mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-12-29 17:25:38 +00:00
93e602310f
Currently, we can't implement `FromIterator`. There are a couple of issues with this trait in the kernel, namely: - Rust's specialization feature is unstable. This prevents us to optimize for the special case where `I::IntoIter` equals `Vec`'s `IntoIter` type. - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator` doesn't require this type to be `'static`. - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence we can't properly handle allocation failures. - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation flags. Instead, provide `IntoIter::collect`, such that we can at least convert `IntoIter` into a `Vec` again. Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Signed-off-by: Danilo Krummrich <dakr@kernel.org> Link: https://lore.kernel.org/r/20241004154149.93856-19-dakr@kernel.org [ Added newline in documentation, changed case of section to be consistent with an existing one, fixed typo. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
914 lines
27 KiB
Rust
914 lines
27 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! Implementation of [`Vec`].
|
|
|
|
use super::{
|
|
allocator::{KVmalloc, Kmalloc, Vmalloc},
|
|
layout::ArrayLayout,
|
|
AllocError, Allocator, Box, Flags,
|
|
};
|
|
use core::{
|
|
fmt,
|
|
marker::PhantomData,
|
|
mem::{ManuallyDrop, MaybeUninit},
|
|
ops::Deref,
|
|
ops::DerefMut,
|
|
ops::Index,
|
|
ops::IndexMut,
|
|
ptr,
|
|
ptr::NonNull,
|
|
slice,
|
|
slice::SliceIndex,
|
|
};
|
|
|
|
/// Create a [`KVec`] containing the arguments.
|
|
///
|
|
/// New memory is allocated with `GFP_KERNEL`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = kernel::kvec![];
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(v, [1]);
|
|
///
|
|
/// let mut v = kernel::kvec![1; 3]?;
|
|
/// v.push(4, GFP_KERNEL)?;
|
|
/// assert_eq!(v, [1, 1, 1, 4]);
|
|
///
|
|
/// let mut v = kernel::kvec![1, 2, 3]?;
|
|
/// v.push(4, GFP_KERNEL)?;
|
|
/// assert_eq!(v, [1, 2, 3, 4]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! kvec {
|
|
() => (
|
|
$crate::alloc::KVec::new()
|
|
);
|
|
($elem:expr; $n:expr) => (
|
|
$crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
|
|
);
|
|
($($x:expr),+ $(,)?) => (
|
|
match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
|
|
Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
|
|
Err(e) => Err(e),
|
|
}
|
|
);
|
|
}
|
|
|
|
/// The kernel's [`Vec`] type.
|
|
///
|
|
/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
|
|
/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
|
|
///
|
|
/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
|
|
/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
|
|
///
|
|
/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
|
|
///
|
|
/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
|
|
/// capacity of the vector (the number of elements that currently fit into the vector), its length
|
|
/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
|
|
/// to allocate (and free) the backing buffer.
|
|
///
|
|
/// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
|
|
/// and manually modified.
|
|
///
|
|
/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
|
|
/// are added to the vector.
|
|
///
|
|
/// # Invariants
|
|
///
|
|
/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
|
|
/// zero-sized types, is a dangling, well aligned pointer.
|
|
///
|
|
/// - `self.len` always represents the exact number of elements stored in the vector.
|
|
///
|
|
/// - `self.layout` represents the absolute number of elements that can be stored within the vector
|
|
/// without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
|
|
/// backing buffer to be larger than `layout`.
|
|
///
|
|
/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
|
|
/// was allocated with (and must be freed with).
|
|
pub struct Vec<T, A: Allocator> {
|
|
ptr: NonNull<T>,
|
|
/// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
|
|
///
|
|
/// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
|
|
/// elements we can still store without reallocating.
