mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-12-29 01:05:29 +00:00
5cbb302880
In sched_ext API, a repeatedly reported pain point is the overuse of the verb "dispatch" and confusion around "consume": - ops.dispatch() - scx_bpf_dispatch[_vtime]() - scx_bpf_consume() - scx_bpf_dispatch[_vtime]_from_dsq*() This overloading of the term is historical. Originally, there were only built-in DSQs and moving a task into a DSQ always dispatched it for execution. Using the verb "dispatch" for the kfuncs to move tasks into these DSQs made sense. Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was from a non-local DSQ to a local DSQ and this operation was named "consume". This was already confusing as a task could be dispatched to a user DSQ from ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch(). Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse as "dispatch" in this context meant moving a task to an arbitrary DSQ from a user DSQ. Clean up the API with the following renames: 1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]() 2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local() 3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*() This patch performs the third set of renames. Compatibility is maintained by: - The previous kfunc names are still provided by the kernel so that old binaries can run. Kernel generates a warning when the old names are used. - compat.bpf.h provides wrappers for the new names which automatically fall back to the old names when running on older kernels. They also trigger build error if old names are used for new builds. - scx_bpf_dispatch[_vtime]_from_dsq*() were already wrapped in __COMPAT macros as they were introduced during v6.12 cycle. Wrap new API in __COMPAT macros too and trigger build errors on both __COMPAT prefixed and naked usages of the old names. The compat features will be dropped after v6.15. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Andrea Righi <arighi@nvidia.com> Acked-by: Changwoo Min <changwoo@igalia.com> Acked-by: Johannes Bechberger <me@mostlynerdless.de> Acked-by: Giovanni Gherdovich <ggherdovich@suse.com> Cc: Dan Schatzberg <dschatzberg@meta.com> Cc: Ming Yang <yougmark94@gmail.com>
828 lines
20 KiB
C
828 lines
20 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* A simple five-level FIFO queue scheduler.
|
|
*
|
|
* There are five FIFOs implemented using BPF_MAP_TYPE_QUEUE. A task gets
|
|
* assigned to one depending on its compound weight. Each CPU round robins
|
|
* through the FIFOs and dispatches more from FIFOs with higher indices - 1 from
|
|
* queue0, 2 from queue1, 4 from queue2 and so on.
|
|
*
|
|
* This scheduler demonstrates:
|
|
*
|
|
* - BPF-side queueing using PIDs.
|
|
* - Sleepable per-task storage allocation using ops.prep_enable().
|
|
* - Using ops.cpu_release() to handle a higher priority scheduling class taking
|
|
* the CPU away.
|
|
* - Core-sched support.
|
|
*
|
|
* This scheduler is primarily for demonstration and testing of sched_ext
|
|
* features and unlikely to be useful for actual workloads.
|
|
*
|
|
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
|
|
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
|
|
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
|
|
*/
|
|
#include <scx/common.bpf.h>
|
|
|
|
enum consts {
|
|
ONE_SEC_IN_NS = 1000000000,
|
|
SHARED_DSQ = 0,
|
|
HIGHPRI_DSQ = 1,
|
|
HIGHPRI_WEIGHT = 8668, /* this is what -20 maps to */
|
|
};
|
|
|
|
char _license[] SEC("license") = "GPL";
|
|
|
|
const volatile u64 slice_ns = SCX_SLICE_DFL;
|
|
const volatile u32 stall_user_nth;
|
|
const volatile u32 stall_kernel_nth;
|
|
const volatile u32 dsp_inf_loop_after;
|
|
const volatile u32 dsp_batch;
|
|
const volatile bool highpri_boosting;
|
|
const volatile bool print_shared_dsq;
|
|
const volatile s32 disallow_tgid;
|
|
const volatile bool suppress_dump;
|
|
|
|
u64 nr_highpri_queued;
|
|
u32 test_error_cnt;
|
|
|
|
UEI_DEFINE(uei);
|
|
|
|
struct qmap {
|
|
__uint(type, BPF_MAP_TYPE_QUEUE);
|
|
__uint(max_entries, 4096);
|
|
__type(value, u32);
|
|
} queue0 SEC(".maps"),
|
|
queue1 SEC(".maps"),
|
|
queue2 SEC(".maps"),
|
|
queue3 SEC(".maps"),
|
|
queue4 SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_ARRAY_OF_MAPS);
|
|
__uint(max_entries, 5);
|
|
__type(key, int);
|
|
__array(values, struct qmap);
|
|
} queue_arr SEC(".maps") = {
|
|
.values = {
|
|
[0] = &queue0,
|
|
[1] = &queue1,
|
|
[2] = &queue2,
|
|
[3] = &queue3,
|
|
[4] = &queue4,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* If enabled, CPU performance target is set according to the queue index
|
|
* according to the following table.
