linux-stable/rust/kernel/alloc/kvec.rs
Danilo Krummrich 93e602310f rust: alloc: implement collect for IntoIter
Currently, we can't implement `FromIterator`. There are a couple of
issues with this trait in the kernel, namely:

  - Rust's specialization feature is unstable. This prevents us to
    optimize for the special case where `I::IntoIter` equals `Vec`'s
    `IntoIter` type.
  - We also can't use `I::IntoIter`'s type ID either to work around this,
    since `FromIterator` doesn't require this type to be `'static`.
  - `FromIterator::from_iter` does return `Self` instead of
    `Result<Self, AllocError>`, hence we can't properly handle allocation
    failures.
  - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle
    additional allocation flags.

Instead, provide `IntoIter::collect`, such that we can at least convert
`IntoIter` into a `Vec` again.

Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
Link: https://lore.kernel.org/r/20241004154149.93856-19-dakr@kernel.org
[ Added newline in documentation, changed case of section to be
  consistent with an existing one, fixed typo. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-10-15 23:10:32 +02:00

914 lines
27 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! Implementation of [`Vec`].
use super::{
allocator::{KVmalloc, Kmalloc, Vmalloc},
layout::ArrayLayout,
AllocError, Allocator, Box, Flags,
};
use core::{
fmt,
marker::PhantomData,
mem::{ManuallyDrop, MaybeUninit},
ops::Deref,
ops::DerefMut,
ops::Index,
ops::IndexMut,
ptr,
ptr::NonNull,
slice,
slice::SliceIndex,
};
/// Create a [`KVec`] containing the arguments.
///
/// New memory is allocated with `GFP_KERNEL`.
///
/// # Examples
///
/// ```
/// let mut v = kernel::kvec![];
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(v, [1]);
///
/// let mut v = kernel::kvec![1; 3]?;
/// v.push(4, GFP_KERNEL)?;
/// assert_eq!(v, [1, 1, 1, 4]);
///
/// let mut v = kernel::kvec![1, 2, 3]?;
/// v.push(4, GFP_KERNEL)?;
/// assert_eq!(v, [1, 2, 3, 4]);
///
/// # Ok::<(), Error>(())
/// ```
#[macro_export]
macro_rules! kvec {
() => (
$crate::alloc::KVec::new()
);
($elem:expr; $n:expr) => (
$crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
);
($($x:expr),+ $(,)?) => (
match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
Err(e) => Err(e),
}
);
}
/// The kernel's [`Vec`] type.
///
/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
///
/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
///
/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
///
/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
/// capacity of the vector (the number of elements that currently fit into the vector), its length
/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
/// to allocate (and free) the backing buffer.
///
/// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
/// and manually modified.
///
/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
/// are added to the vector.
///
/// # Invariants
///
/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
/// zero-sized types, is a dangling, well aligned pointer.
///
/// - `self.len` always represents the exact number of elements stored in the vector.
///
/// - `self.layout` represents the absolute number of elements that can be stored within the vector
/// without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
/// backing buffer to be larger than `layout`.
///
/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
/// was allocated with (and must be freed with).
pub struct Vec<T, A: Allocator> {
ptr: NonNull<T>,
/// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
///
/// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
/// elements we can still store without reallocating.
layout: ArrayLayout<T>,
len: usize,
_p: PhantomData<A>,
}
/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
///
/// # Examples
///
/// ```
/// let mut v = KVec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// # Ok::<(), Error>(())
/// ```
pub type KVec<T> = Vec<T, Kmalloc>;
/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
///
/// # Examples
///
/// ```
/// let mut v = VVec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// # Ok::<(), Error>(())
/// ```
pub type VVec<T> = Vec<T, Vmalloc>;
/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
///
/// # Examples
///
/// ```
/// let mut v = KVVec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// # Ok::<(), Error>(())
/// ```
pub type KVVec<T> = Vec<T, KVmalloc>;
// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
unsafe impl<T, A> Send for Vec<T, A>
where
T: Send,
A: Allocator,
{
}
// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
unsafe impl<T, A> Sync for Vec<T, A>
where
T: Sync,
A: Allocator,
{
}
impl<T, A> Vec<T, A>
where
A: Allocator,
{
#[inline]
const fn is_zst() -> bool {
core::mem::size_of::<T>() == 0
}
/// Returns the number of elements that can be stored within the vector without allocating
/// additional memory.
pub fn capacity(&self) -> usize {
if const { Self::is_zst() } {
usize::MAX
} else {
self.layout.len()
}
}
/// Returns the number of elements stored within the vector.