|
|
layout: ArrayLayout<T>,
|
|
len: usize,
|
|
_p: PhantomData<A>,
|
|
}
|
|
|
|
/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub type KVec<T> = Vec<T, Kmalloc>;
|
|
|
|
/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = VVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub type VVec<T> = Vec<T, Vmalloc>;
|
|
|
|
/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub type KVVec<T> = Vec<T, KVmalloc>;
|
|
|
|
// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
|
|
unsafe impl<T, A> Send for Vec<T, A>
|
|
where
|
|
T: Send,
|
|
A: Allocator,
|
|
{
|
|
}
|
|
|
|
// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
|
|
unsafe impl<T, A> Sync for Vec<T, A>
|
|
where
|
|
T: Sync,
|
|
A: Allocator,
|
|
{
|
|
}
|
|
|
|
impl<T, A> Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
#[inline]
|
|
const fn is_zst() -> bool {
|
|
core::mem::size_of::<T>() == 0
|
|
}
|
|
|
|
/// Returns the number of elements that can be stored within the vector without allocating
|
|
/// additional memory.
|
|
pub fn capacity(&self) -> usize {
|
|
if const { Self::is_zst() } {
|
|
usize::MAX
|
|
} else {
|
|
self.layout.len()
|
|
}
|
|
}
|
|
|
|
/// Returns the number of elements stored within the vector.
|
|
#[inline]
|
|
pub fn len(&self) -> usize {
|
|
self.len
|
|
}
|
|
|
|
/// Forcefully sets `self.len` to `new_len`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// - `new_len` must be less than or equal to [`Self::capacity`].
|
|
/// - If `new_len` is greater than `self.len`, all elements within the interval
|
|
/// [`self.len`,`new_len`) must be initialized.
|
|
#[inline]
|
|
pub unsafe fn set_len(&mut self, new_len: usize) {
|
|
debug_assert!(new_len <= self.capacity());
|
|
self.len = new_len;
|
|
}
|
|
|
|
/// Returns a slice of the entire vector.
|
|
#[inline]
|
|
pub fn as_slice(&self) -> &[T] {
|
|
self
|
|
}
|
|
|
|
/// Returns a mutable slice of the entire vector.
|
|
#[inline]
|
|
pub fn as_mut_slice(&mut self) -> &mut [T] {
|
|
self
|
|
}
|
|
|
|
/// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
|
|
/// dangling raw pointer.
|
|
#[inline]
|
|
pub fn as_mut_ptr(&mut self) -> *mut T {
|
|
self.ptr.as_ptr()
|
|
}
|
|
|
|
/// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
|
|
/// pointer.
|
|
#[inline]
|
|
pub fn as_ptr(&self) -> *const T {
|
|
self.ptr.as_ptr()
|
|
}
|
|
|
|
/// Returns `true` if the vector contains no elements, `false` otherwise.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// assert!(v.is_empty());
|
|
///
|
|
/// v.push(1, GFP_KERNEL);
|
|
/// assert!(!v.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
|
|
/// Creates a new, empty `Vec<T, A>`.
|
|
///
|
|
/// This method does not allocate by itself.
|
|
#[inline]
|
|
pub const fn new() -> Self {
|
|
// INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
|
|
// - `ptr` is a properly aligned dangling pointer for type `T`,
|
|
// - `layout` is an empty `ArrayLayout` (zero capacity)
|
|
// - `len` is zero, since no elements can be or have been stored,
|
|
// - `A` is always valid.
|
|
Self {
|
|
ptr: NonNull::dangling(),
|
|
layout: ArrayLayout::empty(),
|
|
len: 0,
|
|
_p: PhantomData::<A>,
|
|
}
|
|
}
|
|
|
|
/// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
|
|
pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
|
|
// SAFETY:
|
|
// - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
|
|
// guaranteed to be part of the same allocated object.
|
|
// - `self.len` can not overflow `isize`.
|
|
let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
|
|
|
|
// SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
|
|
// and valid, but uninitialized.
|
|
unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
|
|
}
|
|
|
|
/// Appends an element to the back of the [`Vec`] instance.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// v.push(2, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 2]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
|
|
self.reserve(1, flags)?;
|
|
|
|
// SAFETY:
|
|
// - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
|
|
// guaranteed to be part of the same allocated object.
|
|
// - `self.len` can not overflow `isize`.
