bch2_btree_node_iter_init_from_start(&iter, b); while (1) { k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); if (k.k->type != KEY_TYPE_btree_ptr_v2) break; bp = bkey_s_c_to_btree_ptr_v2(k); if (bpos_cmp(next_node, bp.v->min_key)) { bch2_dump_btree_node(c, b); panic("expected next min_key %s got %s\n", (bch2_bpos_to_text(&PBUF(buf1), next_node), buf1), (bch2_bpos_to_text(&PBUF(buf2), bp.v->min_key), buf2)); } bch2_btree_node_iter_advance(&iter, b); if (bch2_btree_node_iter_end(&iter)) { if (bpos_cmp(k.k->p, b->key.k.p)) { bch2_dump_btree_node(c, b); panic("expected end %s got %s\n", (bch2_bpos_to_text(&PBUF(buf1), b->key.k.p), buf1), (bch2_bpos_to_text(&PBUF(buf2), k.k->p), buf2)); } break; } next_node = bpos_successor(k.k->p); } #endif } /* Calculate ideal packed bkey format for new btree nodes: */ void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) { struct bkey_packed *k; struct bset_tree *t; struct bkey uk; for_each_bset(b, t) bset_tree_for_each_key(b, t, k) if (!bkey_deleted(k)) { uk = bkey_unpack_key(b, k); bch2_bkey_format_add_key(s, &uk); } } static struct bkey_format bch2_btree_calc_format(struct btree *b) { struct bkey_format_state s; bch2_bkey_format_init(&s); bch2_bkey_format_add_pos(&s, b->data->min_key); bch2_bkey_format_add_pos(&s, b->data->max_key); __bch2_btree_calc_format(&s, b); return bch2_bkey_format_done(&s); } static size_t btree_node_u64s_with_format(struct btree *b, struct bkey_format *new_f) { struct bkey_format *old_f = &b->format; /* stupid integer promotion rules */ ssize_t delta = (((int) new_f->key_u64s - old_f->key_u64s) * (int) b->nr.packed_keys) + (((int) new_f->key_u64s - BKEY_U64s) * (int) b->nr.unpacked_keys); BUG_ON(delta + b->nr.live_u64s < 0); return b->nr.live_u64s + delta; } /** * btree_node_format_fits - check if we could rewrite node with a new format * * This assumes all keys can pack with the new format -- it just checks if * the re-packed keys would fit inside the node itself. */ bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, struct bkey_format *new_f) { size_t u64s = btree_node_u64s_with_format(b, new_f); return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); } /* Btree node freeing/allocation: */ static void __btree_node_free(struct bch_fs *c, struct btree *b) { trace_btree_node_free(c, b); BUG_ON(btree_node_dirty(b)); BUG_ON(btree_node_need_write(b)); BUG_ON(b == btree_node_root(c, b)); BUG_ON(b->ob.nr); BUG_ON(!list_empty(&b->write_blocked)); BUG_ON(b->will_make_reachable); clear_btree_node_noevict(b); bch2_btree_node_hash_remove(&c->btree_cache, b); mutex_lock(&c->btree_cache.lock); list_move(&b->list, &c->btree_cache.freeable); mutex_unlock(&c->btree_cache.lock); } void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b) { struct open_buckets ob = b->ob; b->ob.nr = 0; clear_btree_node_dirty(c, b); btree_node_lock_type(c, b, SIX_LOCK_write); __btree_node_free(c, b); six_unlock_write(&b->c.lock); bch2_open_buckets_put(c, &ob); } void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b, struct btree_iter *iter) { struct btree_iter *linked; trans_for_each_iter(iter->trans, linked) BUG_ON(linked->l[b->c.level].b == b); six_lock_write(&b->c.lock, NULL, NULL); __btree_node_free(c, b); six_unlock_write(&b->c.lock); six_unlock_intent(&b->c.lock); } static struct btree *__bch2_btree_node_alloc(struct bch_fs *c, struct disk_reservation *res, struct closure *cl, unsigned flags) { struct write_point *wp; struct btree *b; __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; struct open_buckets ob = { .nr = 0 }; struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; unsigned nr_reserve; enum alloc_reserve alloc_reserve; if (flags & BTREE_INSERT_USE_RESERVE) { nr_reserve = 0; alloc_reserve = RESERVE_BTREE_MOVINGGC; } else { nr_reserve = BTREE_NODE_RESERVE; alloc_reserve = RESERVE_BTREE; } mutex_lock(&c->btree_reserve_cache_lock); if (c->btree_reserve_cache_nr > nr_reserve) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; ob = a->ob; bkey_copy(&tmp.k, &a->k); mutex_unlock(&c->btree_reserve_cache_lock); goto mem_alloc; } mutex_unlock(&c->btree_reserve_cache_lock); retry: wp = bch2_alloc_sectors_start(c, c->opts.metadata_target ?: c->opts.foreground_target, 0, writepoint_ptr(&c->btree_write_point), &devs_have, res->nr_replicas, c->opts.metadata_replicas_required, alloc_reserve, 0, cl); if (IS_ERR(wp)) return ERR_CAST(wp); if (wp->sectors_free < c->opts.btree_node_size) { struct open_bucket *ob; unsigned i; open_bucket_for_each(c, &wp->ptrs, ob, i) if (ob->sectors_free < c->opts.btree_node_size) ob->sectors_free = 0; bch2_alloc_sectors_done(c, wp); goto retry; } if (c->sb.features & (1ULL << BCH_FEATURE_btree_ptr_v2)) bkey_btree_ptr_v2_init(&tmp.k); else bkey_btree_ptr_init(&tmp.k); bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, c->opts.btree_node_size); bch2_open_bucket_get(c, wp, &ob); bch2_alloc_sectors_done(c, wp); mem_alloc: b = bch2_btree_node_mem_alloc(c); /* we hold cannibalize_lock: */ BUG_ON(IS_ERR(b)); BUG_ON(b->ob.nr); bkey_copy(&b->key, &tmp.k); b->ob = ob; return b; } static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level) { struct bch_fs *c = as->c; struct btree *b; int ret; BUG_ON(level >= BTREE_MAX_DEPTH); BUG_ON(!as->nr_prealloc_nodes); b = as->prealloc_nodes[--as->nr_prealloc_nodes]; set_btree_node_accessed(b); set_btree_node_dirty(c, b); set_btree_node_need_write(b); bch2_bset_init_first(b, &b->data->keys); b->c.level = level; b->c.btree_id = as->btree_id; b->version_ondisk = c->sb.version; memset(&b->nr, 0, sizeof(b->nr)); b->data->magic = cpu_to_le64(bset_magic(c)); b->data->flags = 0; SET_BTREE_NODE_ID(b->data, as->btree_id); SET_BTREE_NODE_LEVEL(b->data, level); if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); bp->v.mem_ptr = 0; bp->v.seq = b->data->keys.seq; bp->v.sectors_written = 0; } SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); bch2_btree_build_aux_trees(b); ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); BUG_ON(ret); trace_btree_node_alloc(c, b); return b; } static void btree_set_min(struct btree *b, struct bpos pos) { if (b->key.k.type == KEY_TYPE_btree_ptr_v2) bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; b->data->min_key = pos; } static void btree_set_max(struct