linux-stable/Documentation/admin-guide/mm/ksm.rst
Remington Brasga da51bbcdba Docs: typos/spelling
Fix spelling and grammar in Docs descriptions

Signed-off-by: Remington Brasga <rbrasga@uci.edu>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20240429225527.2329-1-rbrasga@uci.edu
2024-05-02 10:02:29 -06:00

324 lines
14 KiB
ReStructuredText

=======================
Kernel Samepage Merging
=======================
Overview
========
KSM is a memory-saving de-duplication feature, enabled by CONFIG_KSM=y,
added to the Linux kernel in 2.6.32. See ``mm/ksm.c`` for its implementation,
and http://lwn.net/Articles/306704/ and https://lwn.net/Articles/330589/
KSM was originally developed for use with KVM (where it was known as
Kernel Shared Memory), to fit more virtual machines into physical memory,
by sharing the data common between them. But it can be useful to any
application which generates many instances of the same data.
The KSM daemon ksmd periodically scans those areas of user memory
which have been registered with it, looking for pages of identical
content which can be replaced by a single write-protected page (which
is automatically copied if a process later wants to update its
content). The amount of pages that KSM daemon scans in a single pass
and the time between the passes are configured using :ref:`sysfs
interface <ksm_sysfs>`
KSM only merges anonymous (private) pages, never pagecache (file) pages.
KSM's merged pages were originally locked into kernel memory, but can now
be swapped out just like other user pages (but sharing is broken when they
are swapped back in: ksmd must rediscover their identity and merge again).
Controlling KSM with madvise
============================
KSM only operates on those areas of address space which an application
has advised to be likely candidates for merging, by using the madvise(2)
system call::
int madvise(addr, length, MADV_MERGEABLE)
The app may call
::
int madvise(addr, length, MADV_UNMERGEABLE)
to cancel that advice and restore unshared pages: whereupon KSM
unmerges whatever it merged in that range. Note: this unmerging call
may suddenly require more memory than is available - possibly failing
with EAGAIN, but more probably arousing the Out-Of-Memory killer.
If KSM is not configured into the running kernel, madvise MADV_MERGEABLE
and MADV_UNMERGEABLE simply fail with EINVAL. If the running kernel was
built with CONFIG_KSM=y, those calls will normally succeed: even if the
KSM daemon is not currently running, MADV_MERGEABLE still registers
the range for whenever the KSM daemon is started; even if the range
cannot contain any pages which KSM could actually merge; even if
MADV_UNMERGEABLE is applied to a range which was never MADV_MERGEABLE.
If a region of memory must be split into at least one new MADV_MERGEABLE
or MADV_UNMERGEABLE region, the madvise may return ENOMEM if the process
will exceed ``vm.max_map_count`` (see Documentation/admin-guide/sysctl/vm.rst).
Like other madvise calls, they are intended for use on mapped areas of
the user address space: they will report ENOMEM if the specified range
includes unmapped gaps (though working on the intervening mapped areas),
and might fail with EAGAIN if not enough memory for internal structures.
Applications should be considerate in their use of MADV_MERGEABLE,
restricting its use to areas likely to benefit. KSM's scans may use a lot
of processing power: some installations will disable KSM for that reason.
.. _ksm_sysfs:
KSM daemon sysfs interface
==========================
The KSM daemon is controlled by sysfs files in ``/sys/kernel/mm/ksm/``,
readable by all but writable only by root:
pages_to_scan
how many pages to scan before ksmd goes to sleep
e.g. ``echo 100 > /sys/kernel/mm/ksm/pages_to_scan``.
The pages_to_scan value cannot be changed if ``advisor_mode`` has
been set to scan-time.
Default: 100 (chosen for demonstration purposes)
sleep_millisecs
how many milliseconds ksmd should sleep before next scan
e.g. ``echo 20 > /sys/kernel/mm/ksm/sleep_millisecs``
Default: 20 (chosen for demonstration purposes)
merge_across_nodes
specifies if pages from different NUMA nodes can be merged.
When set to 0, ksm merges only pages which physically reside
in the memory area of same NUMA node. That brings lower
latency to access of shared pages. Systems with more nodes, at
significant NUMA distances, are likely to benefit from the
lower latency of setting 0. Smaller systems, which need to
minimize memory usage, are likely to benefit from the greater
sharing of setting 1 (default). You may wish to compare how
your system performs under each setting, before deciding on
which to use. ``merge_across_nodes`` setting can be changed only
when there are no ksm shared pages in the system: set run 2 to
unmerge pages first, then to 1 after changing
``merge_across_nodes``, to remerge according to the new setting.
