mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-09 14:43:16 +00:00
0aaa68532e
Joey reports that booting 52-bit VA capable builds on 52-bit VA capable CPUs is broken since commit 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible"). This is due to the fact that the primary CPU reads the vabits_actual variable before it has been assigned. The reason for deferring the assignment of vabits_actual was that we try to perform as few stores to memory as we can with the MMU and caches off, due to the cache coherency issues it creates. Since __cpu_setup() [which is where the read of vabits_actual occurs] is also called on the secondary boot path, we cannot just read the CPU ID registers directly, given that the size of the VA space is decided by the capabilities of the primary CPU. So let's read vabits_actual only on the secondary boot path, and read the CPU ID registers directly on the primary boot path, by making it a function parameter of __cpu_setup(). To ensure that all users of vabits_actual (including kasan_early_init()) observe the correct value, move the assignment of vabits_actual back into asm code, but still defer it to after the MMU and caches have been enabled. Cc: Will Deacon <will@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Fixes: 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible") Reported-by: Joey Gouly <joey.gouly@arm.com> Co-developed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220701111045.2944309-1-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
834 lines
24 KiB
ArmAsm
834 lines
24 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Low-level CPU initialisation
|
|
* Based on arch/arm/kernel/head.S
|
|
*
|
|
* Copyright (C) 1994-2002 Russell King
|
|
* Copyright (C) 2003-2012 ARM Ltd.
|
|
* Authors: Catalin Marinas <catalin.marinas@arm.com>
|
|
* Will Deacon <will.deacon@arm.com>
|
|
*/
|
|
|
|
#include <linux/linkage.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <asm/asm_pointer_auth.h>
|
|
#include <asm/assembler.h>
|
|
#include <asm/boot.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/el2_setup.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/image.h>
|
|
#include <asm/kernel-pgtable.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/pgtable-hwdef.h>
|
|
#include <asm/page.h>
|
|
#include <asm/scs.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/virt.h>
|
|
|
|
#include "efi-header.S"
|
|
|
|
#if (PAGE_OFFSET & 0x1fffff) != 0
|
|
#error PAGE_OFFSET must be at least 2MB aligned
|
|
#endif
|
|
|
|
/*
|
|
* Kernel startup entry point.
|
|
* ---------------------------
|
|
*
|
|
* The requirements are:
|
|
* MMU = off, D-cache = off, I-cache = on or off,
|
|
* x0 = physical address to the FDT blob.
|
|
*
|
|
* Note that the callee-saved registers are used for storing variables
|
|
* that are useful before the MMU is enabled. The allocations are described
|
|
* in the entry routines.
|
|
*/
|
|
__HEAD
|
|
/*
|
|
* DO NOT MODIFY. Image header expected by Linux boot-loaders.
|
|
*/
|
|
efi_signature_nop // special NOP to identity as PE/COFF executable
|
|
b primary_entry // branch to kernel start, magic
|
|
.quad 0 // Image load offset from start of RAM, little-endian
|
|
le64sym _kernel_size_le // Effective size of kernel image, little-endian
|
|
le64sym _kernel_flags_le // Informative flags, little-endian
|
|
.quad 0 // reserved
|
|
.quad 0 // reserved
|
|
.quad 0 // reserved
|
|
.ascii ARM64_IMAGE_MAGIC // Magic number
|
|
.long .Lpe_header_offset // Offset to the PE header.
|
|
|
|
__EFI_PE_HEADER
|
|
|
|
__INIT
|
|
|
|
/*
|
|
* The following callee saved general purpose registers are used on the
|
|
* primary lowlevel boot path:
|
|
*
|
|
* Register Scope Purpose
|
|
* x20 primary_entry() .. __primary_switch() CPU boot mode
|
|
* x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0
|
|
* x22 create_idmap() .. start_kernel() ID map VA of the DT blob
|
|
* x23 primary_entry() .. start_kernel() physical misalignment/KASLR offset
|
|
* x24 __primary_switch() linear map KASLR seed
|
|
* x25 primary_entry() .. start_kernel() supported VA size
|
|
* x28 create_idmap() callee preserved temp register
|
|
*/
|
|
SYM_CODE_START(primary_entry)
|
|
bl preserve_boot_args
|
|
bl init_kernel_el // w0=cpu_boot_mode
|
|
mov x20, x0
|
|
bl create_idmap
|
|
|
|
/*
|
|
* The following calls CPU setup code, see arch/arm64/mm/proc.S for
|
|
* details.