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Forcefully sets `self.len` to `new_len`.
///
/// # Safety
///
/// - `new_len` must be less than or equal to [`Self::capacity`].
/// - If `new_len` is greater than `self.len`, all elements within the interval
/// [`self.len`,`new_len`) must be initialized.
#[inline]
pub unsafe fn set_len(&mut self, new_len: usize) {
debug_assert!(new_len <= self.capacity());
self.len = new_len;
}
/// Returns a slice of the entire vector.
#[inline]
pub fn as_slice(&self) -> &[T] {
self
}
/// Returns a mutable slice of the entire vector.
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [T] {
self
}
/// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
/// dangling raw pointer.
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut T {
self.ptr.as_ptr()
}
/// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
/// pointer.
#[inline]
pub fn as_ptr(&self) -> *const T {
self.ptr.as_ptr()
}
/// Returns `true` if the vector contains no elements, `false` otherwise.
///
/// # Examples
///
/// ```
/// let mut v = KVec::new();
/// assert!(v.is_empty());
///
/// v.push(1, GFP_KERNEL);
/// assert!(!v.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Creates a new, empty `Vec<T, A>`.
///
/// This method does not allocate by itself.
#[inline]
pub const fn new() -> Self {
// INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
// - `ptr` is a properly aligned dangling pointer for type `T`,
// - `layout` is an empty `ArrayLayout` (zero capacity)
// - `len` is zero, since no elements can be or have been stored,
// - `A` is always valid.
Self {
ptr: NonNull::dangling(),
layout: ArrayLayout::empty(),
len: 0,
_p: PhantomData::<A>,
}
}
/// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
// SAFETY:
// - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
// guaranteed to be part of the same allocated object.
// - `self.len` can not overflow `isize`.
let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
// SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
// and valid, but uninitialized.
unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
}
/// Appends an element to the back of the [`Vec`] instance.
///
/// # Examples
///
/// ```
/// let mut v = KVec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// v.push(2, GFP_KERNEL)?;
/// assert_eq!(&v, &[1, 2]);
/// # Ok::<(), Error>(())
/// ```
pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
self.reserve(1, flags)?;
// SAFETY:
// - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
// guaranteed to be part of the same allocated object.
// - `self.len` can not overflow `isize`.
let ptr = unsafe { self.as_mut_ptr().add(self.len) };
// SAFETY:
// - `ptr` is properly aligned and valid for writes.
unsafe { core::ptr::write(ptr, v) };
// SAFETY: We just initialised the first spare entry, so it is safe to increase the length
// by 1. We also know that the new length is <= capacity because of the previous call to
// `reserve` above.
unsafe { self.set_len(self.len() + 1) };
Ok(())
}
/// Creates a new [`Vec`] instance with at least the given capacity.
///
/// # Examples
///
/// ```
/// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
///
/// assert!(v.capacity() >= 20);
/// # Ok::<(), Error>(())
/// ```
pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
let mut v = Vec::new();
v.reserve(capacity, flags)?;
Ok(v)
}
/// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
///
/// # Examples
///
/// ```
/// let mut v = kernel::kvec![1, 2, 3]?;
/// v.reserve(1, GFP_KERNEL)?;
///
/// let (mut ptr, mut len, cap) = v.into_raw_parts();
///
/// // SAFETY: We've just reserved memory for another element.
/// unsafe { ptr.add(len).write(4) };
/// len += 1;
///
/// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
/// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
/// // from the exact same raw parts.
/// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
///
/// assert_eq!(v, [1, 2, 3, 4]);
///
/// # Ok::<(), Error>(())
/// ```
///
/// # Safety
///
/// If `T` is a ZST:
///
/// - `ptr` must be a dangling, well aligned pointer.
///
/// Otherwise:
///
/// - `ptr` must have been allocated with the allocator `A`.
/// - `ptr` must satisfy or exceed the alignment requirements of `T`.
/// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
/// - The allocated size in bytes must not be larger than `isize::MAX`.
/// - `length` must be less than or equal to `capacity`.
/// - The first `length` elements must be initialized values of type `T`.
///
/// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
/// `cap` and `len`.
pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
let layout = if Self::is_zst() {
ArrayLayout::empty()
} else {
// SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
// smaller than `isize::MAX`.
unsafe { ArrayLayout::new_unchecked(capacity) }
};
// INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
// covered by the safety requirements of this function.
Self {
// SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
// memory allocation, allocated with `A`.
ptr: unsafe { NonNull::new_unchecked(ptr) },
layout,
len: length,
_p: PhantomData::<A>,
}
}
/// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
///
/// This will not run the destructor of the contained elements and for non-ZSTs the allocation
/// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
/// elements and free the allocation, if any.
pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
let mut me = ManuallyDrop::new(self);
let len = me.len();
let capacity = me.capacity();
let ptr = me.as_mut_ptr();
(ptr, len, capacity)
}
/// Ensures that the capacity exceeds the length by at least `additional` elements.
///
/// # Examples
///
/// ```
/// let mut v = KVec::new();
/// v.push(1, GFP_KERNEL)?;
///
/// v.reserve(10, GFP_KERNEL)?;
/// let cap = v.capacity();
/// assert!(cap >= 10);
///
/// v.reserve(10, GFP_KERNEL)?;
/// let new_cap = v.capacity();
/// assert_eq!(new_cap, cap);
///
/// # Ok::<(), Error>(())
/// ```
pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
let len = self.len();
let cap = self.capacity();
if cap - len >= additional {
return Ok(());
}
if Self::is_zst() {
// The capacity is already `usize::MAX` for ZSTs, we can't go higher.
return Err(AllocError);
}
// We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
// multiplication by two won't overflow.
let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
// SAFETY:
// - `ptr` is valid because it's either `None` or comes from a previous call to
// `A::realloc`.
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
let ptr = unsafe {
A::realloc(
Some(self.ptr.cast()),
layout.into(),
self.layout.into(),
flags,
)?
};
// INVARIANT:
// - `layout` is some `ArrayLayout::<T>`,
// - `ptr` has been created by `A::realloc` from `layout`.
self.ptr = ptr.cast();
self.layout = layout;
Ok(())
}
}
impl<T: Clone, A: Allocator> Vec<T, A> {
/// Extend the vector by `n` clones of `value`.
pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
if n == 0 {
return Ok(());
}
self.reserve(n, flags)?;
let spare = self.spare_capacity_mut();
for item in spare.iter_mut().take(n - 1) {
item.write(value.clone());
}
// We can write the last element directly without cloning needlessly.
spare[n - 1].write(value);
// SAFETY:
// - `self.len() + n < self.capacity()` due to the call to reserve above,
// - the loop and the line above initialized the next `n` elements.
unsafe { self.set_len(self.len() + n) };
Ok(())
}
/// Pushes clones of the elements of slice into the [`Vec`] instance.
///
/// # Examples
///
/// ```
/// let mut v = KVec::new();
/// v.push(1, GFP_KERNEL)?;
///
/// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
/// assert_eq!(&v, &[1, 20, 30, 40]);
///
/// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
/// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
/// # Ok::<(), Error>(())
/// ```
pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
self.reserve(other.len(), flags)?;
for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
slot.write(item.clone());
}
// SAFETY:
// - `other.len()` spare entries have just been initialized, so it is safe to increase
// the length by the same number.
// - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
// call.
unsafe { self.set_len(self.len() + other.len()) };
Ok(())
}
/// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
let mut v = Self::with_capacity(n, flags)?;
v.extend_with(n, value, flags)?;
Ok(v)
}
}
impl<T, A> Drop for Vec<T, A>
where
A: Allocator,
{
fn drop(&mut self) {
// SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
unsafe {
ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
self.as_mut_ptr(),
self.len,
))
};
// SAFETY:
// - `self.ptr` was previously allocated with `A`.
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
unsafe { A::free(self.ptr.cast(), self.layout.into()) };
}
}
impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
where
A: Allocator,
{
fn from(b: Box<[T; N], A>) -> Vec<T, A> {
let len = b.len();
let ptr = Box::into_raw(b);
// SAFETY:
// - `b` has been allocated with `A`,
// - `ptr` fulfills the alignment requirements for `T`,
// - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
// - all elements within `b` are initialized values of `T`,
// - `len` does not exceed `isize::MAX`.
unsafe { Vec::from_raw_parts(ptr as _, len, len) }
}
}
impl<T> Default for KVec<T> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T, A> Deref for Vec<T, A>
where
A: Allocator,
{
type Target = [T];
#[inline]
fn deref(&self) -> &[T] {
// SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
// initialized elements of type `T`.
unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
}
}
impl<T, A> DerefMut for Vec<T, A>
where
A: Allocator,
{
#[inline]
fn deref_mut(&mut self) -> &mut [T] {
// SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
// initialized elements of type `T`.
unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
}
}
impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
where
A: Allocator,
{
type Output = I::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
Index::index(&**self, index)
}
}
impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
where
A: Allocator,
{
#[inline]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
IndexMut::index_mut(&mut **self, index)
}
}
macro_rules! impl_slice_eq {
($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
$(
impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
where
T: PartialEq<U>,
{
#[inline]
fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
}
)*
}
}
impl_slice_eq! {
[A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
[A: Allocator] Vec<T, A>, &[U],
[A: Allocator] Vec<T, A>, &mut [U],
[A: Allocator] &[T], Vec<U, A>,
[A: Allocator] &mut [T], Vec<U, A>,
[A: Allocator] Vec<T, A>, [U],
[A: Allocator] [T], Vec<U, A>,
[A: Allocator, const N: usize] Vec<T, A>, [U; N],
[A: Allocator, const N: usize] Vec<T, A>, &[U; N],
}
impl<'a, T, A> IntoIterator for &'a Vec<T, A>
where
A: Allocator,
{
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
where
A: Allocator,
{
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
/// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
///
/// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
/// [`IntoIterator`] trait).
///
/// # Examples
///
/// ```
/// let v = kernel::kvec![0, 1, 2]?;
/// let iter = v.into_iter();
///
/// # Ok::<(), Error>(())
/// ```
pub struct IntoIter<T, A: Allocator> {
ptr: *mut T,
buf: NonNull<T>,
len: usize,
layout: ArrayLayout<T>,
_p: PhantomData<A>,
}
impl<T, A> IntoIter<T, A>
where
A: Allocator,
{
fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
let me = ManuallyDrop::new(self);
let ptr = me.ptr;
let buf = me.buf;
let len = me.len;
let cap = me.layout.len();
(ptr, buf, len, cap)
}
/// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
///
/// # Examples
///
/// ```
/// let v = kernel::kvec![1, 2, 3]?;
/// let mut it = v.into_iter();
///
/// assert_eq!(it.next(), Some(1));
///
/// let v = it.collect(GFP_KERNEL);
/// assert_eq!(v, [2, 3]);
///
/// # Ok::<(), Error>(())
/// ```
///
/// # Implementation details
///
/// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
/// in the kernel, namely:
///
/// - Rust's specialization feature is unstable. This prevents us to optimize for the special
/// case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
/// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
/// doesn't require this type to be `'static`.
/// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
/// we can't properly handle allocation failures.
/// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
/// flags.
///
/// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
/// `Vec` again.
