mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
af264e5989
'struct nand_ecc_engine_ops' are not modified in these drivers. Constifying this structure moves some data to a read-only section, so increases overall security, especially when the structure holds some function pointers. Update the prototype of mxic_ecc_get_pipelined_ops() accordingly. On a x86_64, with allmodconfig, as an example: Before: ====== text data bss dec hex filename 16709 1374 16 18099 46b3 drivers/mtd/nand/ecc-mxic.o After: ===== text data bss dec hex filename 16789 1294 16 18099 46b3 drivers/mtd/nand/ecc-mxic.o Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/72597e9de2320a4109be2112e696399592edacd4.1729271136.git.christophe.jaillet@wanadoo.fr
407 lines
11 KiB
C
407 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* This file provides ECC correction for more than 1 bit per block of data,
|
|
* using binary BCH codes. It relies on the generic BCH library lib/bch.c.
|
|
*
|
|
* Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/nand-ecc-sw-bch.h>
|
|
|
|
/**
|
|
* nand_ecc_sw_bch_calculate - Calculate the ECC corresponding to a data block
|
|
* @nand: NAND device
|
|
* @buf: Input buffer with raw data
|
|
* @code: Output buffer with ECC
|
|
*/
|
|
int nand_ecc_sw_bch_calculate(struct nand_device *nand,
|
|
const unsigned char *buf, unsigned char *code)
|
|
{
|
|
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
|
unsigned int i;
|
|
|
|
memset(code, 0, engine_conf->code_size);
|
|
bch_encode(engine_conf->bch, buf, nand->ecc.ctx.conf.step_size, code);
|
|
|
|
/* apply mask so that an erased page is a valid codeword */
|
|
for (i = 0; i < engine_conf->code_size; i++)
|
|
code[i] ^= engine_conf->eccmask[i];
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(nand_ecc_sw_bch_calculate);
|
|
|
|
/**
|
|
* nand_ecc_sw_bch_correct - Detect, correct and report bit error(s)
|
|
* @nand: NAND device
|
|
* @buf: Raw data read from the chip
|
|
* @read_ecc: ECC bytes from the chip
|
|
* @calc_ecc: ECC calculated from the raw data
|
|
*
|
|
* Detect and correct bit errors for a data block.
|
|
*/
|
|
int nand_ecc_sw_bch_correct(struct nand_device *nand, unsigned char *buf,
|
|
unsigned char *read_ecc, unsigned char *calc_ecc)
|
|
{
|
|
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
|
unsigned int step_size = nand->ecc.ctx.conf.step_size;
|
|
unsigned int *errloc = engine_conf->errloc;
|
|
int i, count;
|
|
|
|
count = bch_decode(engine_conf->bch, NULL, step_size, read_ecc,
|
|
calc_ecc, NULL, errloc);
|
|
if (count > 0) {
|
|
for (i = 0; i < count; i++) {
|
|
if (errloc[i] < (step_size * 8))
|
|
/* The error is in the data area: correct it */
|
|
buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7));
|
|
|
|
/* Otherwise the error is in the ECC area: nothing to do */
|
|
pr_debug("%s: corrected bitflip %u\n", __func__,
|
|
errloc[i]);
|
|
}
|
|
} else if (count < 0) {
|
|
pr_err("ECC unrecoverable error\n");
|
|
count = -EBADMSG;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
EXPORT_SYMBOL(nand_ecc_sw_bch_correct);
|
|
|
|
/**
|
|
* nand_ecc_sw_bch_cleanup - Cleanup software BCH ECC resources
|
|
* @nand: NAND device
|
|
*/
|
|
static void nand_ecc_sw_bch_cleanup(struct nand_device *nand)
|
|
{
|
|
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
|
|
|
bch_free(engine_conf->bch);
|
|
kfree(engine_conf->errloc);
|
|
kfree(engine_conf->eccmask);
|
|
}
|
|
|
|
/**
|
|
* nand_ecc_sw_bch_init - Initialize software BCH ECC engine
|
|
* @nand: NAND device
|
|
*
|
|
* Returns: a pointer to a new NAND BCH control structure, or NULL upon failure
|
|
*
|
|
* Initialize NAND BCH error correction. @nand.ecc parameters 'step_size' and
|
|
* 'bytes' are used to compute the following BCH parameters:
|
|
* m, the Galois field order
|
|
* t, the error correction capability
|
|
* 'bytes' should be equal to the number of bytes required to store m * t
|
|
* bits, where m is such that 2^m - 1 > step_size * 8.