Default: 1 (merging across nodes as in earlier releases)
run
* set to 0 to stop ksmd from running but keep merged pages,
* set to 1 to run ksmd e.g. ``echo 1 > /sys/kernel/mm/ksm/run``,
* set to 2 to stop ksmd and unmerge all pages currently merged, but
leave mergeable areas registered for next run.
Default: 0 (must be changed to 1 to activate KSM, except if
CONFIG_SYSFS is disabled)
use_zero_pages
specifies whether empty pages (i.e. allocated pages that only
contain zeroes) should be treated specially. When set to 1,
empty pages are merged with the kernel zero page(s) instead of
with each other as it would happen normally. This can improve
the performance on architectures with coloured zero pages,
depending on the workload. Care should be taken when enabling
this setting, as it can potentially degrade the performance of
KSM for some workloads, for example if the checksums of pages
candidate for merging match the checksum of an empty
page. This setting can be changed at any time, it is only
effective for pages merged after the change.
Default: 0 (normal KSM behaviour as in earlier releases)
max_page_sharing
Maximum sharing allowed for each KSM page. This enforces a
deduplication limit to avoid high latency for virtual memory
operations that involve traversal of the virtual mappings that
share the KSM page. The minimum value is 2 as a newly created
KSM page will have at least two sharers. The higher this value
the faster KSM will merge the memory and the higher the
deduplication factor will be, but the slower the worst case
virtual mappings traversal could be for any given KSM
page. Slowing down this traversal means there will be higher
latency for certain virtual memory operations happening during
swapping, compaction, NUMA balancing and page migration, in
turn decreasing responsiveness for the caller of those virtual
memory operations. The scheduler latency of other tasks not
involved with the VM operations doing the virtual mappings
traversal is not affected by this parameter as these
traversals are always schedule friendly themselves.
stable_node_chains_prune_millisecs
specifies how frequently KSM checks the metadata of the pages
that hit the deduplication limit for stale information.
Smaller milllisecs values will free up the KSM metadata with
lower latency, but they will make ksmd use more CPU during the
scan. It's a noop if not a single KSM page hit the
``max_page_sharing`` yet.
smart_scan
Historically KSM checked every candidate page for each scan. It did
not take into account historic information. When smart scan is
enabled, pages that have previously not been de-duplicated get
skipped. How often these pages are skipped depends on how often
de-duplication has already been tried and failed. By default this
optimization is enabled. The ``pages_skipped`` metric shows how
effective the setting is.
advisor_mode
The ``advisor_mode`` selects the current advisor. Two modes are
supported: none and scan-time. The default is none. By setting
``advisor_mode`` to scan-time, the scan time advisor is enabled.
The section about ``advisor`` explains in detail how the scan time
advisor works.
adivsor_max_cpu
specifies the upper limit of the cpu percent usage of the ksmd
background thread. The default is 70.
advisor_target_scan_time
specifies the target scan time in seconds to scan all the candidate
pages. The default value is 200 seconds.
advisor_min_pages_to_scan
specifies the lower limit of the ``pages_to_scan`` parameter of the
scan time advisor. The default is 500.
adivsor_max_pages_to_scan
specifies the upper limit of the ``pages_to_scan`` parameter of the
scan time advisor. The default is 30000.
The effectiveness of KSM and MADV_MERGEABLE is shown in ``/sys/kernel/mm/ksm/``:
general_profit
how effective is KSM. The calculation is explained below.
pages_scanned
how many pages are being scanned for ksm
pages_shared
how many shared pages are being used
pages_sharing
how many more sites are sharing them i.e. how much saved
pages_unshared
how many pages unique but repeatedly checked for merging
pages_volatile
how many pages changing too fast to be placed in a tree
pages_skipped
how many pages did the "smart" page scanning algorithm skip
full_scans
how many times all mergeable areas have been scanned
stable_node_chains
the number of KSM pages that hit the ``max_page_sharing`` limit
stable_node_dups
number of duplicated KSM pages
ksm_zero_pages
how many zero pages that are still mapped into processes were mapped by
KSM when deduplicating.
When ``use_zero_pages`` is/was enabled, the sum of ``pages_sharing`` +
``ksm_zero_pages`` represents the actual number of pages saved by KSM.
if ``use_zero_pages`` has never been enabled, ``ksm_zero_pages`` is 0.