|
|
*/
|
|
static const u32 qidx_to_cpuperf_target[] = {
|
|
[0] = SCX_CPUPERF_ONE * 0 / 4,
|
|
[1] = SCX_CPUPERF_ONE * 1 / 4,
|
|
[2] = SCX_CPUPERF_ONE * 2 / 4,
|
|
[3] = SCX_CPUPERF_ONE * 3 / 4,
|
|
[4] = SCX_CPUPERF_ONE * 4 / 4,
|
|
};
|
|
|
|
/*
|
|
* Per-queue sequence numbers to implement core-sched ordering.
|
|
*
|
|
* Tail seq is assigned to each queued task and incremented. Head seq tracks the
|
|
* sequence number of the latest dispatched task. The distance between the a
|
|
* task's seq and the associated queue's head seq is called the queue distance
|
|
* and used when comparing two tasks for ordering. See qmap_core_sched_before().
|
|
*/
|
|
static u64 core_sched_head_seqs[5];
|
|
static u64 core_sched_tail_seqs[5];
|
|
|
|
/* Per-task scheduling context */
|
|
struct task_ctx {
|
|
bool force_local; /* Dispatch directly to local_dsq */
|
|
bool highpri;
|
|
u64 core_sched_seq;
|
|
};
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_TASK_STORAGE);
|
|
__uint(map_flags, BPF_F_NO_PREALLOC);
|
|
__type(key, int);
|
|
__type(value, struct task_ctx);
|
|
} task_ctx_stor SEC(".maps");
|
|
|
|
struct cpu_ctx {
|
|
u64 dsp_idx; /* dispatch index */
|
|
u64 dsp_cnt; /* remaining count */
|
|
u32 avg_weight;
|
|
u32 cpuperf_target;
|
|
};
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
|
|
__uint(max_entries, 1);
|
|
__type(key, u32);
|
|
__type(value, struct cpu_ctx);
|
|
} cpu_ctx_stor SEC(".maps");
|
|
|
|
/* Statistics */
|
|
u64 nr_enqueued, nr_dispatched, nr_reenqueued, nr_dequeued, nr_ddsp_from_enq;
|
|
u64 nr_core_sched_execed;
|
|
u64 nr_expedited_local, nr_expedited_remote, nr_expedited_lost, nr_expedited_from_timer;
|
|
u32 cpuperf_min, cpuperf_avg, cpuperf_max;
|
|
u32 cpuperf_target_min, cpuperf_target_avg, cpuperf_target_max;
|
|
|
|
static s32 pick_direct_dispatch_cpu(struct task_struct *p, s32 prev_cpu)
|
|
{
|
|
s32 cpu;
|
|
|
|
if (p->nr_cpus_allowed == 1 ||
|
|
scx_bpf_test_and_clear_cpu_idle(prev_cpu))
|
|
return prev_cpu;
|
|
|
|
cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0);
|
|
if (cpu >= 0)
|
|
return cpu;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static struct task_ctx *lookup_task_ctx(struct task_struct *p)
|
|
{
|
|
struct task_ctx *tctx;
|
|
|
|
if (!(tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0))) {
|
|
scx_bpf_error("task_ctx lookup failed");
|
|
return NULL;
|
|
}
|
|
return tctx;
|
|
}
|
|
|
|
s32 BPF_STRUCT_OPS(qmap_select_cpu, struct task_struct *p,
|
|
s32 prev_cpu, u64 wake_flags)
|
|
{
|
|
struct task_ctx *tctx;
|
|
s32 cpu;
|
|
|
|
if (!(tctx = lookup_task_ctx(p)))
|
|
return -ESRCH;
|
|
|
|
cpu = pick_direct_dispatch_cpu(p, prev_cpu);
|
|
|
|
if (cpu >= 0) {
|
|
tctx->force_local = true;
|
|
return cpu;
|
|
} else {
|
|
return prev_cpu;
|
|
}
|
|
}
|
|
|
|
static int weight_to_idx(u32 weight)
|
|
{
|
|
/* Coarsely map the compound weight to a FIFO. */
|
|