|
|
*
|
|
* Example: to configure 4 bit correction per 512 bytes, you should pass
|
|
* step_size = 512 (thus, m = 13 is the smallest integer such that 2^m - 1 > 512 * 8)
|
|
* bytes = 7 (7 bytes are required to store m * t = 13 * 4 = 52 bits)
|
|
*/
|
|
static int nand_ecc_sw_bch_init(struct nand_device *nand)
|
|
{
|
|
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
|
unsigned int eccsize = nand->ecc.ctx.conf.step_size;
|
|
unsigned int eccbytes = engine_conf->code_size;
|
|
unsigned int m, t, i;
|
|
unsigned char *erased_page;
|
|
int ret;
|
|
|
|
m = fls(1 + (8 * eccsize));
|
|
t = (eccbytes * 8) / m;
|
|
|
|
engine_conf->bch = bch_init(m, t, 0, false);
|
|
if (!engine_conf->bch)
|
|
return -EINVAL;
|
|
|
|
engine_conf->eccmask = kzalloc(eccbytes, GFP_KERNEL);
|
|
engine_conf->errloc = kmalloc_array(t, sizeof(*engine_conf->errloc),
|
|
GFP_KERNEL);
|
|
if (!engine_conf->eccmask || !engine_conf->errloc) {
|
|
ret = -ENOMEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Compute and store the inverted ECC of an erased step */
|
|
erased_page = kmalloc(eccsize, GFP_KERNEL);
|
|
if (!erased_page) {
|
|
ret = -ENOMEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
memset(erased_page, 0xff, eccsize);
|
|
bch_encode(engine_conf->bch, erased_page, eccsize,
|
|
engine_conf->eccmask);
|
|
kfree(erased_page);
|
|
|
|
for (i = 0; i < eccbytes; i++)
|
|
engine_conf->eccmask[i] ^= 0xff;
|
|
|
|
/* Verify that the number of code bytes has the expected value */
|
|
if (engine_conf->bch->ecc_bytes != eccbytes) {
|
|
pr_err("Invalid number of ECC bytes: %u, expected: %u\n",
|
|
eccbytes, engine_conf->bch->ecc_bytes);
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Sanity checks */
|
|
if (8 * (eccsize + eccbytes) >= (1 << m)) {
|
|
pr_err("ECC step size is too large (%u)\n", eccsize);
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
|
|
return 0;
|
|
|
|
cleanup:
|
|
nand_ecc_sw_bch_cleanup(nand);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int nand_ecc_sw_bch_init_ctx(struct nand_device *nand)
|
|
{
|
|
struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
struct nand_ecc_sw_bch_conf *engine_conf;
|
|
unsigned int code_size = 0, nsteps;
|
|
int ret;
|
|
|
|
/* Only large page NAND chips may use BCH */
|
|
if (mtd->oobsize < 64) {
|
|
pr_err("BCH cannot be used with small page NAND chips\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!mtd->ooblayout)
|
|
mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
|
|
|
|
conf->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
|
|
conf->algo = NAND_ECC_ALGO_BCH;
|
|
conf->step_size = nand->ecc.user_conf.step_size;
|
|
conf->strength = nand->ecc.user_conf.strength;
|
|
|
|
/*
|
|
* Board driver should supply ECC size and ECC strength
|
|
* values to select how many bits are correctable.
