linux-stable/arch/x86/crypto/sm3-avx-asm_64.S
Linus Torvalds 94a855111e - Add the call depth tracking mitigation for Retbleed which has
been long in the making. It is a lighterweight software-only fix for
 Skylake-based cores where enabling IBRS is a big hammer and causes a
 significant performance impact.
 
 What it basically does is, it aligns all kernel functions to 16 bytes
 boundary and adds a 16-byte padding before the function, objtool
 collects all functions' locations and when the mitigation gets applied,
 it patches a call accounting thunk which is used to track the call depth
 of the stack at any time.
 
 When that call depth reaches a magical, microarchitecture-specific value
 for the Return Stack Buffer, the code stuffs that RSB and avoids its
 underflow which could otherwise lead to the Intel variant of Retbleed.
 
 This software-only solution brings a lot of the lost performance back,
 as benchmarks suggest:
 
   https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
 
 That page above also contains a lot more detailed explanation of the
 whole mechanism
 
 - Implement a new control flow integrity scheme called FineIBT which is
 based on the software kCFI implementation and uses hardware IBT support
 where present to annotate and track indirect branches using a hash to
 validate them
 
 - Other misc fixes and cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOZp5EACgkQEsHwGGHe
 VUrZFxAAvi/+8L0IYSK4mKJvixGbTFjxN/Swo2JVOfs34LqGUT6JaBc+VUMwZxdb
 VMTFIZ3ttkKEodjhxGI7oGev6V8UfhI37SmO2lYKXpQVjXXnMlv/M+Vw3teE38CN
 gopi+xtGnT1IeWQ3tc/Tv18pleJ0mh5HKWiW+9KoqgXj0wgF9x4eRYDz1TDCDA/A
 iaBzs56j8m/FSykZHnrWZ/MvjKNPdGlfJASUCPeTM2dcrXQGJ93+X2hJctzDte0y
 Nuiw6Y0htfFBE7xoJn+sqm5Okr+McoUM18/CCprbgSKYk18iMYm3ZtAi6FUQZS1A
 ua4wQCf49loGp15PO61AS5d3OBf5D3q/WihQRbCaJvTVgPp9sWYnWwtcVUuhMllh
 ZQtBU9REcVJ/22bH09Q9CjBW0VpKpXHveqQdqRDViLJ6v/iI6EFGmD24SW/VxyRd
 73k9MBGrL/dOf1SbEzdsnvcSB3LGzp0Om8o/KzJWOomrVKjBCJy16bwTEsCZEJmP
 i406m92GPXeaN1GhTko7vmF0GnkEdJs1GVCZPluCAxxbhHukyxHnrjlQjI4vC80n
 Ylc0B3Kvitw7LGJsPqu+/jfNHADC/zhx1qz/30wb5cFmFbN1aRdp3pm8JYUkn+l/
 zri2Y6+O89gvE/9/xUhMohzHsWUO7xITiBavewKeTP9GSWybWUs=
 =cRy1
 -----END PGP SIGNATURE-----

Merge tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 core updates from Borislav Petkov:

 - Add the call depth tracking mitigation for Retbleed which has been
   long in the making. It is a lighterweight software-only fix for
   Skylake-based cores where enabling IBRS is a big hammer and causes a
   significant performance impact.

   What it basically does is, it aligns all kernel functions to 16 bytes
   boundary and adds a 16-byte padding before the function, objtool
   collects all functions' locations and when the mitigation gets
   applied, it patches a call accounting thunk which is used to track
   the call depth of the stack at any time.

   When that call depth reaches a magical, microarchitecture-specific
   value for the Return Stack Buffer, the code stuffs that RSB and
   avoids its underflow which could otherwise lead to the Intel variant
   of Retbleed.