if (weight <= 25)
|
|
return 0;
|
|
else if (weight <= 50)
|
|
return 1;
|
|
else if (weight < 200)
|
|
return 2;
|
|
else if (weight < 400)
|
|
return 3;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
void BPF_STRUCT_OPS(qmap_enqueue, struct task_struct *p, u64 enq_flags)
|
|
{
|
|
static u32 user_cnt, kernel_cnt;
|
|
struct task_ctx *tctx;
|
|
u32 pid = p->pid;
|
|
int idx = weight_to_idx(p->scx.weight);
|
|
void *ring;
|
|
s32 cpu;
|
|
|
|
if (p->flags & PF_KTHREAD) {
|
|
if (stall_kernel_nth && !(++kernel_cnt % stall_kernel_nth))
|
|
return;
|
|
} else {
|
|
if (stall_user_nth && !(++user_cnt % stall_user_nth))
|
|
return;
|
|
}
|
|
|
|
if (test_error_cnt && !--test_error_cnt)
|
|
scx_bpf_error("test triggering error");
|
|
|
|
if (!(tctx = lookup_task_ctx(p)))
|
|
return;
|
|
|
|
/*
|
|
* All enqueued tasks must have their core_sched_seq updated for correct
|
|
* core-sched ordering. Also, take a look at the end of qmap_dispatch().
|
|
*/
|
|
tctx->core_sched_seq = core_sched_tail_seqs[idx]++;
|
|
|
|
/*
|
|
* If qmap_select_cpu() is telling us to or this is the last runnable
|
|
* task on the CPU, enqueue locally.
|
|
*/
|
|
if (tctx->force_local) {
|
|
tctx->force_local = false;
|
|
scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL, slice_ns, enq_flags);
|
|
return;
|
|
}
|
|
|
|
/* if select_cpu() wasn't called, try direct dispatch */
|
|
if (!(enq_flags & SCX_ENQ_CPU_SELECTED) &&
|
|
(cpu = pick_direct_dispatch_cpu(p, scx_bpf_task_cpu(p))) >= 0) {
|
|
__sync_fetch_and_add(&nr_ddsp_from_enq, 1);
|
|
scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL_ON | cpu, slice_ns, enq_flags);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the task was re-enqueued due to the CPU being preempted by a
|
|
* higher priority scheduling class, just re-enqueue the task directly
|
|
* on the global DSQ. As we want another CPU to pick it up, find and
|
|
* kick an idle CPU.
|
|
*/
|
|
if (enq_flags & SCX_ENQ_REENQ) {
|
|
s32 cpu;
|
|
|
|
scx_bpf_dsq_insert(p, SHARED_DSQ, 0, enq_flags);
|
|
cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0);
|
|
if (cpu >= 0)
|
|
scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE);
|
|
return;
|
|
}
|
|
|
|
ring = bpf_map_lookup_elem(&queue_arr, &idx);
|
|
if (!ring) {
|
|
scx_bpf_error("failed to find ring %d", idx);
|
|
return;
|
|
}
|
|
|
|
/* Queue on the selected FIFO. If the FIFO overflows, punt to global. */
|
|
if (bpf_map_push_elem(ring, &pid, 0)) {
|
|
scx_bpf_dsq_insert(p, SHARED_DSQ, slice_ns, enq_flags);
|
|
return;
|
|
}
|
|
|
|
if (highpri_boosting && p->scx.weight >= HIGHPRI_WEIGHT) {
|
|
tctx->highpri = true;
|
|
__sync_fetch_and_add(&nr_highpri_queued, 1);
|
|
}
|
|
__sync_fetch_and_add(&nr_enqueued, 1);
|
|
}
|
|
|
|
/*
|
|
* The BPF queue map doesn't support removal and sched_ext can handle spurious
|
|
* dispatches. qmap_dequeue() is only used to collect statistics.