btree *b, struct bpos pos) { b->key.k.p = pos; b->data->max_key = pos; } struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as, struct btree *b, struct bkey_format format) { struct btree *n; n = bch2_btree_node_alloc(as, b->c.level); SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); btree_set_min(n, b->data->min_key); btree_set_max(n, b->data->max_key); n->data->format = format; btree_node_set_format(n, format); bch2_btree_sort_into(as->c, n, b); btree_node_reset_sib_u64s(n); n->key.k.p = b->key.k.p; return n; } static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, struct btree *b) { struct bkey_format new_f = bch2_btree_calc_format(b); /* * The keys might expand with the new format - if they wouldn't fit in * the btree node anymore, use the old format for now: */ if (!bch2_btree_node_format_fits(as->c, b, &new_f)) new_f = b->format; return __bch2_btree_node_alloc_replacement(as, b, new_f); } static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level) { struct btree *b = bch2_btree_node_alloc(as, level); btree_set_min(b, POS_MIN); btree_set_max(b, POS_MAX); b->data->format = bch2_btree_calc_format(b); btree_node_set_format(b, b->data->format); bch2_btree_build_aux_trees(b); bch2_btree_update_add_new_node(as, b); six_unlock_write(&b->c.lock); return b; } static void bch2_btree_reserve_put(struct btree_update *as) { struct bch_fs *c = as->c; mutex_lock(&c->btree_reserve_cache_lock); while (as->nr_prealloc_nodes) { struct btree *b = as->prealloc_nodes[--as->nr_prealloc_nodes]; six_unlock_write(&b->c.lock); if (c->btree_reserve_cache_nr < ARRAY_SIZE(c->btree_reserve_cache)) { struct btree_alloc *a = &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; a->ob = b->ob; b->ob.nr = 0; bkey_copy(&a->k, &b->key); } else { bch2_open_buckets_put(c, &b->ob); } btree_node_lock_type(c, b, SIX_LOCK_write); __btree_node_free(c, b); six_unlock_write(&b->c.lock); six_unlock_intent(&b->c.lock); } mutex_unlock(&c->btree_reserve_cache_lock); } static int bch2_btree_reserve_get(struct btree_update *as, unsigned nr_nodes, unsigned flags, struct closure *cl) { struct bch_fs *c = as->c; struct btree *b; int ret; BUG_ON(nr_nodes > BTREE_RESERVE_MAX); /* * Protects reaping from the btree node cache and using the btree node * open bucket reserve: */ ret = bch2_btree_cache_cannibalize_lock(c, cl); if (ret) return ret; while (as->nr_prealloc_nodes < nr_nodes) { b = __bch2_btree_node_alloc(c, &as->disk_res, flags & BTREE_INSERT_NOWAIT ? NULL : cl, flags); if (IS_ERR(b)) { ret = PTR_ERR(b); goto err_free; } as->prealloc_nodes[as->nr_prealloc_nodes++] = b; } bch2_btree_cache_cannibalize_unlock(c); return 0; err_free: bch2_btree_cache_cannibalize_unlock(c); trace_btree_reserve_get_fail(c, nr_nodes, cl); return ret; } /* Asynchronous interior node update machinery */ static void bch2_btree_update_free(struct btree_update *as) { struct bch_fs *c = as->c; if (as->took_gc_lock) up_read(&c->gc_lock); as->took_gc_lock = false; bch2_journal_preres_put(&c->journal, &as->journal_preres); bch2_journal_pin_drop(&c->journal, &as->journal); bch2_journal_pin_flush(&c->journal, &as->journal); bch2_disk_reservation_put(c, &as->disk_res); bch2_btree_reserve_put(as); mutex_lock(&c->btree_interior_update_lock); list_del(&as->unwritten_list); list_del(&as->list); mutex_unlock(&c->btree_interior_update_lock); closure_debug_destroy(&as->cl); mempool_free(as, &c->btree_interior_update_pool); closure_wake_up(&c->btree_interior_update_wait); } static void btree_update_will_delete_key(struct btree_update *as, struct bkey_i *k) { BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s > ARRAY_SIZE(as->_old_keys)); bch2_keylist_add(&as->old_keys, k); } static void btree_update_will_add_key(struct btree_update *as, struct bkey_i *k) { BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s > ARRAY_SIZE(as->_new_keys)); bch2_keylist_add(&as->new_keys, k); } /* * The transactional part of an interior btree node update, where we journal the * update we did to the interior node and update alloc info: */ static int btree_update_nodes_written_trans(struct btree_trans *trans, struct btree_update *as) { struct bkey_i *k; int ret; trans->extra_journal_entries = (void *) &as->journal_entries[0]; trans->extra_journal_entry_u64s = as->journal_u64s; trans->journal_pin = &as->journal; for_each_keylist_key(&as->new_keys, k) { ret = bch2_trans_mark_key(trans, bkey_s_c_null, bkey_i_to_s_c(k), 0, 0, BTREE_TRIGGER_INSERT); if (ret) return ret; } for_each_keylist_key(&as->old_keys, k) { ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(k), bkey_s_c_null, 0, 0, BTREE_TRIGGER_OVERWRITE); if (ret) return ret; } return 0; } static void btree_update_nodes_written(struct btree_update *as) { struct bch_fs *c = as->c; struct btree *b = as->b; struct btree_trans trans; u64 journal_seq = 0; unsigned i; int ret; /* * If we're already in an error state, it might be because a btree node * was never written, and we might be trying to free that same btree * node here, but it won't have been marked as allocated and we'll see * spurious disk usage inconsistencies in the transactional part below * if we don't skip it: */ ret = bch2_journal_error(&c->journal); if (ret) goto err; BUG_ON(!journal_pin_active(&as->journal)); /* * We did an update to a parent node where the pointers we added pointed * to child nodes that weren't written yet: now, the child nodes have * been written so we can write out the update to the interior node. */ /* * We can't call into journal reclaim here: we'd block on the journal * reclaim lock, but we may need to release the open buckets we have * pinned in order for other btree updates to make forward progress, and * journal reclaim does btree updates when flushing bkey_cached entries, * which may require allocations as well. */ bch2_trans_init(&trans, c, 0, 512); ret = __bch2_trans_do(&trans, &as->disk_res, &journal_seq, BTREE_INSERT_NOFAIL| BTREE_INSERT_NOCHECK_RW| BTREE_INSERT_JOURNAL_RECLAIM| BTREE_INSERT_JOURNAL_RESERVED, btree_update_nodes_written_trans(&trans, as)); bch2_trans_exit(&trans); bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, "error %i in btree_update_nodes_written()", ret); err: if (b) { /* * @b is the node we did the final insert