linux-stable/scripts/make_fit.py
Chen-Yu Tsai 17c31aded9 scripts/make_fit: Support decomposing DTBs
The kernel tree builds some "composite" DTBs, where the final DTB is the
result of applying one or more DTB overlays on top of a base DTB with
fdtoverlay.

The FIT image specification already supports configurations having one
base DTB and overlays applied on top. It is then up to the bootloader to
apply said overlays and either use or pass on the final result. This
allows the FIT image builder to reuse the same FDT images for multiple
configurations, if such cases exist.

The decomposition function depends on the kernel build system, reading
back the .cmd files for the to-be-packaged DTB files to check for the
fdtoverlay command being called. This will not work outside the kernel
tree. The function is off by default to keep compatibility with possible
existing users.

To facilitate the decomposition and keep the code clean, the model and
compatitble string extraction have been moved out of the output_dtb
function. The FDT image description is replaced with the base file name
of the included image.

Signed-off-by: Chen-Yu Tsai <wenst@chromium.org>
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2024-07-16 01:08:37 +09:00

332 lines
10 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-License-Identifier: GPL-2.0+
#
# Copyright 2024 Google LLC
# Written by Simon Glass <sjg@chromium.org>
#
"""Build a FIT containing a lot of devicetree files
Usage:
make_fit.py -A arm64 -n 'Linux-6.6' -O linux
-o arch/arm64/boot/image.fit -k /tmp/kern/arch/arm64/boot/image.itk
@arch/arm64/boot/dts/dtbs-list -E -c gzip
Creates a FIT containing the supplied kernel and a set of devicetree files,
either specified individually or listed in a file (with an '@' prefix).
Use -E to generate an external FIT (where the data is placed after the
FIT data structure). This allows parsing of the data without loading
the entire FIT.
Use -c to compress the data, using bzip2, gzip, lz4, lzma, lzo and
zstd algorithms.
Use -D to decompose "composite" DTBs into their base components and
deduplicate the resulting base DTBs and DTB overlays. This requires the
DTBs to be sourced from the kernel build directory, as the implementation
looks at the .cmd files produced by the kernel build.
The resulting FIT can be booted by bootloaders which support FIT, such
as U-Boot, Linuxboot, Tianocore, etc.
Note that this tool does not yet support adding a ramdisk / initrd.
"""
import argparse
import collections
import os
import subprocess
import sys
import tempfile
import time
import libfdt
# Tool extension and the name of the command-line tools
CompTool = collections.namedtuple('CompTool', 'ext,tools')
COMP_TOOLS = {
'bzip2': CompTool('.bz2', 'bzip2'),
'gzip': CompTool('.gz', 'pigz,gzip'),
'lz4': CompTool('.lz4', 'lz4'),
'lzma': CompTool('.lzma', 'lzma'),
'lzo': CompTool('.lzo', 'lzop'),
'zstd': CompTool('.zstd', 'zstd'),
}
def parse_args():
"""Parse the program ArgumentParser
Returns:
Namespace object containing the arguments
"""
epilog = 'Build a FIT from a directory tree containing .dtb files'
parser = argparse.ArgumentParser(epilog=epilog, fromfile_prefix_chars='@')
parser.add_argument('-A', '--arch', type=str, required=True,
help='Specifies the architecture')
parser.add_argument('-c', '--compress', type=str, default='none',
help='Specifies the compression')
parser.add_argument('-D', '--decompose-dtbs', action='store_true',
help='Decompose composite DTBs into base DTB and overlays')
parser.add_argument('-E', '--external', action='store_true',
help='Convert the FIT to use external data')
parser.add_argument('-n', '--name', type=str, required=True,
help='Specifies the name')
parser.add_argument('-o', '--output', type=str, required=True,
help='Specifies the output file (.fit)')
parser.add_argument('-O', '--os', type=str, required=True,
help='Specifies the operating system')
parser.add_argument('-k', '--kernel', type=str, required=True,
help='Specifies the (uncompressed) kernel input file (.itk)')
parser.add_argument('-v', '--verbose', action='store_true',
help='Enable verbose output')
parser.add_argument('dtbs', type=str, nargs='*',
help='Specifies the devicetree files to process')
return parser.parse_args()
def setup_fit(fsw, name):
"""Make a start on writing the FIT
Outputs the root properties and the 'images' node
Args:
fsw (libfdt.FdtSw): Object to use for writing
name (str): Name of kernel image
"""
fsw.INC_SIZE = 65536
fsw.finish_reservemap()
fsw.begin_node('')
fsw.property_string('description', f'{name} with devicetree set')
fsw.property_u32('#address-cells', 1)
fsw.property_u32('timestamp', int(time.time()))
fsw.begin_node('images')
def write_kernel(fsw, data, args):
"""Write out the kernel image
Writes a kernel node along with the required properties
Args:
fsw (libfdt.FdtSw): Object to use for writing
data (bytes): Data to write (possibly compressed)
args (Namespace): Contains necessary strings:
arch: FIT architecture, e.g. 'arm64'
fit_os: Operating Systems, e.g. 'linux'
name: Name of OS, e.g. 'Linux-6.6.0-rc7'
compress: Compression algorithm to use, e.g. 'gzip'