|
|
*/
|
|
void BPF_STRUCT_OPS(qmap_dequeue, struct task_struct *p, u64 deq_flags)
|
|
{
|
|
__sync_fetch_and_add(&nr_dequeued, 1);
|
|
if (deq_flags & SCX_DEQ_CORE_SCHED_EXEC)
|
|
__sync_fetch_and_add(&nr_core_sched_execed, 1);
|
|
}
|
|
|
|
static void update_core_sched_head_seq(struct task_struct *p)
|
|
{
|
|
int idx = weight_to_idx(p->scx.weight);
|
|
struct task_ctx *tctx;
|
|
|
|
if ((tctx = lookup_task_ctx(p)))
|
|
core_sched_head_seqs[idx] = tctx->core_sched_seq;
|
|
}
|
|
|
|
/*
|
|
* To demonstrate the use of scx_bpf_dsq_move(), implement silly selective
|
|
* priority boosting mechanism by scanning SHARED_DSQ looking for highpri tasks,
|
|
* moving them to HIGHPRI_DSQ and then consuming them first. This makes minor
|
|
* difference only when dsp_batch is larger than 1.
|
|
*
|
|
* scx_bpf_dispatch[_vtime]_from_dsq() are allowed both from ops.dispatch() and
|
|
* non-rq-lock holding BPF programs. As demonstration, this function is called
|
|
* from qmap_dispatch() and monitor_timerfn().
|
|
*/
|
|
static bool dispatch_highpri(bool from_timer)
|
|
{
|
|
struct task_struct *p;
|
|
s32 this_cpu = bpf_get_smp_processor_id();
|
|
|
|
/* scan SHARED_DSQ and move highpri tasks to HIGHPRI_DSQ */
|
|
bpf_for_each(scx_dsq, p, SHARED_DSQ, 0) {
|
|
static u64 highpri_seq;
|
|
struct task_ctx *tctx;
|
|
|
|
if (!(tctx = lookup_task_ctx(p)))
|
|
return false;
|
|
|
|
if (tctx->highpri) {
|
|
/* exercise the set_*() and vtime interface too */
|
|
__COMPAT_scx_bpf_dsq_move_set_slice(
|
|
BPF_FOR_EACH_ITER, slice_ns * 2);
|
|
__COMPAT_scx_bpf_dsq_move_set_vtime(
|
|
BPF_FOR_EACH_ITER, highpri_seq++);
|
|
__COMPAT_scx_bpf_dsq_move_vtime(
|
|
BPF_FOR_EACH_ITER, p, HIGHPRI_DSQ, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scan HIGHPRI_DSQ and dispatch until a task that can run on this CPU
|
|
* is found.
|
|
*/
|
|
bpf_for_each(scx_dsq, p, HIGHPRI_DSQ, 0) {
|
|
bool dispatched = false;
|
|
s32 cpu;
|
|
|
|
if (bpf_cpumask_test_cpu(this_cpu, p->cpus_ptr))
|
|
cpu = this_cpu;
|
|
else
|
|
cpu = scx_bpf_pick_any_cpu(p->cpus_ptr, 0);
|
|
|
|
if (__COMPAT_scx_bpf_dsq_move(BPF_FOR_EACH_ITER, p,
|
|
SCX_DSQ_LOCAL_ON | cpu,
|
|
SCX_ENQ_PREEMPT)) {
|
|
if (cpu == this_cpu) {
|
|
dispatched = true;
|
|
__sync_fetch_and_add(&nr_expedited_local, 1);
|
|
} else {
|
|
__sync_fetch_and_add(&nr_expedited_remote, 1);
|
|
}
|
|
if (from_timer)
|
|
__sync_fetch_and_add(&nr_expedited_from_timer, 1);
|
|
} else {
|
|
__sync_fetch_and_add(&nr_expedited_lost, 1);
|
|
}
|
|
|
|
if (dispatched)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void BPF_STRUCT_OPS(qmap_dispatch, s32 cpu, struct task_struct *prev)
|
|
{
|
|
struct task_struct *p;
|
|
struct cpu_ctx *cpuc;
|
|
struct task_ctx *tctx;
|
|
u32 zero = 0, batch = dsp_batch ?: 1;
|
|
void *fifo;
|
|
s32 i, pid;
|
|
|
|
if (dispatch_highpri(false))
|
|
return;
|
|
|
|
if (!nr_highpri_queued && scx_bpf_dsq_move_to_local(SHARED_DSQ))
|
|
return;
|
|
|
|
if (dsp_inf_loop_after && nr_dispatched > dsp_inf_loop_after) {
|
|
/*
|
|
* PID 2 should be kthreadd which should mostly be idle and off
|
|
* the scheduler. Let's keep dispatching it to force the kernel
|
|
* to call this function over and over again.
