mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-16 18:26:42 +00:00
22daa42294
AMD SEV and Intel TDX guests allocate shared buffers for performing I/O. This is done by allocating pages normally from the buddy allocator and then converting them to shared using set_memory_decrypted(). On kexec, the second kernel is unaware of which memory has been converted in this manner. It only sees E820_TYPE_RAM. Accessing shared memory as private is fatal. Therefore, the memory state must be reset to its original state before starting the new kernel with kexec. The process of converting shared memory back to private occurs in two steps: - enc_kexec_begin() stops new conversions. - enc_kexec_finish() unshares all existing shared memory, reverting it back to private. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Tested-by: Tao Liu <ltao@redhat.com> Link: https://lore.kernel.org/r/20240614095904.1345461-11-kirill.shutemov@linux.intel.com
519 lines
13 KiB
C
519 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Architecture specific (i386/x86_64) functions for kexec based crash dumps.
|
|
*
|
|
* Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
|
|
*
|
|
* Copyright (C) IBM Corporation, 2004. All rights reserved.
|
|
* Copyright (C) Red Hat Inc., 2014. All rights reserved.
|
|
* Authors:
|
|
* Vivek Goyal <vgoyal@redhat.com>
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kexec: " fmt
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/memblock.h>
|
|
|
|
#include <asm/bootparam.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/hardirq.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/e820/types.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/hpet.h>
|
|
#include <linux/kdebug.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/reboot.h>
|
|
#include <asm/intel_pt.h>
|
|
#include <asm/crash.h>
|
|
#include <asm/cmdline.h>
|
|
#include <asm/sev.h>
|
|
|
|
/* Used while preparing memory map entries for second kernel */
|
|
struct crash_memmap_data {
|
|
struct boot_params *params;
|
|
/* Type of memory */
|
|
unsigned int type;
|
|
};
|
|
|
|
#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
|
|
|
|
static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
|
|
{
|
|
crash_save_cpu(regs, cpu);
|
|
|
|
/*
|
|
* Disable Intel PT to stop its logging
|
|
*/
|
|
cpu_emergency_stop_pt();
|
|
|
|
kdump_sev_callback();
|
|
|
|
disable_local_APIC();
|
|
}
|
|
|
|
void kdump_nmi_shootdown_cpus(void)
|
|
{
|
|
nmi_shootdown_cpus(kdump_nmi_callback);
|
|
|
|
disable_local_APIC();
|
|
}
|
|
|
|
/* Override the weak function in kernel/panic.c */
|
|
void crash_smp_send_stop(void)
|
|
{
|
|
static int cpus_stopped;
|
|
|
|
if (cpus_stopped)
|
|
return;
|
|
|
|
if (smp_ops.crash_stop_other_cpus)
|
|
smp_ops.crash_stop_other_cpus();
|
|
else
|
|
smp_send_stop();
|
|
|
|
cpus_stopped = 1;
|
|
}
|
|
|
|
#else
|
|
void crash_smp_send_stop(void)
|
|
{
|
|
/* There are no cpus to shootdown */
|
|
}
|
|
#endif
|
|
|
|
void native_machine_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
/* This function is only called after the system
|
|
* has panicked or is otherwise in a critical state.
|
|
* The minimum amount of code to allow a kexec'd kernel
|
|
* to run successfully needs to happen here.
|
|
*
|
|
* In practice this means shooting down the other cpus in
|
|
* an SMP system.
|
|
*/
|
|
/* The kernel is broken so disable interrupts */
|
|
local_irq_disable();
|
|
|
|
crash_smp_send_stop();
|
|
|
|
cpu_emergency_disable_virtualization();
|
|
|
|
/*
|
|
* Disable Intel PT to stop its logging
|
|
*/
|
|
cpu_emergency_stop_pt();
|
|
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
|
|
ioapic_zap_locks();
|
|
clear_IO_APIC();
|
|
#endif
|
|
lapic_shutdown();
|
|
restore_boot_irq_mode();
|
|
#ifdef CONFIG_HPET_TIMER
|
|
hpet_disable();
|
|
#endif
|
|
|
|
/*
|
|
* Non-crash kexec calls enc_kexec_begin() while scheduling is still
|
|
* active. This allows the callback to wait until all in-flight
|
|
* shared<->private conversions are complete. In a crash scenario,
|
|
* enc_kexec_begin() gets called after all but one CPU have been shut
|
|
* down and interrupts have been disabled. This allows the callback to
|
|
* detect a race with the conversion and report it.