|
|
* On return, the CPU will be ready for the MMU to be turned on and
|
|
* the TCR will have been set.
|
|
*/
|
|
#if VA_BITS > 48
|
|
mrs_s x0, SYS_ID_AA64MMFR2_EL1
|
|
tst x0, #0xf << ID_AA64MMFR2_LVA_SHIFT
|
|
mov x0, #VA_BITS
|
|
mov x25, #VA_BITS_MIN
|
|
csel x25, x25, x0, eq
|
|
mov x0, x25
|
|
#endif
|
|
bl __cpu_setup // initialise processor
|
|
b __primary_switch
|
|
SYM_CODE_END(primary_entry)
|
|
|
|
/*
|
|
* Preserve the arguments passed by the bootloader in x0 .. x3
|
|
*/
|
|
SYM_CODE_START_LOCAL(preserve_boot_args)
|
|
mov x21, x0 // x21=FDT
|
|
|
|
adr_l x0, boot_args // record the contents of
|
|
stp x21, x1, [x0] // x0 .. x3 at kernel entry
|
|
stp x2, x3, [x0, #16]
|
|
|
|
dmb sy // needed before dc ivac with
|
|
// MMU off
|
|
|
|
add x1, x0, #0x20 // 4 x 8 bytes
|
|
b dcache_inval_poc // tail call
|
|
SYM_CODE_END(preserve_boot_args)
|
|
|
|
SYM_FUNC_START_LOCAL(clear_page_tables)
|
|
/*
|
|
* Clear the init page tables.
|
|
*/
|
|
adrp x0, init_pg_dir
|
|
adrp x1, init_pg_end
|
|
sub x2, x1, x0
|
|
mov x1, xzr
|
|
b __pi_memset // tail call
|
|
SYM_FUNC_END(clear_page_tables)
|
|
|
|
/*
|
|
* Macro to populate page table entries, these entries can be pointers to the next level
|
|
* or last level entries pointing to physical memory.
|
|
*
|
|
* tbl: page table address
|
|
* rtbl: pointer to page table or physical memory
|
|
* index: start index to write
|
|
* eindex: end index to write - [index, eindex] written to
|
|
* flags: flags for pagetable entry to or in
|
|
* inc: increment to rtbl between each entry
|
|
* tmp1: temporary variable
|
|
*
|
|
* Preserves: tbl, eindex, flags, inc
|
|
* Corrupts: index, tmp1
|
|
* Returns: rtbl
|
|
*/
|
|
.macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
|
|
.Lpe\@: phys_to_pte \tmp1, \rtbl
|
|
orr \tmp1, \tmp1, \flags // tmp1 = table entry
|
|
str \tmp1, [\tbl, \index, lsl #3]
|
|
add \rtbl, \rtbl, \inc // rtbl = pa next level
|
|
add \index, \index, #1
|
|
cmp \index, \eindex
|
|
b.ls .Lpe\@
|
|
.endm
|
|
|
|
/*
|
|
* Compute indices of table entries from virtual address range. If multiple entries
|
|
* were needed in the previous page table level then the next page table level is assumed
|
|
* to be composed of multiple pages. (This effectively scales the end index).
|
|
*
|
|
* vstart: virtual address of start of range
|
|
* vend: virtual address of end of range - we map [vstart, vend]
|
|
* shift: shift used to transform virtual address into index
|
|
* order: #imm 2log(number of entries in page table)
|
|
* istart: index in table corresponding to vstart
|
|
* iend: index in table corresponding to vend
|
|
* count: On entry: how many extra entries were required in previous level, scales
|
|
* our end index.