|
|
*/
|
|
p = bpf_task_from_pid(2);
|
|
if (p) {
|
|
scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL, slice_ns, 0);
|
|
bpf_task_release(p);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) {
|
|
scx_bpf_error("failed to look up cpu_ctx");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
/* Advance the dispatch cursor and pick the fifo. */
|
|
if (!cpuc->dsp_cnt) {
|
|
cpuc->dsp_idx = (cpuc->dsp_idx + 1) % 5;
|
|
cpuc->dsp_cnt = 1 << cpuc->dsp_idx;
|
|
}
|
|
|
|
fifo = bpf_map_lookup_elem(&queue_arr, &cpuc->dsp_idx);
|
|
if (!fifo) {
|
|
scx_bpf_error("failed to find ring %llu", cpuc->dsp_idx);
|
|
return;
|
|
}
|
|
|
|
/* Dispatch or advance. */
|
|
bpf_repeat(BPF_MAX_LOOPS) {
|
|
struct task_ctx *tctx;
|
|
|
|
if (bpf_map_pop_elem(fifo, &pid))
|
|
break;
|
|
|
|
p = bpf_task_from_pid(pid);
|
|
if (!p)
|
|
continue;
|
|
|
|
if (!(tctx = lookup_task_ctx(p))) {
|
|
bpf_task_release(p);
|
|
return;
|
|
}
|
|
|
|
if (tctx->highpri)
|
|
__sync_fetch_and_sub(&nr_highpri_queued, 1);
|
|
|
|
update_core_sched_head_seq(p);
|
|
__sync_fetch_and_add(&nr_dispatched, 1);
|
|
|
|
scx_bpf_dsq_insert(p, SHARED_DSQ, slice_ns, 0);
|
|
bpf_task_release(p);
|
|
|
|
batch--;
|
|
cpuc->dsp_cnt--;
|
|
if (!batch || !scx_bpf_dispatch_nr_slots()) {
|
|
if (dispatch_highpri(false))
|
|
return;
|
|
scx_bpf_dsq_move_to_local(SHARED_DSQ);
|
|
return;
|
|
}
|
|
if (!cpuc->dsp_cnt)
|
|
break;
|
|
}
|
|
|
|
cpuc->dsp_cnt = 0;
|
|
}
|
|
|
|
/*
|
|
* No other tasks. @prev will keep running. Update its core_sched_seq as
|
|
* if the task were enqueued and dispatched immediately.
|
|
*/
|
|
if (prev) {
|
|
tctx = bpf_task_storage_get(&task_ctx_stor, prev, 0, 0);
|
|
if (!tctx) {
|
|
scx_bpf_error("task_ctx lookup failed");
|
|
return;
|
|
}
|
|
|
|
tctx->core_sched_seq =
|
|
core_sched_tail_seqs[weight_to_idx(prev->scx.weight)]++;
|
|
}
|
|
}
|
|
|
|
void BPF_STRUCT_OPS(qmap_tick, struct task_struct *p)
|
|
{
|
|
struct cpu_ctx *cpuc;
|
|
u32 zero = 0;
|
|
int idx;
|
|
|
|
if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) {
|
|
scx_bpf_error("failed to look up cpu_ctx");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Use the running avg of weights to select the target cpuperf level.
|
|
* This is a demonstration of the cpuperf feature rather than a
|
|
* practical strategy to regulate CPU frequency.
|
|
*/
|
|
cpuc->avg_weight = cpuc->avg_weight * 3 / 4 + p->scx.weight / 4;
|
|
idx = weight_to_idx(cpuc->avg_weight);
|
|
cpuc->cpuperf_target = qidx_to_cpuperf_target[idx];
|
|
|
|
scx_bpf_cpuperf_set(scx_bpf_task_cpu(p), cpuc->cpuperf_target);
|
|
}
|
|
|
|
/*
|
|
* The distance from the head of the queue scaled by the weight of the queue.
|
|
* The lower the number, the older the task and the higher the priority.
|
|
*/
|
|
static s64 task_qdist(struct task_struct *p)
|
|
{
|
|
int idx = weight_to_idx(p->scx.weight);
|
|
struct task_ctx *tctx;
|
|
s64 qdist;
|
|
|
|
tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0);
|
|
if (!tctx) {
|
|
scx_bpf_error("task_ctx lookup failed");
|
|
return 0;
|
|
}
|
|
|
|
qdist = tctx->core_sched_seq - core_sched_head_seqs[idx];
|
|
|
|
/*
|
|
* As queue index increments, the priority doubles. The queue w/ index 3
|
|
* is dispatched twice more frequently than 2. Reflect the difference by
|
|
* scaling qdists accordingly. Note that the shift amount needs to be
|
|
* flipped depending on the sign to avoid flipping priority direction.