|
|
*/
|
|
x86_platform.guest.enc_kexec_begin();
|
|
x86_platform.guest.enc_kexec_finish();
|
|
|
|
crash_save_cpu(regs, safe_smp_processor_id());
|
|
}
|
|
|
|
#if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_HOTPLUG)
|
|
static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
|
|
{
|
|
unsigned int *nr_ranges = arg;
|
|
|
|
(*nr_ranges)++;
|
|
return 0;
|
|
}
|
|
|
|
/* Gather all the required information to prepare elf headers for ram regions */
|
|
static struct crash_mem *fill_up_crash_elf_data(void)
|
|
{
|
|
unsigned int nr_ranges = 0;
|
|
struct crash_mem *cmem;
|
|
|
|
walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
|
|
if (!nr_ranges)
|
|
return NULL;
|
|
|
|
/*
|
|
* Exclusion of crash region and/or crashk_low_res may cause
|
|
* another range split. So add extra two slots here.
|
|
*/
|
|
nr_ranges += 2;
|
|
cmem = vzalloc(struct_size(cmem, ranges, nr_ranges));
|
|
if (!cmem)
|
|
return NULL;
|
|
|
|
cmem->max_nr_ranges = nr_ranges;
|
|
cmem->nr_ranges = 0;
|
|
|
|
return cmem;
|
|
}
|
|
|
|
/*
|
|
* Look for any unwanted ranges between mstart, mend and remove them. This
|
|
* might lead to split and split ranges are put in cmem->ranges[] array
|
|
*/
|
|
static int elf_header_exclude_ranges(struct crash_mem *cmem)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Exclude the low 1M because it is always reserved */
|
|
ret = crash_exclude_mem_range(cmem, 0, SZ_1M - 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Exclude crashkernel region */
|
|
ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (crashk_low_res.end)
|
|
ret = crash_exclude_mem_range(cmem, crashk_low_res.start,
|
|
crashk_low_res.end);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
|
|
{
|
|
struct crash_mem *cmem = arg;
|
|
|
|
cmem->ranges[cmem->nr_ranges].start = res->start;
|
|
cmem->ranges[cmem->nr_ranges].end = res->end;
|
|
cmem->nr_ranges++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Prepare elf headers. Return addr and size */
|
|
static int prepare_elf_headers(void **addr, unsigned long *sz,
|
|
unsigned long *nr_mem_ranges)
|
|
{
|
|
struct crash_mem *cmem;
|
|
int ret;
|
|
|
|
cmem = fill_up_crash_elf_data();
|
|
if (!cmem)
|
|
return -ENOMEM;
|
|
|
|
ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Exclude unwanted mem ranges */
|
|
ret = elf_header_exclude_ranges(cmem);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Return the computed number of memory ranges, for hotplug usage */
|
|
*nr_mem_ranges = cmem->nr_ranges;
|
|
|
|
/* By default prepare 64bit headers */
|
|
ret = crash_prepare_elf64_headers(cmem, IS_ENABLED(CONFIG_X86_64), addr, sz);
|
|
|
|
out:
|
|
vfree(cmem);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
static int add_e820_entry(struct boot_params *params, struct e820_entry *entry)
|
|
{
|
|
unsigned int nr_e820_entries;
|
|
|
|
nr_e820_entries = params->e820_entries;
|
|
if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE)
|
|
return 1;
|
|
|
|
memcpy(¶ms->e820_table[nr_e820_entries], entry, sizeof(struct e820_entry));
|
|
params->e820_entries++;
|
|
return 0;
|
|
}
|
|
|
|
static int memmap_entry_callback(struct resource *res, void *arg)
|
|
{
|
|
struct crash_memmap_data *cmd = arg;
|
|
struct boot_params *params = cmd->params;
|
|
struct e820_entry ei;
|
|
|
|
ei.addr = res->start;
|
|
ei.size = resource_size(res);
|
|
ei.type = cmd->type;
|
|
add_e820_entry(params, &ei);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
|
|
unsigned long long mstart,
|
|
unsigned long long mend)
|
|
{
|
|
unsigned long start, end;
|
|
|
|
cmem->ranges[0].start = mstart;
|
|
cmem->ranges[0].end = mend;
|
|
cmem->nr_ranges = 1;
|
|
|
|
/* Exclude elf header region */
|
|
start = image->elf_load_addr;
|
|
end = start + image->elf_headers_sz - 1;
|
|
return crash_exclude_mem_range(cmem, start, end);
|
|
}
|
|
|
|
/* Prepare memory map for crash dump kernel */
|
|
int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
|
|
{
|
|
int i, ret = 0;
|
|
unsigned long flags;
|
|
struct e820_entry ei;
|
|