|
|
let ptr = unsafe { self.as_mut_ptr().add(self.len) };
|
|
|
|
// SAFETY:
|
|
// - `ptr` is properly aligned and valid for writes.
|
|
unsafe { core::ptr::write(ptr, v) };
|
|
|
|
// SAFETY: We just initialised the first spare entry, so it is safe to increase the length
|
|
// by 1. We also know that the new length is <= capacity because of the previous call to
|
|
// `reserve` above.
|
|
unsafe { self.set_len(self.len() + 1) };
|
|
Ok(())
|
|
}
|
|
|
|
/// Creates a new [`Vec`] instance with at least the given capacity.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
|
|
///
|
|
/// assert!(v.capacity() >= 20);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
|
|
let mut v = Vec::new();
|
|
|
|
v.reserve(capacity, flags)?;
|
|
|
|
Ok(v)
|
|
}
|
|
|
|
/// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = kernel::kvec![1, 2, 3]?;
|
|
/// v.reserve(1, GFP_KERNEL)?;
|
|
///
|
|
/// let (mut ptr, mut len, cap) = v.into_raw_parts();
|
|
///
|
|
/// // SAFETY: We've just reserved memory for another element.
|
|
/// unsafe { ptr.add(len).write(4) };
|
|
/// len += 1;
|
|
///
|
|
/// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
|
|
/// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
|
|
/// // from the exact same raw parts.
|
|
/// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
|
|
///
|
|
/// assert_eq!(v, [1, 2, 3, 4]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// If `T` is a ZST:
|
|
///
|
|
/// - `ptr` must be a dangling, well aligned pointer.
|
|
///
|
|
/// Otherwise:
|
|
///
|
|
/// - `ptr` must have been allocated with the allocator `A`.
|
|
/// - `ptr` must satisfy or exceed the alignment requirements of `T`.
|
|
/// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
|
|
/// - The allocated size in bytes must not be larger than `isize::MAX`.
|
|
/// - `length` must be less than or equal to `capacity`.
|
|
/// - The first `length` elements must be initialized values of type `T`.
|
|
///
|
|
/// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
|
|
/// `cap` and `len`.
|
|
pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
|
|
let layout = if Self::is_zst() {
|
|
ArrayLayout::empty()
|
|
} else {
|
|
// SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
|
|
// smaller than `isize::MAX`.
|
|
unsafe { ArrayLayout::new_unchecked(capacity) }
|
|
};
|
|
|
|
// INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
|
|
// covered by the safety requirements of this function.
|
|
Self {
|
|
// SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
|
|
// memory allocation, allocated with `A`.
|
|
ptr: unsafe { NonNull::new_unchecked(ptr) },
|
|
layout,
|
|
len: length,
|
|
_p: PhantomData::<A>,
|
|
}
|
|
}
|
|
|
|
/// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
|
|
///
|
|
/// This will not run the destructor of the contained elements and for non-ZSTs the allocation
|
|
/// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
|
|
/// elements and free the allocation, if any.
|
|
pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
|
|
let mut me = ManuallyDrop::new(self);
|
|
let len = me.len();
|
|
let capacity = me.capacity();
|
|
let ptr = me.as_mut_ptr();
|
|
(ptr, len, capacity)
|
|
}
|
|
|
|
/// Ensures that the capacity exceeds the length by at least `additional` elements.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
///
|
|
/// v.reserve(10, GFP_KERNEL)?;
|
|
/// let cap = v.capacity();
|
|
/// assert!(cap >= 10);
|
|
///
|
|
/// v.reserve(10, GFP_KERNEL)?;
|
|
/// let new_cap = v.capacity();
|
|
/// assert_eq!(new_cap, cap);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
|
|
let len = self.len();
|
|
let cap = self.capacity();
|
|
|
|
if cap - len >= additional {
|
|
return Ok(());
|
|
}
|
|
|
|
if Self::is_zst() {
|
|
// The capacity is already `usize::MAX` for ZSTs, we can't go higher.
|
|
return Err(AllocError);
|
|
}
|
|
|
|
// We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
|
|
// multiplication by two won't overflow.
