linux-stable/arch/x86/crypto/twofish-x86_64-asm_64.S
Peter Zijlstra f94909ceb1 x86: Prepare asm files for straight-line-speculation
Replace all ret/retq instructions with RET in preparation of making
RET a macro. Since AS is case insensitive it's a big no-op without
RET defined.

  find arch/x86/ -name \*.S | while read file
  do
	sed -i 's/\<ret[q]*\>/RET/' $file
  done

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134907.905503893@infradead.org
2021-12-08 12:25:37 +01:00

309 lines
7.4 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de> *
* *
***************************************************************************/
.file "twofish-x86_64-asm.S"
.text
#include <linux/linkage.h>
#include <asm/asm-offsets.h>
#define a_offset 0
#define b_offset 4
#define c_offset 8
#define d_offset 12
/* Structure of the crypto context struct*/
#define s0 0 /* S0 Array 256 Words each */
#define s1 1024 /* S1 Array */
#define s2 2048 /* S2 Array */
#define s3 3072 /* S3 Array */
#define w 4096 /* 8 whitening keys (word) */
#define k 4128 /* key 1-32 ( word ) */
/* define a few register aliases to allow macro substitution */
#define R0 %rax
#define R0D %eax
#define R0B %al
#define R0H %ah
#define R1 %rbx
#define R1D %ebx
#define R1B %bl
#define R1H %bh
#define R2 %rcx
#define R2D %ecx
#define R2B %cl
#define R2H %ch
#define R3 %rdx
#define R3D %edx
#define R3B %dl
#define R3H %dh
/* performs input whitening */
#define input_whitening(src,context,offset)\
xor w+offset(context), src;
/* performs input whitening */
#define output_whitening(src,context,offset)\
xor w+16+offset(context), src;
/*
* a input register containing a (rotated 16)
* b input register containing b
* c input register containing c
* d input register containing d (already rol $1)
* operations on a and b are interleaved to increase performance
*/
#define encrypt_round(a,b,c,d,round)\
movzx b ## B, %edi;\
mov s1(%r11,%rdi,4),%r8d;\
movzx a ## B, %edi;\
mov s2(%r11,%rdi,4),%r9d;\
movzx b ## H, %edi;\
ror $16, b ## D;\
xor s2(%r11,%rdi,4),%r8d;\
movzx a ## H, %edi;\
ror $16, a ## D;\
xor s3(%r11,%rdi,4),%r9d;\
movzx b ## B, %edi;\
xor s3(%r11,%rdi,4),%r8d;\
movzx a ## B, %edi;\
xor (%r11,%rdi,4), %r9d;\
movzx b ## H, %edi;\
ror $15, b ## D;\
xor (%r11,%rdi,4), %r8d;\
movzx a ## H, %edi;\
xor s1(%r11,%rdi,4),%r9d;\
add %r8d, %r9d;\
add %r9d, %r8d;\
add k+round(%r11), %r9d;\
xor %r9d, c ## D;\
rol $15, c ## D;\
add k+4+round(%r11),%r8d;\
xor %r8d, d ## D;
/*
* a input register containing a(rotated 16)
* b input register containing b
* c input register containing c
* d input register containing d (already rol $1)
* operations on a and b are interleaved to increase performance
* during the round a and b are prepared for the output whitening
*/
#define encrypt_last_round(a,b,c,d,round)\
mov b ## D, %r10d;\
shl $32, %r10;\
movzx b ## B, %edi;\
mov s1(%r11,%rdi,4),%r8d;\
movzx a ## B, %edi;\
mov s2(%r11,%rdi,4),%r9d;\
movzx b ## H, %edi;\
ror $16, b ## D;\
xor s2(%r11,%rdi,4),%r8d;\
movzx a ## H, %edi;\
ror $16, a ## D;\
xor s3(%r11,%rdi,4),%r9d;\
movzx b ## B, %edi;\
xor s3(%r11,%rdi,4),%r8d;\
movzx a ## B, %edi;\
xor (%r11,%rdi,4), %r9d;\
xor a, %r10;\
movzx b ## H, %edi;\
xor (%r11,%rdi,4), %r8d;\
movzx a ## H, %edi;\
xor s1(%r11,%rdi,4),%r9d;\
add %r8d, %r9d;\
add %r9d, %r8d;\
add k+round(%r11), %r9d;\
xor %r9d, c ## D;\
ror $1, c ## D;\
add k+4+round(%r11),%r8d;\
xor %r8d, d ## D
/*
* a input register containing a
* b input register containing b (rotated 16)
* c input register containing c (already rol $1)
* d input register containing d
* operations on a and b are interleaved to increase performance
*/
#define decrypt_round(a,b,c,d,round)\
movzx a ## B, %edi;\
mov (%r11,%rdi,4), %r9d;\
movzx b ## B, %edi;\