|
|
* On exit: returns how many extra entries required for next page table level
|
|
*
|
|
* Preserves: vstart, vend
|
|
* Returns: istart, iend, count
|
|
*/
|
|
.macro compute_indices, vstart, vend, shift, order, istart, iend, count
|
|
ubfx \istart, \vstart, \shift, \order
|
|
ubfx \iend, \vend, \shift, \order
|
|
add \iend, \iend, \count, lsl \order
|
|
sub \count, \iend, \istart
|
|
.endm
|
|
|
|
/*
|
|
* Map memory for specified virtual address range. Each level of page table needed supports
|
|
* multiple entries. If a level requires n entries the next page table level is assumed to be
|
|
* formed from n pages.
|
|
*
|
|
* tbl: location of page table
|
|
* rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
|
|
* vstart: virtual address of start of range
|
|
* vend: virtual address of end of range - we map [vstart, vend - 1]
|
|
* flags: flags to use to map last level entries
|
|
* phys: physical address corresponding to vstart - physical memory is contiguous
|
|
* order: #imm 2log(number of entries in PGD table)
|
|
*
|
|
* If extra_shift is set, an extra level will be populated if the end address does
|
|
* not fit in 'extra_shift' bits. This assumes vend is in the TTBR0 range.
|
|
*
|
|
* Temporaries: istart, iend, tmp, count, sv - these need to be different registers
|
|
* Preserves: vstart, flags
|
|
* Corrupts: tbl, rtbl, vend, istart, iend, tmp, count, sv
|
|
*/
|
|
.macro map_memory, tbl, rtbl, vstart, vend, flags, phys, order, istart, iend, tmp, count, sv, extra_shift
|
|
sub \vend, \vend, #1
|
|
add \rtbl, \tbl, #PAGE_SIZE
|
|
mov \count, #0
|
|
|
|
.ifnb \extra_shift
|
|
tst \vend, #~((1 << (\extra_shift)) - 1)
|
|
b.eq .L_\@
|
|
compute_indices \vstart, \vend, #\extra_shift, #(PAGE_SHIFT - 3), \istart, \iend, \count
|
|
mov \sv, \rtbl
|
|
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
|
|
mov \tbl, \sv
|
|
.endif
|
|
.L_\@:
|
|
compute_indices \vstart, \vend, #PGDIR_SHIFT, #\order, \istart, \iend, \count
|
|
mov \sv, \rtbl
|
|
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
|
|
mov \tbl, \sv
|
|
|
|
#if SWAPPER_PGTABLE_LEVELS > 3
|
|
compute_indices \vstart, \vend, #PUD_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
|
|
mov \sv, \rtbl
|
|
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
|
|
mov \tbl, \sv
|
|
#endif
|
|
|
|
#if SWAPPER_PGTABLE_LEVELS > 2
|
|
compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
|
|
mov \sv, \rtbl
|
|
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
|
|
mov \tbl, \sv
|
|
#endif
|
|
|
|
compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
|
|
bic \rtbl, \phys, #SWAPPER_BLOCK_SIZE - 1
|
|
populate_entries \tbl, \rtbl, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
|
|
.endm
|
|
|
|
/*
|
|
* Remap a subregion created with the map_memory macro with modified attributes
|
|
* or output address. The entire remapped region must have been covered in the
|
|
* invocation of map_memory.