|
|
let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
|
|
let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
|
|
|
|
// SAFETY:
|
|
// - `ptr` is valid because it's either `None` or comes from a previous call to
|
|
// `A::realloc`.
|
|
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
|
|
let ptr = unsafe {
|
|
A::realloc(
|
|
Some(self.ptr.cast()),
|
|
layout.into(),
|
|
self.layout.into(),
|
|
flags,
|
|
)?
|
|
};
|
|
|
|
// INVARIANT:
|
|
// - `layout` is some `ArrayLayout::<T>`,
|
|
// - `ptr` has been created by `A::realloc` from `layout`.
|
|
self.ptr = ptr.cast();
|
|
self.layout = layout;
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<T: Clone, A: Allocator> Vec<T, A> {
|
|
/// Extend the vector by `n` clones of `value`.
|
|
pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
|
|
if n == 0 {
|
|
return Ok(());
|
|
}
|
|
|
|
self.reserve(n, flags)?;
|
|
|
|
let spare = self.spare_capacity_mut();
|
|
|
|
for item in spare.iter_mut().take(n - 1) {
|
|
item.write(value.clone());
|
|
}
|
|
|
|
// We can write the last element directly without cloning needlessly.
|
|
spare[n - 1].write(value);
|
|
|
|
// SAFETY:
|
|
// - `self.len() + n < self.capacity()` due to the call to reserve above,
|
|
// - the loop and the line above initialized the next `n` elements.
|
|
unsafe { self.set_len(self.len() + n) };
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Pushes clones of the elements of slice into the [`Vec`] instance.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
///
|
|
/// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 20, 30, 40]);
|
|
///
|
|
/// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
|
|
self.reserve(other.len(), flags)?;
|
|
for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
|
|
slot.write(item.clone());
|
|
}
|
|
|
|
// SAFETY:
|
|
// - `other.len()` spare entries have just been initialized, so it is safe to increase
|
|
// the length by the same number.
|
|
// - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
|
|
// call.
|
|
unsafe { self.set_len(self.len() + other.len()) };
|
|
Ok(())
|
|
}
|
|
|
|
/// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
|
|
pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
|
|
let mut v = Self::with_capacity(n, flags)?;
|
|
|
|
v.extend_with(n, value, flags)?;
|
|
|
|
Ok(v)
|
|
}
|
|
}
|
|
|
|
impl<T, A> Drop for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
fn drop(&mut self) {
|
|
// SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
|
|
unsafe {
|
|
ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
|
|
self.as_mut_ptr(),
|
|
self.len,
|
|
))
|
|
};
|
|
|
|
// SAFETY:
|
|
// - `self.ptr` was previously allocated with `A`.
|
|
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
|
|
unsafe { A::free(self.ptr.cast(), self.layout.into()) };
|
|
}
|
|
}
|
|
|
|
impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
fn from(b: Box<[T; N], A>) -> Vec<T, A> {
|
|
let len = b.len();
|
|
let ptr = Box::into_raw(b);
|
|
|
|
// SAFETY:
|
|
// - `b` has been allocated with `A`,
|
|
// - `ptr` fulfills the alignment requirements for `T`,
|
|
// - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
|
|
// - all elements within `b` are initialized values of `T`,
|
|
// - `len` does not exceed `isize::MAX`.
|
|
unsafe { Vec::from_raw_parts(ptr as _, len, len) }
|
|
}
|
|
}
|
|
|
|
impl<T> Default for KVec<T> {
|
|
#[inline]
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Debug::fmt(&**self, f)
|
|
}
|
|
}
|
|
|
|
impl<T, A> Deref for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Target = [T];
|
|
|
|
#[inline]
|
|
fn deref(&self) -> &[T] {
|
|
// SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
|
|
// initialized elements of type `T`.
|
|
unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
|
|
}
|
|
}
|
|
|
|
impl<T, A> DerefMut for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
#[inline]
|
|
fn deref_mut(&mut self) -> &mut [T] {
|
|
// SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
|
|
// initialized elements of type `T`.