|
|
*/
|
|
if (qdist >= 0)
|
|
return qdist << (4 - idx);
|
|
else
|
|
return qdist << idx;
|
|
}
|
|
|
|
/*
|
|
* This is called to determine the task ordering when core-sched is picking
|
|
* tasks to execute on SMT siblings and should encode about the same ordering as
|
|
* the regular scheduling path. Use the priority-scaled distances from the head
|
|
* of the queues to compare the two tasks which should be consistent with the
|
|
* dispatch path behavior.
|
|
*/
|
|
bool BPF_STRUCT_OPS(qmap_core_sched_before,
|
|
struct task_struct *a, struct task_struct *b)
|
|
{
|
|
return task_qdist(a) > task_qdist(b);
|
|
}
|
|
|
|
void BPF_STRUCT_OPS(qmap_cpu_release, s32 cpu, struct scx_cpu_release_args *args)
|
|
{
|
|
u32 cnt;
|
|
|
|
/*
|
|
* Called when @cpu is taken by a higher priority scheduling class. This
|
|
* makes @cpu no longer available for executing sched_ext tasks. As we
|
|
* don't want the tasks in @cpu's local dsq to sit there until @cpu
|
|
* becomes available again, re-enqueue them into the global dsq. See
|
|
* %SCX_ENQ_REENQ handling in qmap_enqueue().
|
|
*/
|
|
cnt = scx_bpf_reenqueue_local();
|
|
if (cnt)
|
|
__sync_fetch_and_add(&nr_reenqueued, cnt);
|
|
}
|
|
|
|
s32 BPF_STRUCT_OPS(qmap_init_task, struct task_struct *p,
|
|
struct scx_init_task_args *args)
|
|
{
|
|
if (p->tgid == disallow_tgid)
|
|
p->scx.disallow = true;
|
|
|
|
/*
|
|
* @p is new. Let's ensure that its task_ctx is available. We can sleep
|
|
* in this function and the following will automatically use GFP_KERNEL.
|
|
*/
|
|
if (bpf_task_storage_get(&task_ctx_stor, p, 0,
|
|
BPF_LOCAL_STORAGE_GET_F_CREATE))
|
|
return 0;
|
|
else
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void BPF_STRUCT_OPS(qmap_dump, struct scx_dump_ctx *dctx)
|
|
{
|
|
s32 i, pid;
|
|
|
|
if (suppress_dump)
|
|
return;
|
|
|
|
bpf_for(i, 0, 5) {
|
|
void *fifo;
|
|
|
|
if (!(fifo = bpf_map_lookup_elem(&queue_arr, &i)))
|
|
return;
|
|
|
|
scx_bpf_dump("QMAP FIFO[%d]:", i);
|
|
bpf_repeat(4096) {
|
|
if (bpf_map_pop_elem(fifo, &pid))
|
|
break;
|
|
scx_bpf_dump(" %d", pid);
|
|
}
|
|
scx_bpf_dump("\n");
|
|
}
|
|
}
|
|
|
|
void BPF_STRUCT_OPS(qmap_dump_cpu, struct scx_dump_ctx *dctx, s32 cpu, bool idle)
|
|
{
|
|
u32 zero = 0;
|
|
struct cpu_ctx *cpuc;
|
|
|
|
if (suppress_dump || idle)
|
|
return;
|
|
if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, cpu)))
|
|
return;
|
|
|
|
scx_bpf_dump("QMAP: dsp_idx=%llu dsp_cnt=%llu avg_weight=%u cpuperf_target=%u",
|
|
cpuc->dsp_idx, cpuc->dsp_cnt, cpuc->avg_weight,
|
|
cpuc->cpuperf_target);
|
|
}
|
|
|
|
void BPF_STRUCT_OPS(qmap_dump_task, struct scx_dump_ctx *dctx, struct task_struct *p)
|
|
{
|
|
struct task_ctx *taskc;
|
|
|
|
if (suppress_dump)
|
|
return;
|
|
if (!(taskc = bpf_task_storage_get(&task_ctx_stor, p, 0, 0)))
|
|
return;
|
|
|
|
scx_bpf_dump("QMAP: force_local=%d core_sched_seq=%llu",
|
|
taskc->force_local, taskc->core_sched_seq);
|
|
}
|
|
|
|
/*
|
|
* Print out the online and possible CPU map using bpf_printk() as a
|
|
* demonstration of using the cpumask kfuncs and ops.cpu_on/offline().