   This software-only solution brings a lot of the lost performance
   back, as benchmarks suggest:

       https://lore.kernel.org/all/20220915111039.092790446@infradead.org/

   That page above also contains a lot more detailed explanation of the
   whole mechanism

 - Implement a new control flow integrity scheme called FineIBT which is
   based on the software kCFI implementation and uses hardware IBT
   support where present to annotate and track indirect branches using a
   hash to validate them

 - Other misc fixes and cleanups

* tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
  x86/paravirt: Use common macro for creating simple asm paravirt functions
  x86/paravirt: Remove clobber bitmask from .parainstructions
  x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al
  x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
  x86/Kconfig: Enable kernel IBT by default
  x86,pm: Force out-of-line memcpy()
  objtool: Fix weak hole vs prefix symbol
  objtool: Optimize elf_dirty_reloc_sym()
  x86/cfi: Add boot time hash randomization
  x86/cfi: Boot time selection of CFI scheme
  x86/ibt: Implement FineIBT
  objtool: Add --cfi to generate the .cfi_sites section
  x86: Add prefix symbols for function padding
  objtool: Add option to generate prefix symbols
  objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf
  objtool: Slice up elf_create_section_symbol()
  kallsyms: Revert "Take callthunks into account"
  x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces
  x86/retpoline: Fix crash printing warning
  x86/paravirt: Fix a !PARAVIRT build warning
  ...
2022-12-14 15:03:00 -08:00