into: * * On failure to get a journal reservation, we still have to * unblock the write and allow most of the write path to happen * so that shutdown works, but the i->journal_seq mechanism * won't work to prevent the btree write from being visible (we * didn't get a journal sequence number) - instead * __bch2_btree_node_write() doesn't do the actual write if * we're in journal error state: */ btree_node_lock_type(c, b, SIX_LOCK_intent); btree_node_lock_type(c, b, SIX_LOCK_write); mutex_lock(&c->btree_interior_update_lock); list_del(&as->write_blocked_list); /* * Node might have been freed, recheck under * btree_interior_update_lock: */ if (as->b == b) { struct bset *i = btree_bset_last(b); BUG_ON(!b->c.level); BUG_ON(!btree_node_dirty(b)); if (!ret) { i->journal_seq = cpu_to_le64( max(journal_seq, le64_to_cpu(i->journal_seq))); bch2_btree_add_journal_pin(c, b, journal_seq); } else { /* * If we didn't get a journal sequence number we * can't write this btree node, because recovery * won't know to ignore this write: */ set_btree_node_never_write(b); } } mutex_unlock(&c->btree_interior_update_lock); six_unlock_write(&b->c.lock); btree_node_write_if_need(c, b, SIX_LOCK_intent); six_unlock_intent(&b->c.lock); } bch2_journal_pin_drop(&c->journal, &as->journal); bch2_journal_preres_put(&c->journal, &as->journal_preres); mutex_lock(&c->btree_interior_update_lock); for (i = 0; i < as->nr_new_nodes; i++) { b = as->new_nodes[i]; BUG_ON(b->will_make_reachable != (unsigned long) as); b->will_make_reachable = 0; } mutex_unlock(&c->btree_interior_update_lock); for (i = 0; i < as->nr_new_nodes; i++) { b = as->new_nodes[i]; btree_node_lock_type(c, b, SIX_LOCK_read); btree_node_write_if_need(c, b, SIX_LOCK_read); six_unlock_read(&b->c.lock); } for (i = 0; i < as->nr_open_buckets; i++) bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); bch2_btree_update_free(as); } static void btree_interior_update_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, btree_interior_update_work); struct btree_update *as; while (1) { mutex_lock(&c->btree_interior_update_lock); as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, struct btree_update, unwritten_list); if (as && !as->nodes_written) as = NULL; mutex_unlock(&c->btree_interior_update_lock); if (!as) break; btree_update_nodes_written(as); } } static void btree_update_set_nodes_written(struct closure *cl) { struct btree_update *as = container_of(cl, struct btree_update, cl); struct bch_fs *c = as->c; mutex_lock(&c->btree_interior_update_lock); as->nodes_written = true; mutex_unlock(&c->btree_interior_update_lock); queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); } /* * We're updating @b with pointers to nodes that haven't finished writing yet: * block @b from being written until @as completes */ static void btree_update_updated_node(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; mutex_lock(&c->btree_interior_update_lock); list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); BUG_ON(!btree_node_dirty(b)); as->mode = BTREE_INTERIOR_UPDATING_NODE; as->b = b; list_add(&as->write_blocked_list, &b->write_blocked); mutex_unlock(&c->btree_interior_update_lock); } static void btree_update_reparent(struct btree_update *as, struct btree_update *child) { struct bch_fs *c = as->c; lockdep_assert_held(&c->btree_interior_update_lock); child->b = NULL; child->mode = BTREE_INTERIOR_UPDATING_AS; bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL); } static void btree_update_updated_root(struct btree_update *as, struct btree *b) { struct bkey_i *insert = &b->key; struct bch_fs *c = as->c; BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > ARRAY_SIZE(as->journal_entries)); as->journal_u64s += journal_entry_set((void *) &as->journal_entries[as->journal_u64s], BCH_JSET_ENTRY_btree_root, b->c.btree_id, b->c.level, insert, insert->k.u64s); mutex_lock(&c->btree_interior_update_lock); list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); as->mode = BTREE_INTERIOR_UPDATING_ROOT; mutex_unlock(&c->btree_interior_update_lock); } /* * bch2_btree_update_add_new_node: * * This causes @as to wait on @b to be written, before it gets to * bch2_btree_update_nodes_written * * Additionally, it sets b->will_make_reachable to prevent any additional writes * to @b from happening besides the first until @b is reachable on disk * * And it adds @b to the list of @as's new nodes, so that we can update sector * counts in bch2_btree_update_nodes_written: */ void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; closure_get(&as->cl); mutex_lock(&c->btree_interior_update_lock); BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); BUG_ON(b->will_make_reachable); as->new_nodes[as->nr_new_nodes++] = b; b->will_make_reachable = 1UL|(unsigned long) as; mutex_unlock(&c->btree_interior_update_lock); btree_update_will_add_key(as, &b->key); } /* * returns true if @b was a new node */ static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) { struct btree_update *as; unsigned long v; unsigned i; mutex_lock(&c->btree_interior_update_lock); /* * When b->will_make_reachable != 0, it owns a ref on as->cl that's * dropped when it gets written by bch2_btree_complete_write - the * xchg() is for synchronization with bch2_btree_complete_write: */ v = xchg(&b->will_make_reachable, 0); as = (struct btree_update *) (v & ~1UL); if (!as) { mutex_unlock(&c->btree_interior_update_lock); return; } for (i = 0; i < as->nr_new_nodes; i++) if (as->new_nodes[i] == b) goto found; BUG(); found: array_remove_item(as->new_nodes, as->nr_new_nodes, i); mutex_unlock(&c->btree_interior_update_lock); if (v & 1) closure_put(&as->cl); } void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) { while (b->ob.nr) as->open_buckets[as->nr_open_buckets++] = b->ob.v[--b->ob.nr]; } /* * @b is being split/rewritten: it may have pointers to not-yet-written btree * nodes and thus outstanding btree_updates - redirect @b's * btree_updates to point to this btree_update: */ void bch2_btree_interior_update_will_free_node(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; struct btree_update *p, *n; struct btree_write *w; set_btree_node_dying(b); if (btree_node_fake(b)) return; mutex_lock(&c->btree_interior_update_lock); /* * Does this node