|
|
*/
|
|
static void print_cpus(void)
|
|
{
|
|
const struct cpumask *possible, *online;
|
|
s32 cpu;
|
|
char buf[128] = "", *p;
|
|
int idx;
|
|
|
|
possible = scx_bpf_get_possible_cpumask();
|
|
online = scx_bpf_get_online_cpumask();
|
|
|
|
idx = 0;
|
|
bpf_for(cpu, 0, scx_bpf_nr_cpu_ids()) {
|
|
if (!(p = MEMBER_VPTR(buf, [idx++])))
|
|
break;
|
|
if (bpf_cpumask_test_cpu(cpu, online))
|
|
*p++ = 'O';
|
|
else if (bpf_cpumask_test_cpu(cpu, possible))
|
|
*p++ = 'X';
|
|
else
|
|
*p++ = ' ';
|
|
|
|
if ((cpu & 7) == 7) {
|
|
if (!(p = MEMBER_VPTR(buf, [idx++])))
|
|
break;
|
|
*p++ = '|';
|
|
}
|
|
}
|
|
buf[sizeof(buf) - 1] = '\0';
|
|
|
|
scx_bpf_put_cpumask(online);
|
|
scx_bpf_put_cpumask(possible);
|
|
|
|
bpf_printk("CPUS: |%s", buf);
|
|
}
|
|
|
|
void BPF_STRUCT_OPS(qmap_cpu_online, s32 cpu)
|
|
{
|
|
bpf_printk("CPU %d coming online", cpu);
|
|
/* @cpu is already online at this point */
|
|
print_cpus();
|
|
}
|
|
|
|
void BPF_STRUCT_OPS(qmap_cpu_offline, s32 cpu)
|
|
{
|
|
bpf_printk("CPU %d going offline", cpu);
|
|
/* @cpu is still online at this point */
|
|
print_cpus();
|
|
}
|
|
|
|
struct monitor_timer {
|
|
struct bpf_timer timer;
|
|
};
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_ARRAY);
|
|
__uint(max_entries, 1);
|
|
__type(key, u32);
|
|
__type(value, struct monitor_timer);
|
|
} monitor_timer SEC(".maps");
|
|
|
|
/*
|
|
* Print out the min, avg and max performance levels of CPUs every second to
|
|
* demonstrate the cpuperf interface.
|
|
*/
|
|
static void monitor_cpuperf(void)
|
|
{
|
|
u32 zero = 0, nr_cpu_ids;
|
|
u64 cap_sum = 0, cur_sum = 0, cur_min = SCX_CPUPERF_ONE, cur_max = 0;
|
|
u64 target_sum = 0, target_min = SCX_CPUPERF_ONE, target_max = 0;
|
|
const struct cpumask *online;
|
|
int i, nr_online_cpus = 0;
|
|
|
|
nr_cpu_ids = scx_bpf_nr_cpu_ids();
|
|
online = scx_bpf_get_online_cpumask();
|
|
|
|
bpf_for(i, 0, nr_cpu_ids) {
|
|
struct cpu_ctx *cpuc;
|
|
u32 cap, cur;
|
|
|
|
if (!bpf_cpumask_test_cpu(i, online))
|
|
continue;
|
|
nr_online_cpus++;
|
|
|
|
/* collect the capacity and current cpuperf */
|
|
cap = scx_bpf_cpuperf_cap(i);
|
|
cur = scx_bpf_cpuperf_cur(i);
|
|
|
|
cur_min = cur < cur_min ? cur : cur_min;
|
|
cur_max = cur > cur_max ? cur : cur_max;
|
|
|
|
/*
|
|
* $cur is relative to $cap. Scale it down accordingly so that
|
|
* it's in the same scale as other CPUs and $cur_sum/$cap_sum
|
|
* makes sense.