518 lines
17 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* SM3 AVX accelerated transform.
* specified in: https://datatracker.ietf.org/doc/html/draft-sca-cfrg-sm3-02
*
* Copyright (C) 2021 Jussi Kivilinna <jussi.kivilinna@iki.fi>
* Copyright (C) 2021 Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
*/
/* Based on SM3 AES/BMI2 accelerated work by libgcrypt at:
* https://gnupg.org/software/libgcrypt/index.html
*/
#include <linux/linkage.h>
#include <linux/cfi_types.h>
#include <asm/frame.h>
/* Context structure */
#define state_h0 0
#define state_h1 4
#define state_h2 8
#define state_h3 12
#define state_h4 16
#define state_h5 20
#define state_h6 24
#define state_h7 28
/* Constants */
/* Round constant macros */
#define K0 2043430169 /* 0x79cc4519 */
#define K1 -208106958 /* 0xf3988a32 */
#define K2 -416213915 /* 0xe7311465 */
#define K3 -832427829 /* 0xce6228cb */
#define K4 -1664855657 /* 0x9cc45197 */
#define K5 965255983 /* 0x3988a32f */
#define K6 1930511966 /* 0x7311465e */
#define K7 -433943364 /* 0xe6228cbc */
#define K8 -867886727 /* 0xcc451979 */
#define K9 -1735773453 /* 0x988a32f3 */
#define K10 823420391 /* 0x311465e7 */
#define K11 1646840782 /* 0x6228cbce */
#define K12 -1001285732 /* 0xc451979c */
#define K13 -2002571463 /* 0x88a32f39 */
#define K14 289824371 /* 0x11465e73 */
#define K15 579648742 /* 0x228cbce6 */
#define K16 -1651869049 /* 0x9d8a7a87 */
#define K17 991229199 /* 0x3b14f50f */
#define K18 1982458398 /* 0x7629ea1e */
#define K19 -330050500 /* 0xec53d43c */
#define K20 -660100999 /* 0xd8a7a879 */
#define K21 -1320201997 /* 0xb14f50f3 */
#define K22 1654563303 /* 0x629ea1e7 */
#define K23 -985840690 /* 0xc53d43ce */
#define K24 -1971681379 /* 0x8a7a879d */
#define K25 351604539 /* 0x14f50f3b */
#define K26 703209078 /* 0x29ea1e76 */
#define K27 1406418156 /* 0x53d43cec */
#define K28 -1482130984 /* 0xa7a879d8 */
#define K29 1330705329 /* 0x4f50f3b1 */
#define K30 -1633556638 /* 0x9ea1e762 */
#define K31 1027854021 /* 0x3d43cec5 */
#define K32 2055708042 /* 0x7a879d8a */
#define K33 -183551212 /* 0xf50f3b14 */
#define K34 -367102423 /* 0xea1e7629 */
#define K35 -734204845 /* 0xd43cec53 */
#define K36 -1468409689 /* 0xa879d8a7 */
#define K37 1358147919 /* 0x50f3b14f */
#define K38 -1578671458 /* 0xa1e7629e */
#define K39 1137624381 /* 0x43cec53d */
#define K40 -2019718534 /* 0x879d8a7a */
#define K41 255530229 /* 0x0f3b14f5 */
#define K42 511060458 /* 0x1e7629ea */
#define K43 1022120916 /* 0x3cec53d4 */
#define K44 2044241832 /* 0x79d8a7a8 */
#define K45 -206483632 /* 0xf3b14f50 */
#define K46 -412967263 /* 0xe7629ea1 */
#define K47 -825934525 /* 0xcec53d43 */
#define K48 -1651869049 /* 0x9d8a7a87 */
#define K49 991229199 /* 0x3b14f50f */