mov s3(%r11,%rdi,4),%r8d;\
movzx a ## H, %edi;\
ror $16, a ## D;\
xor s1(%r11,%rdi,4),%r9d;\
movzx b ## H, %edi;\
ror $16, b ## D;\
xor (%r11,%rdi,4), %r8d;\
movzx a ## B, %edi;\
xor s2(%r11,%rdi,4),%r9d;\
movzx b ## B, %edi;\
xor s1(%r11,%rdi,4),%r8d;\
movzx a ## H, %edi;\
ror $15, a ## D;\
xor s3(%r11,%rdi,4),%r9d;\
movzx b ## H, %edi;\
xor s2(%r11,%rdi,4),%r8d;\
add %r8d, %r9d;\
add %r9d, %r8d;\
add k+round(%r11), %r9d;\
xor %r9d, c ## D;\
add k+4+round(%r11),%r8d;\
xor %r8d, d ## D;\
rol $15, d ## D;
/*
* a input register containing a
* b input register containing b
* c input register containing c (already rol $1)
* d input register containing d
* operations on a and b are interleaved to increase performance
* during the round a and b are prepared for the output whitening
*/
#define decrypt_last_round(a,b,c,d,round)\
movzx a ## B, %edi;\
mov (%r11,%rdi,4), %r9d;\
movzx b ## B, %edi;\
mov s3(%r11,%rdi,4),%r8d;\
movzx b ## H, %edi;\
ror $16, b ## D;\
xor (%r11,%rdi,4), %r8d;\
movzx a ## H, %edi;\
mov b ## D, %r10d;\
shl $32, %r10;\
xor a, %r10;\
ror $16, a ## D;\
xor s1(%r11,%rdi,4),%r9d;\
movzx b ## B, %edi;\
xor s1(%r11,%rdi,4),%r8d;\
movzx a ## B, %edi;\
xor s2(%r11,%rdi,4),%r9d;\
movzx b ## H, %edi;\
xor s2(%r11,%rdi,4),%r8d;\
movzx a ## H, %edi;\
xor s3(%r11,%rdi,4),%r9d;\
add %r8d, %r9d;\
add %r9d, %r8d;\
add k+round(%r11), %r9d;\
xor %r9d, c ## D;\
add k+4+round(%r11),%r8d;\
xor %r8d, d ## D;\
ror $1, d ## D;
SYM_FUNC_START(twofish_enc_blk)
pushq R1
/* %rdi contains the ctx address */
/* %rsi contains the output address */
/* %rdx contains the input address */
/* ctx address is moved to free one non-rex register
as target for the 8bit high operations */
mov %rdi, %r11
movq (R3), R1
movq 8(R3), R3
input_whitening(R1,%r11,a_offset)
input_whitening(R3,%r11,c_offset)
mov R1D, R0D
rol $16, R0D
shr $32, R1
mov R3D, R2D
shr $32, R3
rol $1, R3D
encrypt_round(R0,R1,R2,R3,0);
encrypt_round(R2,R3,R0,R1,8);
encrypt_round(R0,R1,R2,R3,2*8);
encrypt_round(R2,R3,R0,R1,3*8);
encrypt_round(R0,R1,R2,R3,4*8);
encrypt_round(R2,R3,R0,R1,5*8);
encrypt_round(R0,R1,R2,R3,6*8);
encrypt_round(R2,R3,R0,R1,7*8);
encrypt_round(R0,R1,R2,R3,8*8);
encrypt_round(R2,R3,R0,R1,9*8);
encrypt_round(R0,R1,R2,R3,10*8);
encrypt_round(R2,R3,R0,R1,11*8);
encrypt_round(R0,R1,R2,R3,12*8);
encrypt_round(R2,R3,R0,R1,13*8);
encrypt_round(R0,R1,R2,R3,14*8);
encrypt_last_round(R2,R3,R0,R1,15*8);
output_whitening(%r10,%r11,a_offset)
movq %r10, (%rsi)
shl $32, R1
xor R0, R1
output_whitening(R1,%r11,c_offset)
movq R1, 8(%rsi)
popq R1
movl $1,%eax
RET
SYM_FUNC_END(twofish_enc_blk)
SYM_FUNC_START(twofish_dec_blk)
pushq R1
/* %rdi contains the ctx address */
/* %rsi contains the output address */
/* %rdx contains the input address */
/* ctx address is moved to free one non-rex register
as target for the 8bit high operations */
mov %rdi, %r11
movq (R3), R1
movq 8(R3), R3
output_whitening(R1,%r11,a_offset)
output_whitening(R3,%r11,c_offset)
mov R1D, R0D
shr $32, R1
rol $16, R1D
mov R3D, R2D
shr $32, R3
rol $1, R2D
decrypt_round(R0,R1,R2,R3,15*8);
decrypt_round(R2,R3,R0,R1,14*8);
decrypt_round(R0,R1,R2,R3,13*8);
decrypt_round(R2,R3,R0,R1,12*8);
decrypt_round(R0,R1,R2,R3,11*8);
decrypt_round(R2,R3,R0,R1,10*8);
decrypt_round(R0,R1,R2,R3,9*8);
decrypt_round(R2,R3,R0,R1,8*8);
decrypt_round(R0,R1,R2,R3,7*8);
decrypt_round(R2,R3,R0,R1,6*8);
decrypt_round(R0,R1,R2,R3,5*8);
decrypt_round(R2,R3,R0,R1,4*8);
decrypt_round(R0,R1,R2,R3,3*8);
decrypt_round(R2,R3,R0,R1,2*8);
decrypt_round(R0,R1,R2,R3,1*8);
decrypt_last_round(R2,R3,R0,R1,0);
input_whitening(%r10,%r11,a_offset)
movq %r10, (%rsi)
shl $32, R1
xor R0, R1
input_whitening(R1,%r11,c_offset)
movq R1, 8(%rsi)
popq R1
movl $1,%eax
RET
SYM_FUNC_END(twofish_dec_blk)