|
|
*/
|
|
cur_sum += cur * cap / SCX_CPUPERF_ONE;
|
|
cap_sum += cap;
|
|
|
|
if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, i))) {
|
|
scx_bpf_error("failed to look up cpu_ctx");
|
|
goto out;
|
|
}
|
|
|
|
/* collect target */
|
|
cur = cpuc->cpuperf_target;
|
|
target_sum += cur;
|
|
target_min = cur < target_min ? cur : target_min;
|
|
target_max = cur > target_max ? cur : target_max;
|
|
}
|
|
|
|
cpuperf_min = cur_min;
|
|
cpuperf_avg = cur_sum * SCX_CPUPERF_ONE / cap_sum;
|
|
cpuperf_max = cur_max;
|
|
|
|
cpuperf_target_min = target_min;
|
|
cpuperf_target_avg = target_sum / nr_online_cpus;
|
|
cpuperf_target_max = target_max;
|
|
out:
|
|
scx_bpf_put_cpumask(online);
|
|
}
|
|
|
|
/*
|
|
* Dump the currently queued tasks in the shared DSQ to demonstrate the usage of
|
|
* scx_bpf_dsq_nr_queued() and DSQ iterator. Raise the dispatch batch count to
|
|
* see meaningful dumps in the trace pipe.
|
|
*/
|
|
static void dump_shared_dsq(void)
|
|
{
|
|
struct task_struct *p;
|
|
s32 nr;
|
|
|
|
if (!(nr = scx_bpf_dsq_nr_queued(SHARED_DSQ)))
|
|
return;
|
|
|
|
bpf_printk("Dumping %d tasks in SHARED_DSQ in reverse order", nr);
|
|
|
|
bpf_rcu_read_lock();
|
|
bpf_for_each(scx_dsq, p, SHARED_DSQ, SCX_DSQ_ITER_REV)
|
|
bpf_printk("%s[%d]", p->comm, p->pid);
|
|
bpf_rcu_read_unlock();
|
|
}
|
|
|
|
static int monitor_timerfn(void *map, int *key, struct bpf_timer *timer)
|
|
{
|
|
bpf_rcu_read_lock();
|
|
dispatch_highpri(true);
|
|
bpf_rcu_read_unlock();
|
|
|
|
monitor_cpuperf();
|
|
|
|
if (print_shared_dsq)
|
|
dump_shared_dsq();
|
|
|
|
bpf_timer_start(timer, ONE_SEC_IN_NS, 0);
|
|
return 0;
|
|
}
|
|
|
|
s32 BPF_STRUCT_OPS_SLEEPABLE(qmap_init)
|
|
{
|
|
u32 key = 0;
|
|
struct bpf_timer *timer;
|
|
s32 ret;
|
|
|
|
print_cpus();
|
|
|
|
ret = scx_bpf_create_dsq(SHARED_DSQ, -1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = scx_bpf_create_dsq(HIGHPRI_DSQ, -1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
timer = bpf_map_lookup_elem(&monitor_timer, &key);
|
|
if (!timer)
|
|
return -ESRCH;
|
|
|
|
bpf_timer_init(timer, &monitor_timer, CLOCK_MONOTONIC);
|
|
bpf_timer_set_callback(timer, monitor_timerfn);
|
|
|
|
return bpf_timer_start(timer, ONE_SEC_IN_NS, 0);
|
|
}
|
|
|
|
void BPF_STRUCT_OPS(qmap_exit, struct scx_exit_info *ei)
|
|
{
|
|
UEI_RECORD(uei, ei);
|
|
}
|
|
|
|
SCX_OPS_DEFINE(qmap_ops,
|
|
.select_cpu = (void *)qmap_select_cpu,
|
|
.enqueue = (void *)qmap_enqueue,
|
|
.dequeue = (void *)qmap_dequeue,
|
|
.dispatch = (void *)qmap_dispatch,
|
|
.tick = (void *)qmap_tick,
|
|
.core_sched_before = (void *)qmap_core_sched_before,
|
|
.cpu_release = (void *)qmap_cpu_release,
|
|
.init_task = (void *)qmap_init_task,
|
|
.dump = (void *)qmap_dump,
|
|
.dump_cpu = (void *)qmap_dump_cpu,
|
|
.dump_task = (void *)qmap_dump_task,
|
|
.cpu_online = (void *)qmap_cpu_online,
|
|
.cpu_offline = (void *)qmap_cpu_offline,
|
|
.init = (void *)qmap_init,
|
|
.exit = (void *)qmap_exit,
|
|
.timeout_ms = 5000U,
|
|
.name = "qmap");
|