#define K50 1982458398 /* 0x7629ea1e */
#define K51 -330050500 /* 0xec53d43c */
#define K52 -660100999 /* 0xd8a7a879 */
#define K53 -1320201997 /* 0xb14f50f3 */
#define K54 1654563303 /* 0x629ea1e7 */
#define K55 -985840690 /* 0xc53d43ce */
#define K56 -1971681379 /* 0x8a7a879d */
#define K57 351604539 /* 0x14f50f3b */
#define K58 703209078 /* 0x29ea1e76 */
#define K59 1406418156 /* 0x53d43cec */
#define K60 -1482130984 /* 0xa7a879d8 */
#define K61 1330705329 /* 0x4f50f3b1 */
#define K62 -1633556638 /* 0x9ea1e762 */
#define K63 1027854021 /* 0x3d43cec5 */
/* Register macros */
#define RSTATE %rdi
#define RDATA %rsi
#define RNBLKS %rdx
#define t0 %eax
#define t1 %ebx
#define t2 %ecx
#define a %r8d
#define b %r9d
#define c %r10d
#define d %r11d
#define e %r12d
#define f %r13d
#define g %r14d
#define h %r15d
#define W0 %xmm0
#define W1 %xmm1
#define W2 %xmm2
#define W3 %xmm3
#define W4 %xmm4
#define W5 %xmm5
#define XTMP0 %xmm6
#define XTMP1 %xmm7
#define XTMP2 %xmm8
#define XTMP3 %xmm9
#define XTMP4 %xmm10
#define XTMP5 %xmm11
#define XTMP6 %xmm12
#define BSWAP_REG %xmm15
/* Stack structure */
#define STACK_W_SIZE (32 * 2 * 3)
#define STACK_REG_SAVE_SIZE (64)
#define STACK_W (0)
#define STACK_REG_SAVE (STACK_W + STACK_W_SIZE)
#define STACK_SIZE (STACK_REG_SAVE + STACK_REG_SAVE_SIZE)
/* Instruction helpers. */
#define roll2(v, reg) \
roll $(v), reg;
#define roll3mov(v, src, dst) \
movl src, dst; \
roll $(v), dst;
#define roll3(v, src, dst) \
rorxl $(32-(v)), src, dst;
#define addl2(a, out) \
leal (a, out), out;
/* Round function macros. */
#define GG1(x, y, z, o, t) \
movl x, o; \
xorl y, o; \
xorl z, o;
#define FF1(x, y, z, o, t) GG1(x, y, z, o, t)
#define GG2(x, y, z, o, t) \
andnl z, x, o; \
movl y, t; \
andl x, t; \
addl2(t, o);
#define FF2(x, y, z, o, t) \
movl y, o; \
xorl x, o; \
movl y, t; \
andl x, t; \
andl z, o; \
xorl t, o;
#define R(i, a, b, c, d, e, f, g, h, round, widx, wtype) \
/* rol(a, 12) => t0 */ \
roll3mov(12, a, t0); /* rorxl here would reduce perf by 6% on zen3 */ \
/* rol (t0 + e + t), 7) => t1 */ \
leal K##round(t0, e, 1), t1; \
roll2(7, t1); \
/* h + w1 => h */ \
addl wtype##_W1_ADDR(round, widx), h; \
/* h + t1 => h */ \
addl2(t1, h); \
/* t1 ^ t0 => t0 */ \
xorl t1, t0; \
/* w1w2 + d => d */ \
addl wtype##_W1W2_ADDR(round, widx), d; \
/* FF##i(a,b,c) => t1 */ \
FF##i(a, b, c, t1, t2); \
/* d + t1 => d */ \
addl2(t1, d); \
/* GG#i(e,f,g) => t2 */ \
GG##i(e, f, g, t2, t1); \
/* h + t2 => h */ \
addl2(t2, h); \
/* rol (f, 19) => f */ \
roll2(19, f); \
/* d + t0 => d */ \
addl2(t0, d); \
/* rol (b, 9) => b */ \
roll2(9, b); \
/* P0(h) => h */ \
roll3(9, h, t2); \
roll3(17, h, t1); \
xorl t2, h; \
xorl t1, h;