have any btree_update operations preventing * it from being written? * * If so, redirect them to point to this btree_update: we can * write out our new nodes, but we won't make them visible until those * operations complete */ list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { list_del_init(&p->write_blocked_list); btree_update_reparent(as, p); /* * for flush_held_btree_writes() waiting on updates to flush or * nodes to be writeable: */ closure_wake_up(&c->btree_interior_update_wait); } clear_btree_node_dirty(c, b); clear_btree_node_need_write(b); /* * Does this node have unwritten data that has a pin on the journal? * * If so, transfer that pin to the btree_update operation - * note that if we're freeing multiple nodes, we only need to keep the * oldest pin of any of the nodes we're freeing. We'll release the pin * when the new nodes are persistent and reachable on disk: */ w = btree_current_write(b); bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); bch2_journal_pin_drop(&c->journal, &w->journal); w = btree_prev_write(b); bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); bch2_journal_pin_drop(&c->journal, &w->journal); mutex_unlock(&c->btree_interior_update_lock); /* * Is this a node that isn't reachable on disk yet? * * Nodes that aren't reachable yet have writes blocked until they're * reachable - now that we've cancelled any pending writes and moved * things waiting on that write to wait on this update, we can drop this * node from the list of nodes that the other update is making * reachable, prior to freeing it: */ btree_update_drop_new_node(c, b); btree_update_will_delete_key(as, &b->key); /* * XXX: Waiting on io with btree node locks held, we don't want to be * doing this. We can't have btree writes happening after the space has * been freed, but we really only need to block before * btree_update_nodes_written_trans() happens. */ btree_node_wait_on_io(b); } void bch2_btree_update_done(struct btree_update *as) { BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); if (as->took_gc_lock) up_read(&as->c->gc_lock); as->took_gc_lock = false; bch2_btree_reserve_put(as); continue_at(&as->cl, btree_update_set_nodes_written, system_freezable_wq); } struct btree_update * bch2_btree_update_start(struct btree_iter *iter, unsigned level, unsigned nr_nodes, unsigned flags) { struct btree_trans *trans = iter->trans; struct bch_fs *c = trans->c; struct btree_update *as; struct closure cl; int disk_res_flags = (flags & BTREE_INSERT_NOFAIL) ? BCH_DISK_RESERVATION_NOFAIL : 0; int journal_flags = 0; int ret = 0; if (flags & BTREE_INSERT_JOURNAL_RESERVED) journal_flags |= JOURNAL_RES_GET_RESERVED; closure_init_stack(&cl); retry: /* * This check isn't necessary for correctness - it's just to potentially * prevent us from doing a lot of work that'll end up being wasted: */ ret = bch2_journal_error(&c->journal); if (ret) return ERR_PTR(ret); /* * XXX: figure out how far we might need to split, * instead of locking/reserving all the way to the root: */ if (!bch2_btree_iter_upgrade(iter, U8_MAX)) { trace_trans_restart_iter_upgrade(trans->ip); return ERR_PTR(-EINTR); } if (flags & BTREE_INSERT_GC_LOCK_HELD) lockdep_assert_held(&c->gc_lock); else if (!down_read_trylock(&c->gc_lock)) { if (flags & BTREE_INSERT_NOUNLOCK) return ERR_PTR(-EINTR); bch2_trans_unlock(trans); down_read(&c->gc_lock); if (!bch2_trans_relock(trans)) { up_read(&c->gc_lock); return ERR_PTR(-EINTR); } } as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO); memset(as, 0, sizeof(*as)); closure_init(&as->cl, NULL); as->c = c; as->mode = BTREE_INTERIOR_NO_UPDATE; as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD); as->btree_id = iter->btree_id; INIT_LIST_HEAD(&as->list); INIT_LIST_HEAD(&as->unwritten_list); INIT_LIST_HEAD(&as->write_blocked_list); bch2_keylist_init(&as->old_keys, as->_old_keys); bch2_keylist_init(&as->new_keys, as->_new_keys); bch2_keylist_init(&as->parent_keys, as->inline_keys); ret = bch2_journal_preres_get(&c->journal, &as->journal_preres, BTREE_UPDATE_JOURNAL_RES, journal_flags|JOURNAL_RES_GET_NONBLOCK); if (ret == -EAGAIN) { /* * this would be cleaner if bch2_journal_preres_get() took a * closure argument */ if (flags & BTREE_INSERT_NOUNLOCK) { trace_trans_restart_journal_preres_get(trans->ip); ret = -EINTR; goto err; } bch2_trans_unlock(trans); if (flags & BTREE_INSERT_JOURNAL_RECLAIM) { bch2_btree_update_free(as); return ERR_PTR(ret); } ret = bch2_journal_preres_get(&c->journal, &as->journal_preres, BTREE_UPDATE_JOURNAL_RES, journal_flags); if (ret) { trace_trans_restart_journal_preres_get(trans->ip); goto err; } if (!bch2_trans_relock(trans)) { ret = -EINTR; goto err; } } ret = bch2_disk_reservation_get(c, &as->disk_res, nr_nodes * c->opts.btree_node_size, c->opts.metadata_replicas, disk_res_flags); if (ret) goto err; ret = bch2_btree_reserve_get(as, nr_nodes, flags, !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL); if (ret) goto err; bch2_journal_pin_add(&c->journal, atomic64_read(&c->journal.seq), &as->journal, NULL); mutex_lock(&c->btree_interior_update_lock); list_add_tail(&as->list, &c->btree_interior_update_list); mutex_unlock(&c->btree_interior_update_lock); return as; err: bch2_btree_update_free(as); if (ret == -EAGAIN) { BUG_ON(flags & BTREE_INSERT_NOUNLOCK); bch2_trans_unlock(trans); closure_sync(&cl); ret = -EINTR; } if (ret == -EINTR && bch2_trans_relock(trans)) goto retry; return ERR_PTR(ret); } /* Btree root updates: */ static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) { /* Root nodes cannot be reaped */ mutex_lock(&c->btree_cache.lock); list_del_init(&b->list); mutex_unlock(&c->btree_cache.lock); if (b->c.level) six_lock_pcpu_alloc(&b->c.lock); else six_lock_pcpu_free(&b->c.lock); mutex_lock(&c->btree_root_lock); BUG_ON(btree_node_root(c, b) && (b->c.level < btree_node_root(c, b)->c.level || !btree_node_dying(btree_node_root(c, b)))); btree_node_root(c, b) = b; mutex_unlock(&c->btree_root_lock); bch2_recalc_btree_reserve(c); } /** * bch_btree_set_root - update the root in memory and on disk * * To ensure forward progress, the current task must not be holding any * btree node write locks. However, you must hold an intent lock on the * old root. * * Note: This allocates a journal entry