A high ratio of ``pages_sharing`` to ``pages_shared`` indicates good
sharing, but a high ratio of ``pages_unshared`` to ``pages_sharing``
indicates wasted effort. ``pages_volatile`` embraces several
different kinds of activity, but a high proportion there would also
indicate poor use of madvise MADV_MERGEABLE.
The maximum possible ``pages_sharing/pages_shared`` ratio is limited by the
``max_page_sharing`` tunable. To increase the ratio ``max_page_sharing`` must
be increased accordingly.
Monitoring KSM profit
=====================
KSM can save memory by merging identical pages, but also can consume
additional memory, because it needs to generate a number of rmap_items to
save each scanned page's brief rmap information. Some of these pages may
be merged, but some may not be abled to be merged after being checked
several times, which are unprofitable memory consumed.
1) How to determine whether KSM save memory or consume memory in system-wide
range? Here is a simple approximate calculation for reference::
general_profit =~ ksm_saved_pages * sizeof(page) - (all_rmap_items) *
sizeof(rmap_item);
where ksm_saved_pages equals to the sum of ``pages_sharing`` +
``ksm_zero_pages`` of the system, and all_rmap_items can be easily
obtained by summing ``pages_sharing``, ``pages_shared``, ``pages_unshared``
and ``pages_volatile``.
2) The KSM profit inner a single process can be similarly obtained by the
following approximate calculation::
process_profit =~ ksm_saved_pages * sizeof(page) -
ksm_rmap_items * sizeof(rmap_item).
where ksm_saved_pages equals to the sum of ``ksm_merging_pages`` and
``ksm_zero_pages``, both of which are shown under the directory
``/proc/<pid>/ksm_stat``, and ksm_rmap_items is also shown in
``/proc/<pid>/ksm_stat``. The process profit is also shown in
``/proc/<pid>/ksm_stat`` as ksm_process_profit.
From the perspective of application, a high ratio of ``ksm_rmap_items`` to
``ksm_merging_pages`` means a bad madvise-applied policy, so developers or
administrators have to rethink how to change madvise policy. Giving an example
for reference, a page's size is usually 4K, and the rmap_item's size is
separately 32B on 32-bit CPU architecture and 64B on 64-bit CPU architecture.
so if the ``ksm_rmap_items/ksm_merging_pages`` ratio exceeds 64 on 64-bit CPU
or exceeds 128 on 32-bit CPU, then the app's madvise policy should be dropped,
because the ksm profit is approximately zero or negative.
Monitoring KSM events
=====================
There are some counters in /proc/vmstat that may be used to monitor KSM events.
KSM might help save memory, it's a tradeoff by may suffering delay on KSM COW
or on swapping in copy. Those events could help users evaluate whether or how
to use KSM. For example, if cow_ksm increases too fast, user may decrease the
range of madvise(, , MADV_MERGEABLE).
cow_ksm
is incremented every time a KSM page triggers copy on write (COW)
when users try to write to a KSM page, we have to make a copy.
ksm_swpin_copy
is incremented every time a KSM page is copied when swapping in
note that KSM page might be copied when swapping in because do_swap_page()
cannot do all the locking needed to reconstitute a cross-anon_vma KSM page.
Advisor
=======
The number of candidate pages for KSM is dynamic. It can be often observed
that during the startup of an application more candidate pages need to be
processed. Without an advisor the ``pages_to_scan`` parameter needs to be
sized for the maximum number of candidate pages. The scan time advisor can
changes the ``pages_to_scan`` parameter based on demand.
The advisor can be enabled, so KSM can automatically adapt to changes in the
number of candidate pages to scan. Two advisors are implemented: none and
scan-time. With none, no advisor is enabled. The default is none.
The scan time advisor changes the ``pages_to_scan`` parameter based on the
observed scan times. The possible values for the ``pages_to_scan`` parameter is
limited by the ``advisor_max_cpu`` parameter. In addition there is also the
``advisor_target_scan_time`` parameter. This parameter sets the target time to
scan all the KSM candidate pages. The parameter ``advisor_target_scan_time``
decides how aggressive the scan time advisor scans candidate pages. Lower
values make the scan time advisor to scan more aggressively. This is the most
important parameter for the configuration of the scan time advisor.
The initial value and the maximum value can be changed with
``advisor_min_pages_to_scan`` and ``advisor_max_pages_to_scan``. The default
values are sufficient for most workloads and use cases.
The ``pages_to_scan`` parameter is re-calculated after a scan has been completed.
--
Izik Eidus,
Hugh Dickins, 17 Nov 2009