#define R1(a, b, c, d, e, f, g, h, round, widx, wtype) \
R(1, a, b, c, d, e, f, g, h, round, widx, wtype)
#define R2(a, b, c, d, e, f, g, h, round, widx, wtype) \
R(2, a, b, c, d, e, f, g, h, round, widx, wtype)
/* Input expansion macros. */
/* Byte-swapped input address. */
#define IW_W_ADDR(round, widx, offs) \
(STACK_W + ((round) / 4) * 64 + (offs) + ((widx) * 4))(%rsp)
/* Expanded input address. */
#define XW_W_ADDR(round, widx, offs) \
(STACK_W + ((((round) / 3) - 4) % 2) * 64 + (offs) + ((widx) * 4))(%rsp)
/* Rounds 1-12, byte-swapped input block addresses. */
#define IW_W1_ADDR(round, widx) IW_W_ADDR(round, widx, 0)
#define IW_W1W2_ADDR(round, widx) IW_W_ADDR(round, widx, 32)
/* Rounds 1-12, expanded input block addresses. */
#define XW_W1_ADDR(round, widx) XW_W_ADDR(round, widx, 0)
#define XW_W1W2_ADDR(round, widx) XW_W_ADDR(round, widx, 32)
/* Input block loading. */
#define LOAD_W_XMM_1() \
vmovdqu 0*16(RDATA), XTMP0; /* XTMP0: w3, w2, w1, w0 */ \
vmovdqu 1*16(RDATA), XTMP1; /* XTMP1: w7, w6, w5, w4 */ \
vmovdqu 2*16(RDATA), XTMP2; /* XTMP2: w11, w10, w9, w8 */ \
vmovdqu 3*16(RDATA), XTMP3; /* XTMP3: w15, w14, w13, w12 */ \
vpshufb BSWAP_REG, XTMP0, XTMP0; \
vpshufb BSWAP_REG, XTMP1, XTMP1; \
vpshufb BSWAP_REG, XTMP2, XTMP2; \
vpshufb BSWAP_REG, XTMP3, XTMP3; \
vpxor XTMP0, XTMP1, XTMP4; \
vpxor XTMP1, XTMP2, XTMP5; \
vpxor XTMP2, XTMP3, XTMP6; \
leaq 64(RDATA), RDATA; \
vmovdqa XTMP0, IW_W1_ADDR(0, 0); \
vmovdqa XTMP4, IW_W1W2_ADDR(0, 0); \
vmovdqa XTMP1, IW_W1_ADDR(4, 0); \
vmovdqa XTMP5, IW_W1W2_ADDR(4, 0);
#define LOAD_W_XMM_2() \
vmovdqa XTMP2, IW_W1_ADDR(8, 0); \
vmovdqa XTMP6, IW_W1W2_ADDR(8, 0);
#define LOAD_W_XMM_3() \
vpshufd $0b00000000, XTMP0, W0; /* W0: xx, w0, xx, xx */ \
vpshufd $0b11111001, XTMP0, W1; /* W1: xx, w3, w2, w1 */ \
vmovdqa XTMP1, W2; /* W2: xx, w6, w5, w4 */ \
vpalignr $12, XTMP1, XTMP2, W3; /* W3: xx, w9, w8, w7 */ \
vpalignr $8, XTMP2, XTMP3, W4; /* W4: xx, w12, w11, w10 */ \
vpshufd $0b11111001, XTMP3, W5; /* W5: xx, w15, w14, w13 */
/* Message scheduling. Note: 3 words per XMM register. */
#define SCHED_W_0(round, w0, w1, w2, w3, w4, w5) \
/* Load (w[i - 16]) => XTMP0 */ \
vpshufd $0b10111111, w0, XTMP0; \
vpalignr $12, XTMP0, w1, XTMP0; /* XTMP0: xx, w2, w1, w0 */ \
/* Load (w[i - 13]) => XTMP1 */ \
vpshufd $0b10111111, w1, XTMP1; \
vpalignr $12, XTMP1, w2, XTMP1; \
/* w[i - 9] == w3 */ \
/* XMM3 ^ XTMP0 => XTMP0 */ \
vpxor w3, XTMP0, XTMP0;
#define SCHED_W_1(round, w0, w1, w2, w3, w4, w5) \
/* w[i - 3] == w5 */ \
/* rol(XMM5, 15) ^ XTMP0 => XTMP0 */ \
vpslld $15, w5, XTMP2; \
vpsrld $(32-15), w5, XTMP3; \
vpxor XTMP2, XTMP3, XTMP3; \
vpxor XTMP3, XTMP0, XTMP0; \
/* rol(XTMP1, 7) => XTMP1 */ \
vpslld $7, XTMP1, XTMP5; \
vpsrld $(32-7), XTMP1, XTMP1; \