but doesn't add any keys to * it. All the btree roots are part of every journal write, so there * is nothing new to be done. This just guarantees that there is a * journal write. */ static void bch2_btree_set_root(struct btree_update *as, struct btree *b, struct btree_iter *iter) { struct bch_fs *c = as->c; struct btree *old; trace_btree_set_root(c, b); BUG_ON(!b->written && !test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags)); old = btree_node_root(c, b); /* * Ensure no one is using the old root while we switch to the * new root: */ bch2_btree_node_lock_write(old, iter); bch2_btree_set_root_inmem(c, b); btree_update_updated_root(as, b); /* * Unlock old root after new root is visible: * * The new root isn't persistent, but that's ok: we still have * an intent lock on the new root, and any updates that would * depend on the new root would have to update the new root. */ bch2_btree_node_unlock_write(old, iter); } /* Interior node updates: */ static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b, struct btree_iter *iter, struct bkey_i *insert, struct btree_node_iter *node_iter) { struct bch_fs *c = as->c; struct bkey_packed *k; const char *invalid; invalid = bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b)) ?: bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert)); if (invalid) { char buf[160]; bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(insert)); bch2_fs_inconsistent(c, "inserting invalid bkey %s: %s", buf, invalid); dump_stack(); } BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > ARRAY_SIZE(as->journal_entries)); as->journal_u64s += journal_entry_set((void *) &as->journal_entries[as->journal_u64s], BCH_JSET_ENTRY_btree_keys, b->c.btree_id, b->c.level, insert, insert->k.u64s); while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) bch2_btree_node_iter_advance(node_iter, b); bch2_btree_bset_insert_key(iter, b, node_iter, insert); set_btree_node_dirty(c, b); set_btree_node_need_write(b); } /* * Move keys from n1 (original replacement node, now lower node) to n2 (higher * node) */ static struct btree *__btree_split_node(struct btree_update *as, struct btree *n1, struct btree_iter *iter) { struct bkey_format_state s; size_t nr_packed = 0, nr_unpacked = 0; struct btree *n2; struct bset *set1, *set2; struct bkey_packed *k, *set2_start, *set2_end, *out, *prev = NULL; struct bpos n1_pos; n2 = bch2_btree_node_alloc(as, n1->c.level); bch2_btree_update_add_new_node(as, n2); n2->data->max_key = n1->data->max_key; n2->data->format = n1->format; SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data)); n2->key.k.p = n1->key.k.p; set1 = btree_bset_first(n1); set2 = btree_bset_first(n2); /* * Has to be a linear search because we don't have an auxiliary * search tree yet */ k = set1->start; while (1) { struct bkey_packed *n = bkey_next(k); if (n == vstruct_last(set1)) break; if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5) break; if (bkey_packed(k)) nr_packed++; else nr_unpacked++; prev = k; k = n; } BUG_ON(!prev); set2_start = k; set2_end = vstruct_last(set1); set1->u64s = cpu_to_le16((u64 *) set2_start - set1->_data); set_btree_bset_end(n1, n1->set); n1->nr.live_u64s = le16_to_cpu(set1->u64s); n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s); n1->nr.packed_keys = nr_packed; n1->nr.unpacked_keys = nr_unpacked; n1_pos = bkey_unpack_pos(n1, prev); if (as->c->sb.version < bcachefs_metadata_version_snapshot) n1_pos.snapshot = U32_MAX; btree_set_max(n1, n1_pos); btree_set_min(n2, bpos_successor(n1->key.k.p)); bch2_bkey_format_init(&s); bch2_bkey_format_add_pos(&s, n2->data->min_key); bch2_bkey_format_add_pos(&s, n2->data->max_key); for (k = set2_start; k != set2_end; k = bkey_next(k)) { struct bkey uk = bkey_unpack_key(n1, k); bch2_bkey_format_add_key(&s, &uk); } n2->data->format = bch2_bkey_format_done(&s); btree_node_set_format(n2, n2->data->format); out = set2->start; memset(&n2->nr, 0, sizeof(n2->nr)); for (k = set2_start; k != set2_end; k = bkey_next(k)) { BUG_ON(!bch2_bkey_transform(&n2->format, out, bkey_packed(k) ? &n1->format : &bch2_bkey_format_current, k)); out->format = KEY_FORMAT_LOCAL_BTREE; btree_keys_account_key_add(&n2->nr, 0, out); out = bkey_next(out); } set2->u64s = cpu_to_le16((u64 *) out - set2->_data); set_btree_bset_end(n2, n2->set); BUG_ON(!set1->u64s); BUG_ON(!set2->u64s); btree_node_reset_sib_u64s(n1); btree_node_reset_sib_u64s(n2); bch2_verify_btree_nr_keys(n1); bch2_verify_btree_nr_keys(n2); if (n1->c.level) { btree_node_interior_verify(as->c, n1); btree_node_interior_verify(as->c, n2); } return n2; } /* * For updates to interior nodes, we've got to do the insert before we split * because the stuff we're inserting has to be inserted atomically. Post split, * the keys might have to go in different nodes and the split would no longer be * atomic. * * Worse, if the insert is from btree node coalescing, if we do the insert after * we do the split (and pick the pivot) - the pivot we pick might be between * nodes that were coalesced, and thus in the middle of a child node post * coalescing: */ static void btree_split_insert_keys(struct btree_update *as, struct btree *b, struct btree_iter *iter, struct keylist *keys) { struct btree_node_iter node_iter; struct bkey_i *k = bch2_keylist_front(keys); struct bkey_packed *src, *dst, *n; struct bset *i; BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); bch2_btree_node_iter_init(&node_iter, b, &k->k.p); while (!bch2_keylist_empty(keys)) { k = bch2_keylist_front(keys); bch2_insert_fixup_btree_ptr(as, b, iter, k, &node_iter); bch2_keylist_pop_front(keys); } /* * We can't tolerate whiteouts here - with whiteouts there can be * duplicate keys, and it would be rather bad if we picked a duplicate * for the pivot: */ i = btree_bset_first(b); src = dst = i->start; while (src != vstruct_last(i)) { n = bkey_next(src); if (!bkey_deleted(src)) { memmove_u64s_down(dst, src, src->u64s); dst = bkey_next(dst); } src = n; } /* Also clear out the unwritten whiteouts area: */ b->whiteout_u64s = 0; i->u64s = cpu_to_le16((u64 *) dst - i->_data); set_btree_bset_end(b, b->set); BUG_ON(b->nsets != 1 || b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s)); btree_node_interior_verify(as->c, b); } static void btree_split(struct