struct crash_memmap_data cmd;
|
|
struct crash_mem *cmem;
|
|
|
|
cmem = vzalloc(struct_size(cmem, ranges, 1));
|
|
if (!cmem)
|
|
return -ENOMEM;
|
|
|
|
memset(&cmd, 0, sizeof(struct crash_memmap_data));
|
|
cmd.params = params;
|
|
|
|
/* Add the low 1M */
|
|
cmd.type = E820_TYPE_RAM;
|
|
flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
|
|
walk_iomem_res_desc(IORES_DESC_NONE, flags, 0, (1<<20)-1, &cmd,
|
|
memmap_entry_callback);
|
|
|
|
/* Add ACPI tables */
|
|
cmd.type = E820_TYPE_ACPI;
|
|
flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
|
|
memmap_entry_callback);
|
|
|
|
/* Add ACPI Non-volatile Storage */
|
|
cmd.type = E820_TYPE_NVS;
|
|
walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
|
|
memmap_entry_callback);
|
|
|
|
/* Add e820 reserved ranges */
|
|
cmd.type = E820_TYPE_RESERVED;
|
|
flags = IORESOURCE_MEM;
|
|
walk_iomem_res_desc(IORES_DESC_RESERVED, flags, 0, -1, &cmd,
|
|
memmap_entry_callback);
|
|
|
|
/* Add crashk_low_res region */
|
|
if (crashk_low_res.end) {
|
|
ei.addr = crashk_low_res.start;
|
|
ei.size = resource_size(&crashk_low_res);
|
|
ei.type = E820_TYPE_RAM;
|
|
add_e820_entry(params, &ei);
|
|
}
|
|
|
|
/* Exclude some ranges from crashk_res and add rest to memmap */
|
|
ret = memmap_exclude_ranges(image, cmem, crashk_res.start, crashk_res.end);
|
|
if (ret)
|
|
goto out;
|
|
|
|
for (i = 0; i < cmem->nr_ranges; i++) {
|
|
ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
|
|
|
|
/* If entry is less than a page, skip it */
|
|
if (ei.size < PAGE_SIZE)
|
|
continue;
|
|
ei.addr = cmem->ranges[i].start;
|
|
ei.type = E820_TYPE_RAM;
|
|
add_e820_entry(params, &ei);
|
|
}
|
|
|
|
out:
|
|
vfree(cmem);
|
|
return ret;
|
|
}
|
|
|
|
int crash_load_segments(struct kimage *image)
|
|
{
|
|
int ret;
|
|
unsigned long pnum = 0;
|
|
struct kexec_buf kbuf = { .image = image, .buf_min = 0,
|
|
.buf_max = ULONG_MAX, .top_down = false };
|
|
|
|
/* Prepare elf headers and add a segment */
|
|
ret = prepare_elf_headers(&kbuf.buffer, &kbuf.bufsz, &pnum);
|
|
if (ret)
|
|
return ret;
|
|
|
|
image->elf_headers = kbuf.buffer;
|
|
image->elf_headers_sz = kbuf.bufsz;
|
|
kbuf.memsz = kbuf.bufsz;
|
|
|
|
#ifdef CONFIG_CRASH_HOTPLUG
|
|
/*
|
|
* The elfcorehdr segment size accounts for VMCOREINFO, kernel_map,
|
|
* maximum CPUs and maximum memory ranges.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
|
|
pnum = 2 + CONFIG_NR_CPUS_DEFAULT + CONFIG_CRASH_MAX_MEMORY_RANGES;
|
|
else
|
|
pnum += 2 + CONFIG_NR_CPUS_DEFAULT;
|
|
|
|
if (pnum < (unsigned long)PN_XNUM) {
|
|
kbuf.memsz = pnum * sizeof(Elf64_Phdr);
|
|
kbuf.memsz += sizeof(Elf64_Ehdr);
|
|
|
|
image->elfcorehdr_index = image->nr_segments;
|
|
|
|
/* Mark as usable to crash kernel, else crash kernel fails on boot */
|
|
image->elf_headers_sz = kbuf.memsz;
|
|
} else {
|
|
pr_err("number of Phdrs %lu exceeds max\n", pnum);
|
|
}
|
|
#endif
|
|
|
|
kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
|
|
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
|
|
ret = kexec_add_buffer(&kbuf);
|
|
if (ret)
|
|
return ret;
|
|
image->elf_load_addr = kbuf.mem;
|
|
kexec_dprintk("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
|
|
image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_KEXEC_FILE */
|
|
|
|
#ifdef CONFIG_CRASH_HOTPLUG
|
|
|
|
#undef pr_fmt
|
|
#define pr_fmt(fmt) "crash hp: " fmt
|
|
|
|
int arch_crash_hotplug_support(struct kimage *image, unsigned long kexec_flags)
|
|
{
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
if (image->file_mode)
|
|
return 1;
|
|
#endif
|
|
/*
|
|
* Initially, crash hotplug support for kexec_load was added
|
|
* with the KEXEC_UPDATE_ELFCOREHDR flag. Later, this
|
|
* functionality was expanded to accommodate multiple kexec
|
|
* segment updates, leading to the introduction of the
|
|
* KEXEC_CRASH_HOTPLUG_SUPPORT kexec flag bit. Consequently,
|
|
* when the kexec tool sends either of these flags, it indicates
|
|
* that the required kexec segment (elfcorehdr) is excluded from
|
|
* the SHA calculation.