vpxor XTMP5, XTMP1, XTMP1; \
/* XMM4 ^ XTMP1 => XTMP1 */ \
vpxor w4, XTMP1, XTMP1; \
/* w[i - 6] == XMM4 */ \
/* P1(XTMP0) ^ XTMP1 => XMM0 */ \
vpslld $15, XTMP0, XTMP5; \
vpsrld $(32-15), XTMP0, XTMP6; \
vpslld $23, XTMP0, XTMP2; \
vpsrld $(32-23), XTMP0, XTMP3; \
vpxor XTMP0, XTMP1, XTMP1; \
vpxor XTMP6, XTMP5, XTMP5; \
vpxor XTMP3, XTMP2, XTMP2; \
vpxor XTMP2, XTMP5, XTMP5; \
vpxor XTMP5, XTMP1, w0;
#define SCHED_W_2(round, w0, w1, w2, w3, w4, w5) \
/* W1 in XMM12 */ \
vpshufd $0b10111111, w4, XTMP4; \
vpalignr $12, XTMP4, w5, XTMP4; \
vmovdqa XTMP4, XW_W1_ADDR((round), 0); \
/* W1 ^ W2 => XTMP1 */ \
vpxor w0, XTMP4, XTMP1; \
vmovdqa XTMP1, XW_W1W2_ADDR((round), 0);
.section .rodata.cst16, "aM", @progbits, 16
.align 16
.Lbe32mask:
.long 0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f
.text
/*
* Transform nblocks*64 bytes (nblocks*16 32-bit words) at DATA.
*
* void sm3_transform_avx(struct sm3_state *state,
* const u8 *data, int nblocks);
*/
SYM_TYPED_FUNC_START(sm3_transform_avx)
/* input:
* %rdi: ctx, CTX
* %rsi: data (64*nblks bytes)
* %rdx: nblocks
*/
vzeroupper;
pushq %rbp;
movq %rsp, %rbp;
movq %rdx, RNBLKS;
subq $STACK_SIZE, %rsp;
andq $(~63), %rsp;
movq %rbx, (STACK_REG_SAVE + 0 * 8)(%rsp);
movq %r15, (STACK_REG_SAVE + 1 * 8)(%rsp);
movq %r14, (STACK_REG_SAVE + 2 * 8)(%rsp);
movq %r13, (STACK_REG_SAVE + 3 * 8)(%rsp);
movq %r12, (STACK_REG_SAVE + 4 * 8)(%rsp);
vmovdqa .Lbe32mask (%rip), BSWAP_REG;
/* Get the values of the chaining variables. */
movl state_h0(RSTATE), a;
movl state_h1(RSTATE), b;
movl state_h2(RSTATE), c;
movl state_h3(RSTATE), d;
movl state_h4(RSTATE), e;
movl state_h5(RSTATE), f;
movl state_h6(RSTATE), g;
movl state_h7(RSTATE), h;
.align 16
.Loop:
/* Load data part1. */
LOAD_W_XMM_1();
leaq -1(RNBLKS), RNBLKS;
/* Transform 0-3 + Load data part2. */
R1(a, b, c, d, e, f, g, h, 0, 0, IW); LOAD_W_XMM_2();
R1(d, a, b, c, h, e, f, g, 1, 1, IW);
R1(c, d, a, b, g, h, e, f, 2, 2, IW);
R1(b, c, d, a, f, g, h, e, 3, 3, IW); LOAD_W_XMM_3();
/* Transform 4-7 + Precalc 12-14. */
R1(a, b, c, d, e, f, g, h, 4, 0, IW);
R1(d, a, b, c, h, e, f, g, 5, 1, IW);
R1(c, d, a, b, g, h, e, f, 6, 2, IW); SCHED_W_0(12, W0, W1, W2, W3, W4, W5);
R1(b, c, d, a, f, g, h, e, 7, 3, IW); SCHED_W_1(12, W0, W1, W2, W3, W4, W5);
/* Transform 8-11 + Precalc 12-17. */
R1(a, b, c, d, e, f, g, h, 8, 0, IW); SCHED_W_2(12, W0, W1, W2, W3, W4, W5);
R1(d, a, b, c, h, e, f, g, 9, 1, IW); SCHED_W_0(15, W1, W2, W3, W4, W5, W0);
R1(c, d, a, b, g, h, e, f, 10, 2, IW); SCHED_W_1(15, W1, W2, W3, W4, W5, W0);
R1(b, c, d, a, f, g, h, e, 11, 3, IW); SCHED_W_2(15, W1, W2, W3, W4, W5, W0);
/* Transform 12-14 + Precalc 18-20 */
R1(a, b, c, d, e, f, g, h, 12, 0, XW); SCHED_W_0(18, W2, W3, W4, W5, W0, W1);