btree_update *as, struct btree *b, struct btree_iter *iter, struct keylist *keys, unsigned flags) { struct bch_fs *c = as->c; struct btree *parent = btree_node_parent(iter, b); struct btree *n1, *n2 = NULL, *n3 = NULL; u64 start_time = local_clock(); BUG_ON(!parent && (b != btree_node_root(c, b))); BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level)); bch2_btree_interior_update_will_free_node(as, b); n1 = bch2_btree_node_alloc_replacement(as, b); bch2_btree_update_add_new_node(as, n1); if (keys) btree_split_insert_keys(as, n1, iter, keys); if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) { trace_btree_split(c, b); n2 = __btree_split_node(as, n1, iter); bch2_btree_build_aux_trees(n2); bch2_btree_build_aux_trees(n1); six_unlock_write(&n2->c.lock); six_unlock_write(&n1->c.lock); bch2_btree_node_write(c, n2, SIX_LOCK_intent); /* * Note that on recursive parent_keys == keys, so we * can't start adding new keys to parent_keys before emptying it * out (which we did with btree_split_insert_keys() above) */ bch2_keylist_add(&as->parent_keys, &n1->key); bch2_keylist_add(&as->parent_keys, &n2->key); if (!parent) { /* Depth increases, make a new root */ n3 = __btree_root_alloc(as, b->c.level + 1); n3->sib_u64s[0] = U16_MAX; n3->sib_u64s[1] = U16_MAX; btree_split_insert_keys(as, n3, iter, &as->parent_keys); bch2_btree_node_write(c, n3, SIX_LOCK_intent); } } else { trace_btree_compact(c, b); bch2_btree_build_aux_trees(n1); six_unlock_write(&n1->c.lock); if (parent) bch2_keylist_add(&as->parent_keys, &n1->key); } bch2_btree_node_write(c, n1, SIX_LOCK_intent); /* New nodes all written, now make them visible: */ if (parent) { /* Split a non root node */ bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); } else if (n3) { bch2_btree_set_root(as, n3, iter); } else { /* Root filled up but didn't need to be split */ bch2_btree_set_root(as, n1, iter); } bch2_btree_update_get_open_buckets(as, n1); if (n2) bch2_btree_update_get_open_buckets(as, n2); if (n3) bch2_btree_update_get_open_buckets(as, n3); /* Successful split, update the iterator to point to the new nodes: */ six_lock_increment(&b->c.lock, SIX_LOCK_intent); bch2_btree_iter_node_drop(iter, b); if (n3) bch2_btree_iter_node_replace(iter, n3); if (n2) bch2_btree_iter_node_replace(iter, n2); bch2_btree_iter_node_replace(iter, n1); /* * The old node must be freed (in memory) _before_ unlocking the new * nodes - else another thread could re-acquire a read lock on the old * node after another thread has locked and updated the new node, thus * seeing stale data: */ bch2_btree_node_free_inmem(c, b, iter); if (n3) six_unlock_intent(&n3->c.lock); if (n2) six_unlock_intent(&n2->c.lock); six_unlock_intent(&n1->c.lock); bch2_btree_trans_verify_locks(iter->trans); bch2_time_stats_update(&c->times[BCH_TIME_btree_node_split], start_time); } static void bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b, struct btree_iter *iter, struct keylist *keys) { struct btree_iter *linked; struct btree_node_iter node_iter; struct bkey_i *insert = bch2_keylist_front(keys); struct bkey_packed *k; /* Don't screw up @iter's position: */ node_iter = iter->l[b->c.level].iter; /* * btree_split(), btree_gc_coalesce() will insert keys before * the iterator's current position - they know the keys go in * the node the iterator points to: */ while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) ; for_each_keylist_key(keys, insert) bch2_insert_fixup_btree_ptr(as, b, iter, insert, &node_iter); btree_update_updated_node(as, b); trans_for_each_iter_with_node(iter->trans, b, linked) bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); bch2_btree_trans_verify_iters(iter->trans, b); } /** * bch_btree_insert_node - insert bkeys into a given btree node * * @iter: btree iterator * @keys: list of keys to insert * @hook: insert callback * @persistent: if not null, @persistent will wait on journal write * * Inserts as many keys as it can into a given btree node, splitting it if full. * If a split occurred, this function will return early. This can only happen * for leaf nodes -- inserts into interior nodes have to be atomic. */ void bch2_btree_insert_node(struct btree_update *as, struct btree *b, struct btree_iter *iter, struct keylist *keys, unsigned flags) { struct bch_fs *c = as->c; int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); int old_live_u64s = b->nr.live_u64s; int live_u64s_added, u64s_added; lockdep_assert_held(&c->gc_lock); BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level)); BUG_ON(!b->c.level); BUG_ON(!as || as->b); bch2_verify_keylist_sorted(keys); bch2_btree_node_lock_for_insert(c, b, iter); if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) { bch2_btree_node_unlock_write(b, iter); goto split; } btree_node_interior_verify(c, b); bch2_btree_insert_keys_interior(as, b, iter, keys); live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); if (u64s_added > live_u64s_added && bch2_maybe_compact_whiteouts(c, b)) bch2_btree_iter_reinit_node(iter, b); bch2_btree_node_unlock_write(b, iter); btree_node_interior_verify(c, b); return; split: btree_split(as, b, iter, keys, flags); } int bch2_btree_split_leaf(struct bch_fs *c, struct btree_iter *iter, unsigned flags) { struct btree *b = iter_l(iter)->b; struct btree_update *as; unsigned l; int ret = 0; as = bch2_btree_update_start(iter, iter->level, btree_update_reserve_required(c, b), flags); if (IS_ERR(as)) return PTR_ERR(as); btree_split(as, b, iter, NULL, flags); bch2_btree_update_done(as); for (l = iter->level + 1; btree_iter_node(iter, l) && !ret; l++) ret = bch2_foreground_maybe_merge(c, iter, l, flags); return ret; } int __bch2_foreground_maybe_merge(struct bch_fs *c, struct btree_iter *iter, unsigned level, unsigned flags, enum btree_node_sibling sib) { struct btree_trans *trans = iter->trans; struct btree_iter *sib_iter = NULL; struct btree_update *as; struct bkey_format_state new_s; struct bkey_format new_f; struct bkey_i delete; struct btree *b, *m, *n, *prev, *next, *parent; struct bpos sib_pos; size_t sib_u64s; int ret = 0, ret2 = 0; BUG_ON(!btree_node_locked(iter, level)); retry: ret = bch2_btree_iter_traverse(iter); if (ret) goto err; BUG_ON(!btree_node_locked(iter, level)); b = iter->l[level].b; if ((sib == btree_prev_sib && !bpos_cmp(b->data->min_key, POS_MIN)) || (sib == btree_next_sib && !bpos_cmp(b->data->max_key, POS_MAX))) { b->sib_u64s[sib] = U16_MAX; goto out; } sib_pos = sib == btree_prev_sib ? bpos_predecessor(b->data->min_key) : bpos_successor(b->data->max_key); sib_iter = bch2_trans_get_node_iter(trans, iter->btree_id, sib_pos, U8_MAX, level, BTREE_ITER_INTENT); ret = bch2_btree_iter_traverse(sib_iter); if (ret) goto err; m = sib_iter->l[level].b; if (btree_node_parent(iter, b) != btree_node_parent(sib_iter, m)) { b->sib_u64s[sib] = U16_MAX; goto out; } if (sib == btree_prev_sib) { prev = m; next = b; } else { prev = b; next = m; } if (bkey_cmp(bpos_successor(prev->data->max_key), next->data->min_key)) { char buf1[100], buf2[100]; bch2_bpos_to_text(&PBUF(buf1), prev->data->max_key); bch2_bpos_to_text(&PBUF(buf2), next->data->min_key); bch2_fs_inconsistent(c, "btree topology error in btree merge:\n" "prev ends at %s\n" "next starts at %s\n", buf1, buf2); ret = -EIO; goto err; } bch2_bkey_format_init(&new_s); bch2_bkey_format_add_pos(&new_s, prev->data->min_key); __bch2_btree_calc_format(&new_s, prev); __bch2_btree_calc_format(&new_s, next); bch2_bkey_format_add_pos(&new_s, next->data->max_key); new_f = bch2_bkey_format_done(&new_s); sib_u64s = btree_node_u64s_with_format(b, &new_f) + btree_node_u64s_with_format(m, &new_f); if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); sib_u64s /= 2; sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); } sib_u64s = min(sib_u64s, btree_max_u64s(c)); sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); b->sib_u64s[sib] = sib_u64s; if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) goto out; parent = btree_node_parent(iter, b); as = bch2_btree_update_start(iter, level, btree_update_reserve_required(c, parent) + 1, flags| BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE); ret = PTR_ERR_OR_ZERO(as); if (ret) goto err; trace_btree_merge(c, b); bch2_btree_interior_update_will_free_node(as, b); bch2_btree_interior_update_will_free_node(as, m); n = bch2_btree_node_alloc(as, b->c.level); bch2_btree_update_add_new_node(as, n); btree_set_min(n, prev->data->min_key); btree_set_max(n, next->data->max_key); n->data->format = new_f; btree_node_set_format(n, new_f); bch2_btree_sort_into(c, n, prev); bch2_btree_sort_into(c, n, next); bch2_btree_build_aux_trees(n); six_unlock_write(&n->c.lock); bkey_init(&delete.k); delete.k.p = prev->key.k.p; bch2_keylist_add(&as->parent_keys, &delete); bch2_keylist_add(&as->parent_keys, &n->key); bch2_btree_node_write(c, n, SIX_LOCK_intent); bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); bch2_btree_update_get_open_buckets(as, n); six_lock_increment(&b->c.lock, SIX_LOCK_intent); six_lock_increment(&m->c.lock, SIX_LOCK_intent); bch2_btree_iter_node_drop(iter, b); bch2_btree_iter_node_drop(iter, m); bch2_btree_iter_node_replace(iter, n); bch2_btree_trans_verify_iters(trans, n); bch2_btree_node_free_inmem(c, b, iter); bch2_btree_node_free_inmem(c, m, iter); six_unlock_intent(&n->c.lock); bch2_btree_update_done(as); out: bch2_btree_trans_verify_locks(trans); bch2_trans_iter_free(trans, sib_iter); /* * Don't downgrade locks here: we're called after successful insert, * and the caller will downgrade locks after a successful insert * anyways (in case e.g. a split was required first) * * And we're also called when inserting into interior nodes in the * split path, and downgrading to read locks in there is potentially * confusing: */ return ret ?: ret2; err: bch2_trans_iter_put(trans, sib_iter); sib_iter = NULL; if (ret == -EINTR && bch2_trans_relock(trans)) goto retry; if (ret == -EINTR && !(flags & BTREE_INSERT_NOUNLOCK)) { ret2 = ret; ret = bch2_btree_iter_traverse_all(trans); if (!ret) goto retry; } goto out; } /** * bch_btree_node_rewrite - Rewrite/move a btree node */ int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter, __le64 seq, unsigned flags) { struct btree *b, *n, *parent; struct btree_update *as; int ret; flags |= BTREE_INSERT_NOFAIL; retry: ret = bch2_btree_iter_traverse(iter); if (ret) goto out; b = bch2_btree_iter_peek_node(iter); if (!b || b->data->keys.seq != seq) goto out; parent = btree_node_parent(iter, b); as = bch2_btree_update_start(iter, b->c.level, (parent ? btree_update_reserve_required(c, parent) : 0) + 1, flags); ret = PTR_ERR_OR_ZERO(as); if (ret == -EINTR) goto retry; if (ret) { trace_btree_gc_rewrite_node_fail(c, b); goto out; } bch2_btree_interior_update_will_free_node(as, b); n = bch2_btree_node_alloc_replacement(as, b); bch2_btree_update_add_new_node(as, n); bch2_btree_build_aux_trees(n); six_unlock_write(&n->c.lock); trace_btree_gc_rewrite_node(c, b); bch2_btree_node_write(c, n, SIX_LOCK_intent); if (parent) { bch2_keylist_add(&as->parent_keys, &n->key); bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); } else { bch2_btree_set_root(as, n, iter); } bch2_btree_update_get_open_buckets(as, n); six_lock_increment(&b->c.lock, SIX_LOCK_intent); bch2_btree_iter_node_drop(iter, b); bch2_btree_iter_node_replace(iter, n); bch2_btree_node_free_inmem(c, b, iter); six_unlock_intent(&n->c.lock); bch2_btree_update_done(as); out: bch2_btree_iter_downgrade(iter); return ret; } struct async_btree_rewrite { struct bch_fs *c; struct work_struct work; enum btree_id btree_id; unsigned level; struct bpos pos; __le64 seq; }; void async_btree_node_rewrite_work(struct work_struct *work) { struct async_btree_rewrite *a = container_of(work, struct async_btree_rewrite, work); struct bch_fs *c = a->c; struct btree_trans trans; struct btree_iter *iter; bch2_trans_init(&trans, c, 0, 0); iter = bch2_trans_get_node_iter(&trans, a->btree_id, a->pos, BTREE_MAX_DEPTH, a->level, 0); bch2_btree_node_rewrite(c, iter, a->seq, 0); bch2_trans_iter_put(&trans, iter); bch2_trans_exit(&trans); percpu_ref_put(&c->writes); kfree(a); } void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) { struct async_btree_rewrite *a; if (!percpu_ref_tryget(&c->writes)) return; a = kmalloc(sizeof(*a), GFP_NOFS); if (!a) { percpu_ref_put(&c->writes); return; } a->c = c; a->btree_id = b->c.btree_id; a->level = b->c.level; a->pos = b->key.k.p; a->seq = b->data->keys.seq; INIT_WORK(&a->work, async_btree_node_rewrite_work); queue_work(system_long_wq, &a->work); } static