|
|
*/
|
|
return (kexec_flags & KEXEC_UPDATE_ELFCOREHDR ||
|
|
kexec_flags & KEXEC_CRASH_HOTPLUG_SUPPORT);
|
|
}
|
|
|
|
unsigned int arch_crash_get_elfcorehdr_size(void)
|
|
{
|
|
unsigned int sz;
|
|
|
|
/* kernel_map, VMCOREINFO and maximum CPUs */
|
|
sz = 2 + CONFIG_NR_CPUS_DEFAULT;
|
|
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
|
|
sz += CONFIG_CRASH_MAX_MEMORY_RANGES;
|
|
sz *= sizeof(Elf64_Phdr);
|
|
return sz;
|
|
}
|
|
|
|
/**
|
|
* arch_crash_handle_hotplug_event() - Handle hotplug elfcorehdr changes
|
|
* @image: a pointer to kexec_crash_image
|
|
* @arg: struct memory_notify handler for memory hotplug case and
|
|
* NULL for CPU hotplug case.
|
|
*
|
|
* Prepare the new elfcorehdr and replace the existing elfcorehdr.
|
|
*/
|
|
void arch_crash_handle_hotplug_event(struct kimage *image, void *arg)
|
|
{
|
|
void *elfbuf = NULL, *old_elfcorehdr;
|
|
unsigned long nr_mem_ranges;
|
|
unsigned long mem, memsz;
|
|
unsigned long elfsz = 0;
|
|
|
|
/*
|
|
* As crash_prepare_elf64_headers() has already described all
|
|
* possible CPUs, there is no need to update the elfcorehdr
|
|
* for additional CPU changes.
|
|
*/
|
|
if ((image->file_mode || image->elfcorehdr_updated) &&
|
|
((image->hp_action == KEXEC_CRASH_HP_ADD_CPU) ||
|
|
(image->hp_action == KEXEC_CRASH_HP_REMOVE_CPU)))
|
|
return;
|
|
|
|
/*
|
|
* Create the new elfcorehdr reflecting the changes to CPU and/or
|
|
* memory resources.
|
|
*/
|
|
if (prepare_elf_headers(&elfbuf, &elfsz, &nr_mem_ranges)) {
|
|
pr_err("unable to create new elfcorehdr");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Obtain address and size of the elfcorehdr segment, and
|
|
* check it against the new elfcorehdr buffer.
|
|
*/
|
|
mem = image->segment[image->elfcorehdr_index].mem;
|
|
memsz = image->segment[image->elfcorehdr_index].memsz;
|
|
if (elfsz > memsz) {
|
|
pr_err("update elfcorehdr elfsz %lu > memsz %lu",
|
|
elfsz, memsz);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Copy new elfcorehdr over the old elfcorehdr at destination.
|
|
*/
|
|
old_elfcorehdr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
|
|
if (!old_elfcorehdr) {
|
|
pr_err("mapping elfcorehdr segment failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Temporarily invalidate the crash image while the
|
|
* elfcorehdr is updated.
|
|
*/
|
|
xchg(&kexec_crash_image, NULL);
|
|
memcpy_flushcache(old_elfcorehdr, elfbuf, elfsz);
|
|
xchg(&kexec_crash_image, image);
|
|
kunmap_local(old_elfcorehdr);
|
|
pr_debug("updated elfcorehdr\n");
|
|
|
|
out:
|
|
vfree(elfbuf);
|
|
}
|
|
#endif
|