|
|
unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
|
|
}
|
|
}
|
|
|
|
impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
|
|
|
|
impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Output = I::Output;
|
|
|
|
#[inline]
|
|
fn index(&self, index: I) -> &Self::Output {
|
|
Index::index(&**self, index)
|
|
}
|
|
}
|
|
|
|
impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
#[inline]
|
|
fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
|
IndexMut::index_mut(&mut **self, index)
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_slice_eq {
|
|
($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
|
|
$(
|
|
impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
|
|
where
|
|
T: PartialEq<U>,
|
|
{
|
|
#[inline]
|
|
fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
|
|
}
|
|
)*
|
|
}
|
|
}
|
|
|
|
impl_slice_eq! {
|
|
[A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
|
|
[A: Allocator] Vec<T, A>, &[U],
|
|
[A: Allocator] Vec<T, A>, &mut [U],
|
|
[A: Allocator] &[T], Vec<U, A>,
|
|
[A: Allocator] &mut [T], Vec<U, A>,
|
|
[A: Allocator] Vec<T, A>, [U],
|
|
[A: Allocator] [T], Vec<U, A>,
|
|
[A: Allocator, const N: usize] Vec<T, A>, [U; N],
|
|
[A: Allocator, const N: usize] Vec<T, A>, &[U; N],
|
|
}
|
|
|
|
impl<'a, T, A> IntoIterator for &'a Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Item = &'a T;
|
|
type IntoIter = slice::Iter<'a, T>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.iter()
|
|
}
|
|
}
|
|
|
|
impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Item = &'a mut T;
|
|
type IntoIter = slice::IterMut<'a, T>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.iter_mut()
|
|
}
|
|
}
|
|
|
|
/// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
|
|
///
|
|
/// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
|
|
/// [`IntoIterator`] trait).
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = kernel::kvec![0, 1, 2]?;
|
|
/// let iter = v.into_iter();
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub struct IntoIter<T, A: Allocator> {
|
|
ptr: *mut T,
|
|
buf: NonNull<T>,
|
|
len: usize,
|
|
layout: ArrayLayout<T>,
|
|
_p: PhantomData<A>,
|
|
}
|
|
|
|
impl<T, A> IntoIter<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
|
|
let me = ManuallyDrop::new(self);
|
|
let ptr = me.ptr;
|
|
let buf = me.buf;
|
|
let len = me.len;
|
|
let cap = me.layout.len();
|
|
(ptr, buf, len, cap)
|
|
}
|
|
|
|
/// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = kernel::kvec![1, 2, 3]?;
|
|
/// let mut it = v.into_iter();
|
|
///
|
|
/// assert_eq!(it.next(), Some(1));
|
|
///
|
|
/// let v = it.collect(GFP_KERNEL);
|
|
/// assert_eq!(v, [2, 3]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
///
|
|
/// # Implementation details
|
|
///
|
|
/// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
|
|
/// in the kernel, namely:
|
|
///
|
|
/// - Rust's specialization feature is unstable. This prevents us to optimize for the special
|
|
/// case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
|
|
/// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
|
|
/// doesn't require this type to be `'static`.
|
|
/// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
|
|
/// we can't properly handle allocation failures.
|
|
/// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
|
|
/// flags.
|
|
///
|
|
/// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
|
|
/// `Vec` again.
|
|
///
|
|
/// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
|
|
/// buffer. However, this backing buffer may be shrunk to the actual count of elements.
|
|
pub fn collect(self, flags: Flags) -> Vec<T, A> {
|
|
let old_layout = self.layout;
|
|
let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
|
|
let has_advanced = ptr != buf.as_ptr();
|
|
|
|
if has_advanced {
|
|
// Copy the contents we have advanced to at the beginning of the buffer.
|
|
//
|
|
// SAFETY:
|
|
// - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
|
|
// - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
|
|
// - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
|
|
// each other,
|
|
// - both `ptr` and `buf.ptr()` are properly aligned.
|
|
unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
|
|
ptr = buf.as_ptr();
|
|
|
|
// SAFETY: `len` is guaranteed to be smaller than `self.layout.len()`.