"""
with fsw.add_node('kernel'):
fsw.property_string('description', args.name)
fsw.property_string('type', 'kernel_noload')
fsw.property_string('arch', args.arch)
fsw.property_string('os', args.os)
fsw.property_string('compression', args.compress)
fsw.property('data', data)
fsw.property_u32('load', 0)
fsw.property_u32('entry', 0)
def finish_fit(fsw, entries):
"""Finish the FIT ready for use
Writes the /configurations node and subnodes
Args:
fsw (libfdt.FdtSw): Object to use for writing
entries (list of tuple): List of configurations:
str: Description of model
str: Compatible stringlist
"""
fsw.end_node()
seq = 0
with fsw.add_node('configurations'):
for model, compat, files in entries:
seq += 1
with fsw.add_node(f'conf-{seq}'):
fsw.property('compatible', bytes(compat))
fsw.property_string('description', model)
fsw.property('fdt', bytes(''.join(f'fdt-{x}\x00' for x in files), "ascii"))
fsw.property_string('kernel', 'kernel')
fsw.end_node()
def compress_data(inf, compress):
"""Compress data using a selected algorithm
Args:
inf (IOBase): Filename containing the data to compress
compress (str): Compression algorithm, e.g. 'gzip'
Return:
bytes: Compressed data
"""
if compress == 'none':
return inf.read()
comp = COMP_TOOLS.get(compress)
if not comp:
raise ValueError(f"Unknown compression algorithm '{compress}'")
with tempfile.NamedTemporaryFile() as comp_fname:
with open(comp_fname.name, 'wb') as outf:
done = False
for tool in comp.tools.split(','):
try:
subprocess.call([tool, '-c'], stdin=inf, stdout=outf)
done = True
break
except FileNotFoundError:
pass
if not done:
raise ValueError(f'Missing tool(s): {comp.tools}\n')
with open(comp_fname.name, 'rb') as compf:
comp_data = compf.read()
return comp_data
def output_dtb(fsw, seq, fname, arch, compress):
"""Write out a single devicetree to the FIT
Args:
fsw (libfdt.FdtSw): Object to use for writing
seq (int): Sequence number (1 for first)
fname (str): Filename containing the DTB
arch: FIT architecture, e.g. 'arm64'
compress (str): Compressed algorithm, e.g. 'gzip'
"""
with fsw.add_node(f'fdt-{seq}'):
fsw.property_string('description', os.path.basename(fname))
fsw.property_string('type', 'flat_dt')
fsw.property_string('arch', arch)
fsw.property_string('compression', compress)
with open(fname, 'rb') as inf:
compressed = compress_data(inf, compress)
fsw.property('data', compressed)
def process_dtb(fname, args):
"""Process an input DTB, decomposing it if requested and is possible
Args:
fname (str): Filename containing the DTB
args (Namespace): Program arguments
Returns:
tuple:
str: Model name string
str: Root compatible string
files: list of filenames corresponding to the DTB
"""
# Get the compatible / model information
with open(fname, 'rb') as inf:
data = inf.read()
fdt = libfdt.FdtRo(data)
model = fdt.getprop(0, 'model').as_str()
compat = fdt.getprop(0, 'compatible')
if args.decompose_dtbs:
# Check if the DTB needs to be decomposed
path, basename = os.path.split(fname)
cmd_fname = os.path.join(path, f'.{basename}.cmd')
with open(cmd_fname, 'r', encoding='ascii') as inf:
cmd = inf.read()
if 'scripts/dtc/fdtoverlay' in cmd:
# This depends on the structure of the composite DTB command
files = cmd.split()
files = files[files.index('-i') + 1:]
else:
files = [fname]
else:
files = [fname]
return (model, compat, files)
def build_fit(args):
"""Build the FIT from the provided files and arguments
Args:
args (Namespace): Program arguments
Returns:
tuple:
bytes: FIT data
int: Number of configurations generated
size: Total uncompressed size of data
"""
seq = 0
size = 0
fsw = libfdt.FdtSw()
setup_fit(fsw, args.name)
entries = []
fdts = {}
# Handle the kernel
with open(args.kernel, 'rb') as inf:
comp_data = compress_data(inf, args.compress)
size += os.path.getsize(args.kernel)
write_kernel(fsw, comp_data, args)
for fname in args.dtbs:
# Ignore non-DTB (*.dtb) files
if os.path.splitext(fname)[1] != '.dtb':
continue
(model, compat, files) = process_dtb(fname, args)
for fn in files:
if fn not in fdts:
seq += 1
size += os.path.getsize(fn)
output_dtb(fsw, seq, fn, args.arch, args.compress)
fdts[fn] = seq
files_seq = [fdts[fn] for fn in files]
entries.append([model, compat, files_seq])
finish_fit(fsw, entries)
# Include the kernel itself in the returned file count
return fsw.as_fdt().as_bytearray(), seq + 1, size
def run_make_fit():
"""Run the tool's main logic"""
args = parse_args()
out_data, count, size = build_fit(args)
with open(args.output, 'wb') as outf:
outf.write(out_data)
ext_fit_size = None
if args.external:
mkimage = os.environ.get('MKIMAGE', 'mkimage')
subprocess.check_call([mkimage, '-E', '-F', args.output],
stdout=subprocess.DEVNULL)
with open(args.output, 'rb') as inf:
data = inf.read()
ext_fit = libfdt.FdtRo(data)
ext_fit_size = ext_fit.totalsize()
if args.verbose:
comp_size = len(out_data)
print(f'FIT size {comp_size:#x}/{comp_size / 1024 / 1024:.1f} MB',
end='')
if ext_fit_size:
print(f', header {ext_fit_size:#x}/{ext_fit_size / 1024:.1f} KB',
end='')
print(f', {count} files, uncompressed {size / 1024 / 1024:.1f} MB')
if __name__ == "__main__":
sys.exit(run_make_fit())