|
|
* Otherwise, default to 512 bytes for large page devices and 256 for
|
|
* small page devices.
|
|
*/
|
|
if (!conf->step_size) {
|
|
if (mtd->oobsize >= 64)
|
|
conf->step_size = 512;
|
|
else
|
|
conf->step_size = 256;
|
|
|
|
conf->strength = 4;
|
|
}
|
|
|
|
nsteps = mtd->writesize / conf->step_size;
|
|
|
|
/* Maximize */
|
|
if (nand->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) {
|
|
conf->step_size = 1024;
|
|
nsteps = mtd->writesize / conf->step_size;
|
|
/* Reserve 2 bytes for the BBM */
|
|
code_size = (mtd->oobsize - 2) / nsteps;
|
|
conf->strength = code_size * 8 / fls(8 * conf->step_size);
|
|
}
|
|
|
|
if (!code_size)
|
|
code_size = DIV_ROUND_UP(conf->strength *
|
|
fls(8 * conf->step_size), 8);
|
|
|
|
if (!conf->strength)
|
|
conf->strength = (code_size * 8) / fls(8 * conf->step_size);
|
|
|
|
if (!code_size && !conf->strength) {
|
|
pr_err("Missing ECC parameters\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
|
|
if (!engine_conf)
|
|
return -ENOMEM;
|
|
|
|
ret = nand_ecc_init_req_tweaking(&engine_conf->req_ctx, nand);
|
|
if (ret)
|
|
goto free_engine_conf;
|
|
|
|
engine_conf->code_size = code_size;
|
|
engine_conf->calc_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
|
|
engine_conf->code_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
|
|
if (!engine_conf->calc_buf || !engine_conf->code_buf) {
|
|
ret = -ENOMEM;
|
|
goto free_bufs;
|
|
}
|
|
|
|
nand->ecc.ctx.priv = engine_conf;
|
|
nand->ecc.ctx.nsteps = nsteps;
|
|
nand->ecc.ctx.total = nsteps * code_size;
|
|
|
|
ret = nand_ecc_sw_bch_init(nand);
|
|
if (ret)
|
|
goto free_bufs;
|
|
|
|
/* Verify the layout validity */
|
|
if (mtd_ooblayout_count_eccbytes(mtd) !=
|
|
nand->ecc.ctx.nsteps * engine_conf->code_size) {
|
|
pr_err("Invalid ECC layout\n");
|
|
ret = -EINVAL;
|
|
goto cleanup_bch_ctx;
|
|
}
|
|
|
|
return 0;
|
|
|
|
cleanup_bch_ctx:
|
|
nand_ecc_sw_bch_cleanup(nand);
|
|
free_bufs:
|
|
nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx);
|
|
kfree(engine_conf->calc_buf);
|
|
kfree(engine_conf->code_buf);
|
|
free_engine_conf:
|
|
kfree(engine_conf);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(nand_ecc_sw_bch_init_ctx);
|
|
|
|
void nand_ecc_sw_bch_cleanup_ctx(struct nand_device *nand)
|
|
{
|
|
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
|
|
|
if (engine_conf) {
|
|
nand_ecc_sw_bch_cleanup(nand);
|
|
nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx);
|
|
kfree(engine_conf->calc_buf);
|
|
kfree(engine_conf->code_buf);
|
|
kfree(engine_conf);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(nand_ecc_sw_bch_cleanup_ctx);
|
|
|
|
static int nand_ecc_sw_bch_prepare_io_req(struct nand_device *nand,
|
|
struct nand_page_io_req *req)
|
|
{
|
|
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
int eccsize = nand->ecc.ctx.conf.step_size;
|
|
int eccbytes = engine_conf->code_size;
|
|
int eccsteps = nand->ecc.ctx.nsteps;
|
|
int total = nand->ecc.ctx.total;
|
|
u8 *ecccalc = engine_conf->calc_buf;
|
|
const u8 *data;
|
|
int i;
|
