linux-stable/kernel/stackleak.c
Mark Rutland 8111e67dee stackleak: add on/off stack variants
The stackleak_erase() code dynamically handles being on a task stack or
another stack. In most cases, this is a fixed property of the caller,
which the caller is aware of, as an architecture might always return
using the task stack, or might always return using a trampoline stack.

This patch adds stackleak_erase_on_task_stack() and
stackleak_erase_off_task_stack() functions which callers can use to
avoid on_thread_stack() check and associated redundant work when the
calling stack is known. The existing stackleak_erase() is retained as a
safe default.

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Popov <alex.popov@linux.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220427173128.2603085-13-mark.rutland@arm.com
2022-05-08 01:33:09 -07:00

169 lines
4.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This code fills the used part of the kernel stack with a poison value
* before returning to userspace. It's part of the STACKLEAK feature
* ported from grsecurity/PaX.
*
* Author: Alexander Popov <alex.popov@linux.com>
*
* STACKLEAK reduces the information which kernel stack leak bugs can
* reveal and blocks some uninitialized stack variable attacks.
*/
#include <linux/stackleak.h>
#include <linux/kprobes.h>
#ifdef CONFIG_STACKLEAK_RUNTIME_DISABLE
#include <linux/jump_label.h>
#include <linux/sysctl.h>
#include <linux/init.h>
static DEFINE_STATIC_KEY_FALSE(stack_erasing_bypass);
#ifdef CONFIG_SYSCTL
static int stack_erasing_sysctl(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int ret = 0;
int state = !static_branch_unlikely(&stack_erasing_bypass);
int prev_state = state;
table->data = &state;
table->maxlen = sizeof(int);
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
state = !!state;
if (ret || !write || state == prev_state)
return ret;
if (state)
static_branch_disable(&stack_erasing_bypass);
else
static_branch_enable(&stack_erasing_bypass);
pr_warn("stackleak: kernel stack erasing is %s\n",
state ? "enabled" : "disabled");
return ret;
}
static struct ctl_table stackleak_sysctls[] = {
{
.procname = "stack_erasing",
.data = NULL,
.maxlen = sizeof(int),
.mode = 0600,
.proc_handler = stack_erasing_sysctl,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{}
};
static int __init stackleak_sysctls_init(void)
{
register_sysctl_init("kernel", stackleak_sysctls);
return 0;
}
late_initcall(stackleak_sysctls_init);
#endif /* CONFIG_SYSCTL */
#define skip_erasing() static_branch_unlikely(&stack_erasing_bypass)
#else
#define skip_erasing() false
#endif /* CONFIG_STACKLEAK_RUNTIME_DISABLE */
static __always_inline void __stackleak_erase(bool on_task_stack)
{
const unsigned long task_stack_low = stackleak_task_low_bound(current);
const unsigned long task_stack_high = stackleak_task_high_bound(current);
unsigned long erase_low, erase_high;
erase_low = stackleak_find_top_of_poison(task_stack_low,
current->lowest_stack);
#ifdef CONFIG_STACKLEAK_METRICS
current->prev_lowest_stack = erase_low;
#endif
/*
* Write poison to the task's stack between 'erase_low' and
* 'erase_high'.
*
* If we're running on a different stack (e.g. an entry trampoline
* stack) we can erase everything below the pt_regs at the top of the
* task stack.
*
* If we're running on the task stack itself, we must not clobber any
* stack used by this function and its caller. We assume that this
* function has a fixed-size stack frame, and the current stack pointer
* doesn't change while we write poison.
*/
if (on_task_stack)
erase_high = current_stack_pointer;
else
erase_high = task_stack_high;
while (erase_low < erase_high) {
*(unsigned long *)erase_low = STACKLEAK_POISON;
erase_low += sizeof(unsigned long);
}
/* Reset the 'lowest_stack' value for the next syscall */
current->lowest_stack = task_stack_high;
}
/*
* Erase and poison the portion of the task stack used since the last erase.
* Can be called from the task stack or an entry stack when the task stack is
* no longer in use.
*/
asmlinkage void noinstr stackleak_erase(void)
{
if (skip_erasing())
return;
__stackleak_erase(on_thread_stack());
}
/*
* Erase and poison the portion of the task stack used since the last erase.
* Can only be called from the task stack.
*/
asmlinkage void noinstr stackleak_erase_on_task_stack(void)
{
if (skip_erasing())
return;
__stackleak_erase(true);
}
/*
* Erase and poison the portion of the task stack used since the last erase.
* Can only be called from a stack other than the task stack.
*/
asmlinkage void noinstr stackleak_erase_off_task_stack(void)
{
if (skip_erasing())
return;
__stackleak_erase(false);
}
void __used __no_caller_saved_registers noinstr stackleak_track_stack(void)
{
unsigned long sp = current_stack_pointer;
/*
* Having CONFIG_STACKLEAK_TRACK_MIN_SIZE larger than
* STACKLEAK_SEARCH_DEPTH makes the poison search in
* stackleak_erase() unreliable. Let's prevent that.
*/
BUILD_BUG_ON(CONFIG_STACKLEAK_TRACK_MIN_SIZE > STACKLEAK_SEARCH_DEPTH);
/* 'lowest_stack' should be aligned on the register width boundary */
sp = ALIGN(sp, sizeof(unsigned long));
if (sp < current->lowest_stack &&
sp >= stackleak_task_low_bound(current)) {
current->lowest_stack = sp;
}
}
EXPORT_SYMBOL(stackleak_track_stack);