void __bch2_btree_node_update_key(struct bch_fs *c, struct btree_update *as, struct btree_iter *iter, struct btree *b, struct btree *new_hash, struct bkey_i *new_key) { struct btree *parent; int ret; btree_update_will_delete_key(as, &b->key); btree_update_will_add_key(as, new_key); parent = btree_node_parent(iter, b); if (parent) { if (new_hash) { bkey_copy(&new_hash->key, new_key); ret = bch2_btree_node_hash_insert(&c->btree_cache, new_hash, b->c.level, b->c.btree_id); BUG_ON(ret); } bch2_keylist_add(&as->parent_keys, new_key); bch2_btree_insert_node(as, parent, iter, &as->parent_keys, 0); if (new_hash) { mutex_lock(&c->btree_cache.lock); bch2_btree_node_hash_remove(&c->btree_cache, new_hash); bch2_btree_node_hash_remove(&c->btree_cache, b); bkey_copy(&b->key, new_key); ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); BUG_ON(ret); mutex_unlock(&c->btree_cache.lock); } else { bkey_copy(&b->key, new_key); } } else { BUG_ON(btree_node_root(c, b) != b); bch2_btree_node_lock_write(b, iter); bkey_copy(&b->key, new_key); if (btree_ptr_hash_val(&b->key) != b->hash_val) { mutex_lock(&c->btree_cache.lock); bch2_btree_node_hash_remove(&c->btree_cache, b); ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); BUG_ON(ret); mutex_unlock(&c->btree_cache.lock); } btree_update_updated_root(as, b); bch2_btree_node_unlock_write(b, iter); } bch2_btree_update_done(as); } int bch2_btree_node_update_key(struct bch_fs *c, struct btree_iter *iter, struct btree *b, struct bkey_i *new_key) { struct btree *parent = btree_node_parent(iter, b); struct btree_update *as = NULL; struct btree *new_hash = NULL; struct closure cl; int ret = 0; closure_init_stack(&cl); /* * check btree_ptr_hash_val() after @b is locked by * btree_iter_traverse(): */ if (btree_ptr_hash_val(new_key) != b->hash_val) { ret = bch2_btree_cache_cannibalize_lock(c, &cl); if (ret) { bch2_trans_unlock(iter->trans); closure_sync(&cl); if (!bch2_trans_relock(iter->trans)) return -EINTR; } new_hash = bch2_btree_node_mem_alloc(c); } as = bch2_btree_update_start(iter, b->c.level, parent ? btree_update_reserve_required(c, parent) : 0, BTREE_INSERT_NOFAIL); if (IS_ERR(as)) { ret = PTR_ERR(as); goto err; } __bch2_btree_node_update_key(c, as, iter, b, new_hash, new_key); bch2_btree_iter_downgrade(iter); err: if (new_hash) { mutex_lock(&c->btree_cache.lock); list_move(&new_hash->list, &c->btree_cache.freeable); mutex_unlock(&c->btree_cache.lock); six_unlock_write(&new_hash->c.lock); six_unlock_intent(&new_hash->c.lock); } closure_sync(&cl); bch2_btree_cache_cannibalize_unlock(c); return ret; } /* Init code: */ /* * Only for filesystem bringup, when first reading the btree roots or allocating * btree roots when initializing a new filesystem: */ void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) { BUG_ON(btree_node_root(c, b)); bch2_btree_set_root_inmem(c, b); } void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) { struct closure cl; struct btree *b; int ret; closure_init_stack(&cl); do { ret = bch2_btree_cache_cannibalize_lock(c, &cl); closure_sync(&cl); } while (ret); b = bch2_btree_node_mem_alloc(c); bch2_btree_cache_cannibalize_unlock(c); set_btree_node_fake(b); set_btree_node_need_rewrite(b); b->c.level = 0; b->c.btree_id = id; bkey_btree_ptr_init(&b->key); b->key.k.p = POS_MAX; *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; bch2_bset_init_first(b, &b->data->keys); bch2_btree_build_aux_trees(b); b->data->flags = 0; btree_set_min(b, POS_MIN); btree_set_max(b, POS_MAX); b->data->format = bch2_btree_calc_format(b); btree_node_set_format(b, b->data->format); ret = bch2_btree_node_hash_insert(&c->btree_cache, b, b->c.level, b->c.btree_id); BUG_ON(ret); bch2_btree_set_root_inmem(c, b); six_unlock_write(&b->c.lock); six_unlock_intent(&b->c.lock); } void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) { struct btree_update *as; mutex_lock(&c->btree_interior_update_lock); list_for_each_entry(as, &c->btree_interior_update_list, list) pr_buf(out, "%p m %u w %u r %u j %llu\n", as, as->mode, as->nodes_written, atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK, as->journal.seq); mutex_unlock(&c->btree_interior_update_lock); } size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c) { size_t ret = 0; struct list_head *i; mutex_lock(&c->btree_interior_update_lock); list_for_each(i, &c->btree_interior_update_list) ret++; mutex_unlock(&c->btree_interior_update_lock); return ret; } void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset) { struct btree_root *r; struct jset_entry *entry; mutex_lock(&c->btree_root_lock); vstruct_for_each(jset, entry) if (entry->type == BCH_JSET_ENTRY_btree_root) { r = &c->btree_roots[entry->btree_id]; r->level = entry->level; r->alive = true; bkey_copy(&r->key, &entry->start[0]); } mutex_unlock(&c->btree_root_lock); } struct jset_entry * bch2_btree_roots_to_journal_entries(struct bch_fs *c, struct jset_entry *start, struct jset_entry *end) { struct jset_entry *entry; unsigned long have = 0; unsigned i; for (entry = start; entry < end; entry = vstruct_next(entry)) if (entry->type == BCH_JSET_ENTRY_btree_root) __set_bit(entry->btree_id, &have); mutex_lock(&c->btree_root_lock); for (i = 0; i < BTREE_ID_NR; i++) if (c->btree_roots[i].alive && !test_bit(i, &have)) { journal_entry_set(end, BCH_JSET_ENTRY_btree_root, i, c->btree_roots[i].level, &c->btree_roots[i].key, c->btree_roots[i].key.u64s); end = vstruct_next(end); } mutex_unlock(&c->btree_root_lock); return end; } void bch2_fs_btree_interior_update_exit(struct bch_fs *c) { if (c->btree_interior_update_worker) destroy_workqueue(c->btree_interior_update_worker); mempool_exit(&c->btree_interior_update_pool); } int bch2_fs_btree_interior_update_init(struct bch_fs *c) { mutex_init(&c->btree_reserve_cache_lock); INIT_LIST_HEAD(&c->btree_interior_update_list); INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); mutex_init(&c->btree_interior_update_lock); INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); c->btree_interior_update_worker = alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); if (!c->btree_interior_update_worker) return -ENOMEM; return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, sizeof(struct btree_update)); }