R1(d, a, b, c, h, e, f, g, 13, 1, XW); SCHED_W_1(18, W2, W3, W4, W5, W0, W1);
R1(c, d, a, b, g, h, e, f, 14, 2, XW); SCHED_W_2(18, W2, W3, W4, W5, W0, W1);
/* Transform 15-17 + Precalc 21-23 */
R1(b, c, d, a, f, g, h, e, 15, 0, XW); SCHED_W_0(21, W3, W4, W5, W0, W1, W2);
R2(a, b, c, d, e, f, g, h, 16, 1, XW); SCHED_W_1(21, W3, W4, W5, W0, W1, W2);
R2(d, a, b, c, h, e, f, g, 17, 2, XW); SCHED_W_2(21, W3, W4, W5, W0, W1, W2);
/* Transform 18-20 + Precalc 24-26 */
R2(c, d, a, b, g, h, e, f, 18, 0, XW); SCHED_W_0(24, W4, W5, W0, W1, W2, W3);
R2(b, c, d, a, f, g, h, e, 19, 1, XW); SCHED_W_1(24, W4, W5, W0, W1, W2, W3);
R2(a, b, c, d, e, f, g, h, 20, 2, XW); SCHED_W_2(24, W4, W5, W0, W1, W2, W3);
/* Transform 21-23 + Precalc 27-29 */
R2(d, a, b, c, h, e, f, g, 21, 0, XW); SCHED_W_0(27, W5, W0, W1, W2, W3, W4);
R2(c, d, a, b, g, h, e, f, 22, 1, XW); SCHED_W_1(27, W5, W0, W1, W2, W3, W4);
R2(b, c, d, a, f, g, h, e, 23, 2, XW); SCHED_W_2(27, W5, W0, W1, W2, W3, W4);
/* Transform 24-26 + Precalc 30-32 */
R2(a, b, c, d, e, f, g, h, 24, 0, XW); SCHED_W_0(30, W0, W1, W2, W3, W4, W5);
R2(d, a, b, c, h, e, f, g, 25, 1, XW); SCHED_W_1(30, W0, W1, W2, W3, W4, W5);
R2(c, d, a, b, g, h, e, f, 26, 2, XW); SCHED_W_2(30, W0, W1, W2, W3, W4, W5);
/* Transform 27-29 + Precalc 33-35 */
R2(b, c, d, a, f, g, h, e, 27, 0, XW); SCHED_W_0(33, W1, W2, W3, W4, W5, W0);
R2(a, b, c, d, e, f, g, h, 28, 1, XW); SCHED_W_1(33, W1, W2, W3, W4, W5, W0);
R2(d, a, b, c, h, e, f, g, 29, 2, XW); SCHED_W_2(33, W1, W2, W3, W4, W5, W0);
/* Transform 30-32 + Precalc 36-38 */
R2(c, d, a, b, g, h, e, f, 30, 0, XW); SCHED_W_0(36, W2, W3, W4, W5, W0, W1);
R2(b, c, d, a, f, g, h, e, 31, 1, XW); SCHED_W_1(36, W2, W3, W4, W5, W0, W1);
R2(a, b, c, d, e, f, g, h, 32, 2, XW); SCHED_W_2(36, W2, W3, W4, W5, W0, W1);
/* Transform 33-35 + Precalc 39-41 */
R2(d, a, b, c, h, e, f, g, 33, 0, XW); SCHED_W_0(39, W3, W4, W5, W0, W1, W2);
R2(c, d, a, b, g, h, e, f, 34, 1, XW); SCHED_W_1(39, W3, W4, W5, W0, W1, W2);
R2(b, c, d, a, f, g, h, e, 35, 2, XW); SCHED_W_2(39, W3, W4, W5, W0, W1, W2);
/* Transform 36-38 + Precalc 42-44 */
R2(a, b, c, d, e, f, g, h, 36, 0, XW); SCHED_W_0(42, W4, W5, W0, W1, W2, W3);
R2(d, a, b, c, h, e, f, g, 37, 1, XW); SCHED_W_1(42, W4, W5, W0, W1, W2, W3);
R2(c, d, a, b, g, h, e, f, 38, 2, XW); SCHED_W_2(42, W4, W5, W0, W1, W2, W3);
/* Transform 39-41 + Precalc 45-47 */
R2(b, c, d, a, f, g, h, e, 39, 0, XW); SCHED_W_0(45, W5, W0, W1, W2, W3, W4);
R2(a, b, c, d, e, f, g, h, 40, 1, XW); SCHED_W_1(45, W5, W0, W1, W2, W3, W4);
R2(d, a, b, c, h, e, f, g, 41, 2, XW); SCHED_W_2(45, W5, W0, W1, W2, W3, W4);
/* Transform 42-44 + Precalc 48-50 */
R2(c, d, a, b, g, h, e, f, 42, 0, XW); SCHED_W_0(48, W0, W1, W2, W3, W4, W5);