|
|
let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
|
|
|
|
// SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed to be
|
|
// smaller than `cap`. Depending on `alloc` this operation may shrink the buffer or leaves
|
|
// it as it is.
|
|
ptr = match unsafe {
|
|
A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
|
|
} {
|
|
// If we fail to shrink, which likely can't even happen, continue with the existing
|
|
// buffer.
|
|
Err(_) => ptr,
|
|
Ok(ptr) => {
|
|
cap = len;
|
|
ptr.as_ptr().cast()
|
|
}
|
|
};
|
|
}
|
|
|
|
// SAFETY: If the iterator has been advanced, the advanced elements have been copied to
|
|
// the beginning of the buffer and `len` has been adjusted accordingly.
|
|
//
|
|
// - `ptr` is guaranteed to point to the start of the backing buffer.
|
|
// - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
|
|
// - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
|
|
// `Vec`.
|
|
unsafe { Vec::from_raw_parts(ptr, len, cap) }
|
|
}
|
|
}
|
|
|
|
impl<T, A> Iterator for IntoIter<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Item = T;
|
|
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = kernel::kvec![1, 2, 3]?;
|
|
/// let mut it = v.into_iter();
|
|
///
|
|
/// assert_eq!(it.next(), Some(1));
|
|
/// assert_eq!(it.next(), Some(2));
|
|
/// assert_eq!(it.next(), Some(3));
|
|
/// assert_eq!(it.next(), None);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
fn next(&mut self) -> Option<T> {
|
|
if self.len == 0 {
|
|
return None;
|
|
}
|
|
|
|
let current = self.ptr;
|
|
|
|
// SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
|
|
// by one guarantees that.
|
|
unsafe { self.ptr = self.ptr.add(1) };
|
|
|
|
self.len -= 1;
|
|
|
|
// SAFETY: `current` is guaranteed to point at a valid element within the buffer.
|
|
Some(unsafe { current.read() })
|
|
}
|
|
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
|
|
/// let mut iter = v.into_iter();
|
|
/// let size = iter.size_hint().0;
|
|
///
|
|
/// iter.next();
|
|
/// assert_eq!(iter.size_hint().0, size - 1);
|
|
///
|
|
/// iter.next();
|
|
/// assert_eq!(iter.size_hint().0, size - 2);
|
|
///
|
|
/// iter.next();
|
|
/// assert_eq!(iter.size_hint().0, size - 3);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
(self.len, Some(self.len))
|
|
}
|
|
}
|
|
|
|
impl<T, A> Drop for IntoIter<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
fn drop(&mut self) {
|
|
// SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
|
|
unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
|
|
|
|
// SAFETY:
|
|
// - `self.buf` was previously allocated with `A`.
|
|
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
|
|
unsafe { A::free(self.buf.cast(), self.layout.into()) };
|
|
}
|
|
}
|
|
|
|
impl<T, A> IntoIterator for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Item = T;
|
|
type IntoIter = IntoIter<T, A>;
|
|
|
|
/// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
|
|
/// vector (from start to end).
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = kernel::kvec![1, 2]?;
|
|
/// let mut v_iter = v.into_iter();
|
|
///
|
|
/// let first_element: Option<u32> = v_iter.next();
|
|
///
|
|
/// assert_eq!(first_element, Some(1));
|
|
/// assert_eq!(v_iter.next(), Some(2));
|
|
/// assert_eq!(v_iter.next(), None);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
///
|
|
/// ```
|
|
/// let v = kernel::kvec![];
|
|
/// let mut v_iter = v.into_iter();
|
|
///
|
|
/// let first_element: Option<u32> = v_iter.next();
|
|
///
|
|
/// assert_eq!(first_element, None);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
#[inline]
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
let buf = self.ptr;
|
|
let layout = self.layout;
|
|
let (ptr, len, _) = self.into_raw_parts();
|
|
|
|
IntoIter {
|
|
ptr,
|
|
buf,
|
|
len,
|
|
layout,
|
|
_p: PhantomData::<A>,
|
|
}
|
|
}
|
|
}
|