|
|
|
/* Nothing to do for a raw operation */
|
|
if (req->mode == MTD_OPS_RAW)
|
|
return 0;
|
|
|
|
/* This engine does not provide BBM/free OOB bytes protection */
|
|
if (!req->datalen)
|
|
return 0;
|
|
|
|
nand_ecc_tweak_req(&engine_conf->req_ctx, req);
|
|
|
|
/* No more preparation for page read */
|
|
if (req->type == NAND_PAGE_READ)
|
|
return 0;
|
|
|
|
/* Preparation for page write: derive the ECC bytes and place them */
|
|
for (i = 0, data = req->databuf.out;
|
|
eccsteps;
|
|
eccsteps--, i += eccbytes, data += eccsize)
|
|
nand_ecc_sw_bch_calculate(nand, data, &ecccalc[i]);
|
|
|
|
return mtd_ooblayout_set_eccbytes(mtd, ecccalc, (void *)req->oobbuf.out,
|
|
0, total);
|
|
}
|
|
|
|
static int nand_ecc_sw_bch_finish_io_req(struct nand_device *nand,
|
|
struct nand_page_io_req *req)
|
|
{
|
|
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
int eccsize = nand->ecc.ctx.conf.step_size;
|
|
int total = nand->ecc.ctx.total;
|
|
int eccbytes = engine_conf->code_size;
|
|
int eccsteps = nand->ecc.ctx.nsteps;
|
|
u8 *ecccalc = engine_conf->calc_buf;
|
|
u8 *ecccode = engine_conf->code_buf;
|
|
unsigned int max_bitflips = 0;
|
|
u8 *data = req->databuf.in;
|
|
int i, ret;
|
|
|
|
/* Nothing to do for a raw operation */
|
|
if (req->mode == MTD_OPS_RAW)
|
|
return 0;
|
|
|
|
/* This engine does not provide BBM/free OOB bytes protection */
|
|
if (!req->datalen)
|
|
return 0;
|
|
|
|
/* No more preparation for page write */
|
|
if (req->type == NAND_PAGE_WRITE) {
|
|
nand_ecc_restore_req(&engine_conf->req_ctx, req);
|
|
return 0;
|
|
}
|
|
|
|
/* Finish a page read: retrieve the (raw) ECC bytes*/
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecccode, req->oobbuf.in, 0,
|
|
total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Calculate the ECC bytes */
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, data += eccsize)
|
|
nand_ecc_sw_bch_calculate(nand, data, &ecccalc[i]);
|
|
|
|
/* Finish a page read: compare and correct */
|
|
for (eccsteps = nand->ecc.ctx.nsteps, i = 0, data = req->databuf.in;
|
|
eccsteps;
|
|
eccsteps--, i += eccbytes, data += eccsize) {
|
|
int stat = nand_ecc_sw_bch_correct(nand, data,
|
|
&ecccode[i],
|
|
&ecccalc[i]);
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
|
|
nand_ecc_restore_req(&engine_conf->req_ctx, req);
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static const struct nand_ecc_engine_ops nand_ecc_sw_bch_engine_ops = {
|
|
.init_ctx = nand_ecc_sw_bch_init_ctx,
|
|
.cleanup_ctx = nand_ecc_sw_bch_cleanup_ctx,
|
|
.prepare_io_req = nand_ecc_sw_bch_prepare_io_req,
|
|
.finish_io_req = nand_ecc_sw_bch_finish_io_req,
|
|
};
|
|
|
|
static struct nand_ecc_engine nand_ecc_sw_bch_engine = {
|
|
.ops = &nand_ecc_sw_bch_engine_ops,
|
|
};
|
|
|
|
struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void)
|
|
{
|
|
return &nand_ecc_sw_bch_engine;
|
|
}
|
|
EXPORT_SYMBOL(nand_ecc_sw_bch_get_engine);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
|
|
MODULE_DESCRIPTION("NAND software BCH ECC support");
|