R2(b, c, d, a, f, g, h, e, 43, 1, XW); SCHED_W_1(48, W0, W1, W2, W3, W4, W5);
R2(a, b, c, d, e, f, g, h, 44, 2, XW); SCHED_W_2(48, W0, W1, W2, W3, W4, W5);
/* Transform 45-47 + Precalc 51-53 */
R2(d, a, b, c, h, e, f, g, 45, 0, XW); SCHED_W_0(51, W1, W2, W3, W4, W5, W0);
R2(c, d, a, b, g, h, e, f, 46, 1, XW); SCHED_W_1(51, W1, W2, W3, W4, W5, W0);
R2(b, c, d, a, f, g, h, e, 47, 2, XW); SCHED_W_2(51, W1, W2, W3, W4, W5, W0);
/* Transform 48-50 + Precalc 54-56 */
R2(a, b, c, d, e, f, g, h, 48, 0, XW); SCHED_W_0(54, W2, W3, W4, W5, W0, W1);
R2(d, a, b, c, h, e, f, g, 49, 1, XW); SCHED_W_1(54, W2, W3, W4, W5, W0, W1);
R2(c, d, a, b, g, h, e, f, 50, 2, XW); SCHED_W_2(54, W2, W3, W4, W5, W0, W1);
/* Transform 51-53 + Precalc 57-59 */
R2(b, c, d, a, f, g, h, e, 51, 0, XW); SCHED_W_0(57, W3, W4, W5, W0, W1, W2);
R2(a, b, c, d, e, f, g, h, 52, 1, XW); SCHED_W_1(57, W3, W4, W5, W0, W1, W2);
R2(d, a, b, c, h, e, f, g, 53, 2, XW); SCHED_W_2(57, W3, W4, W5, W0, W1, W2);
/* Transform 54-56 + Precalc 60-62 */
R2(c, d, a, b, g, h, e, f, 54, 0, XW); SCHED_W_0(60, W4, W5, W0, W1, W2, W3);
R2(b, c, d, a, f, g, h, e, 55, 1, XW); SCHED_W_1(60, W4, W5, W0, W1, W2, W3);
R2(a, b, c, d, e, f, g, h, 56, 2, XW); SCHED_W_2(60, W4, W5, W0, W1, W2, W3);
/* Transform 57-59 + Precalc 63 */
R2(d, a, b, c, h, e, f, g, 57, 0, XW); SCHED_W_0(63, W5, W0, W1, W2, W3, W4);
R2(c, d, a, b, g, h, e, f, 58, 1, XW);
R2(b, c, d, a, f, g, h, e, 59, 2, XW); SCHED_W_1(63, W5, W0, W1, W2, W3, W4);
/* Transform 60-62 + Precalc 63 */
R2(a, b, c, d, e, f, g, h, 60, 0, XW);
R2(d, a, b, c, h, e, f, g, 61, 1, XW); SCHED_W_2(63, W5, W0, W1, W2, W3, W4);
R2(c, d, a, b, g, h, e, f, 62, 2, XW);
/* Transform 63 */
R2(b, c, d, a, f, g, h, e, 63, 0, XW);
/* Update the chaining variables. */
xorl state_h0(RSTATE), a;
xorl state_h1(RSTATE), b;
xorl state_h2(RSTATE), c;
xorl state_h3(RSTATE), d;
movl a, state_h0(RSTATE);
movl b, state_h1(RSTATE);
movl c, state_h2(RSTATE);
movl d, state_h3(RSTATE);
xorl state_h4(RSTATE), e;
xorl state_h5(RSTATE), f;
xorl state_h6(RSTATE), g;
xorl state_h7(RSTATE), h;
movl e, state_h4(RSTATE);
movl f, state_h5(RSTATE);
movl g, state_h6(RSTATE);
movl h, state_h7(RSTATE);
cmpq $0, RNBLKS;
jne .Loop;
vzeroall;
movq (STACK_REG_SAVE + 0 * 8)(%rsp), %rbx;
movq (STACK_REG_SAVE + 1 * 8)(%rsp), %r15;
movq (STACK_REG_SAVE + 2 * 8)(%rsp), %r14;
movq (STACK_REG_SAVE + 3 * 8)(%rsp), %r13;
movq (STACK_REG_SAVE + 4 * 8)(%rsp), %r12;
vmovdqa %xmm0, IW_W1_ADDR(0, 0);
vmovdqa %xmm0, IW_W1W2_ADDR(0, 0);
vmovdqa %xmm0, IW_W1_ADDR(4, 0);
vmovdqa %xmm0, IW_W1W2_ADDR(4, 0);
vmovdqa %xmm0, IW_W1_ADDR(8, 0);
vmovdqa %xmm0, IW_W1W2_ADDR(8, 0);
movq %rbp, %rsp;
popq %rbp;
RET;
SYM_FUNC_END(sm3_transform_avx)