///
/// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
/// buffer. However, this backing buffer may be shrunk to the actual count of elements.
pub fn collect(self, flags: Flags) -> Vec<T, A> {
let old_layout = self.layout;
let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
let has_advanced = ptr != buf.as_ptr();
if has_advanced {
// Copy the contents we have advanced to at the beginning of the buffer.
//
// SAFETY:
// - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
// - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
// - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
// each other,
// - both `ptr` and `buf.ptr()` are properly aligned.
unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
ptr = buf.as_ptr();
// SAFETY: `len` is guaranteed to be smaller than `self.layout.len()`.
let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
// SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed to be
// smaller than `cap`. Depending on `alloc` this operation may shrink the buffer or leaves
// it as it is.
ptr = match unsafe {
A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
} {
// If we fail to shrink, which likely can't even happen, continue with the existing
// buffer.
Err(_) => ptr,
Ok(ptr) => {
cap = len;
ptr.as_ptr().cast()
}
};
}
// SAFETY: If the iterator has been advanced, the advanced elements have been copied to
// the beginning of the buffer and `len` has been adjusted accordingly.
//
// - `ptr` is guaranteed to point to the start of the backing buffer.
// - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
// - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
// `Vec`.
unsafe { Vec::from_raw_parts(ptr, len, cap) }
}
}
impl<T, A> Iterator for IntoIter<T, A>
where
A: Allocator,
{
type Item = T;
/// # Examples
///
/// ```
/// let v = kernel::kvec![1, 2, 3]?;
/// let mut it = v.into_iter();
///
/// assert_eq!(it.next(), Some(1));
/// assert_eq!(it.next(), Some(2));
/// assert_eq!(it.next(), Some(3));
/// assert_eq!(it.next(), None);
///
/// # Ok::<(), Error>(())
/// ```
fn next(&mut self) -> Option<T> {
if self.len == 0 {
return None;
}
let current = self.ptr;
// SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
// by one guarantees that.
unsafe { self.ptr = self.ptr.add(1) };
self.len -= 1;
// SAFETY: `current` is guaranteed to point at a valid element within the buffer.
Some(unsafe { current.read() })
}
/// # Examples
///
/// ```
/// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
/// let mut iter = v.into_iter();
/// let size = iter.size_hint().0;
///
/// iter.next();
/// assert_eq!(iter.size_hint().0, size - 1);
///
/// iter.next();
/// assert_eq!(iter.size_hint().0, size - 2);
///
/// iter.next();
/// assert_eq!(iter.size_hint().0, size - 3);
///
/// # Ok::<(), Error>(())
/// ```
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<T, A> Drop for IntoIter<T, A>
where
A: Allocator,
{
fn drop(&mut self) {
// SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
// SAFETY:
// - `self.buf` was previously allocated with `A`.
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
unsafe { A::free(self.buf.cast(), self.layout.into()) };
}
}
impl<T, A> IntoIterator for Vec<T, A>
where
A: Allocator,
{
type Item = T;
type IntoIter = IntoIter<T, A>;
/// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
/// vector (from start to end).
///
/// # Examples
///
/// ```
/// let v = kernel::kvec![1, 2]?;
/// let mut v_iter = v.into_iter();
///
/// let first_element: Option<u32> = v_iter.next();
///
/// assert_eq!(first_element, Some(1));
/// assert_eq!(v_iter.next(), Some(2));
/// assert_eq!(v_iter.next(), None);
///
/// # Ok::<(), Error>(())
/// ```
///
/// ```
/// let v = kernel::kvec![];
/// let mut v_iter = v.into_iter();
///
/// let first_element: Option<u32> = v_iter.next();
///
/// assert_eq!(first_element, None);
///
/// # Ok::<(), Error>(())
/// ```
#[inline]
fn into_iter(self) -> Self::IntoIter {
let buf = self.ptr;
let layout = self.layout;
let (ptr, len, _) = self.into_raw_parts();
IntoIter {
ptr,
buf,
len,
layout,
_p: PhantomData::<A>,
}
}
}