|
|
*
|
|
* x0: last level table address (returned in first argument to map_memory)
|
|
* x1: start VA of the existing mapping
|
|
* x2: start VA of the region to update
|
|
* x3: end VA of the region to update (exclusive)
|
|
* x4: start PA associated with the region to update
|
|
* x5: attributes to set on the updated region
|
|
* x6: order of the last level mappings
|
|
*/
|
|
SYM_FUNC_START_LOCAL(remap_region)
|
|
sub x3, x3, #1 // make end inclusive
|
|
|
|
// Get the index offset for the start of the last level table
|
|
lsr x1, x1, x6
|
|
bfi x1, xzr, #0, #PAGE_SHIFT - 3
|
|
|
|
// Derive the start and end indexes into the last level table
|
|
// associated with the provided region
|
|
lsr x2, x2, x6
|
|
lsr x3, x3, x6
|
|
sub x2, x2, x1
|
|
sub x3, x3, x1
|
|
|
|
mov x1, #1
|
|
lsl x6, x1, x6 // block size at this level
|
|
|
|
populate_entries x0, x4, x2, x3, x5, x6, x7
|
|
ret
|
|
SYM_FUNC_END(remap_region)
|
|
|
|
SYM_FUNC_START_LOCAL(create_idmap)
|
|
mov x28, lr
|
|
/*
|
|
* The ID map carries a 1:1 mapping of the physical address range
|
|
* covered by the loaded image, which could be anywhere in DRAM. This
|
|
* means that the required size of the VA (== PA) space is decided at
|
|
* boot time, and could be more than the configured size of the VA
|
|
* space for ordinary kernel and user space mappings.
|
|
*
|
|
* There are three cases to consider here:
|
|
* - 39 <= VA_BITS < 48, and the ID map needs up to 48 VA bits to cover
|
|
* the placement of the image. In this case, we configure one extra
|
|
* level of translation on the fly for the ID map only. (This case
|
|
* also covers 42-bit VA/52-bit PA on 64k pages).
|
|
*
|
|
* - VA_BITS == 48, and the ID map needs more than 48 VA bits. This can
|
|
* only happen when using 64k pages, in which case we need to extend
|
|
* the root level table rather than add a level. Note that we can
|
|
* treat this case as 'always extended' as long as we take care not
|
|
* to program an unsupported T0SZ value into the TCR register.
|
|
*
|
|
* - Combinations that would require two additional levels of
|
|
* translation are not supported, e.g., VA_BITS==36 on 16k pages, or
|
|
* VA_BITS==39/4k pages with 5-level paging, where the input address
|
|
* requires more than 47 or 48 bits, respectively.
|
|
*/
|
|
#if (VA_BITS < 48)
|
|
#define IDMAP_PGD_ORDER (VA_BITS - PGDIR_SHIFT)
|
|
#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
|
|
|
|
/*
|
|
* If VA_BITS < 48, we have to configure an additional table level.
|
|
* First, we have to verify our assumption that the current value of
|
|
* VA_BITS was chosen such that all translation levels are fully
|
|
* utilised, and that lowering T0SZ will always result in an additional
|
|
* translation level to be configured.
|
|
*/
|
|
#if VA_BITS != EXTRA_SHIFT
|
|
#error "Mismatch between VA_BITS and page size/number of translation levels"
|
|
#endif
|
|
#else
|
|
#define IDMAP_PGD_ORDER (PHYS_MASK_SHIFT - PGDIR_SHIFT)
|
|
#define EXTRA_SHIFT
|
|
/*
|
|
* If VA_BITS == 48, we don't have to configure an additional
|
|
* translation level, but the top-level table has more entries.
|
|
*/
|
|
#endif
|
|
adrp x0, init_idmap_pg_dir
|
|
adrp x3, _text
|
|
adrp x6, _end + MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE
|
|
mov x7, SWAPPER_RX_MMUFLAGS
|
|
|
|
map_memory x0, x1, x3, x6, x7, x3, IDMAP_PGD_ORDER, x10, x11, x12, x13, x14, EXTRA_SHIFT
|
|
|
|
/* Remap the kernel page tables r/w in the ID map */
|
|
adrp x1, _text
|
|
adrp x2, init_pg_dir
|
|
adrp x3, init_pg_end
|
|
bic x4, x2, #SWAPPER_BLOCK_SIZE - 1
|
|
mov x5, SWAPPER_RW_MMUFLAGS
|
|
mov x6, #SWAPPER_BLOCK_SHIFT
|
|
bl remap_region
|
|
|
|
/* Remap the FDT after the kernel image */
|
|
adrp x1, _text
|
|
adrp x22, _end + SWAPPER_BLOCK_SIZE
|
|
bic x2, x22, #SWAPPER_BLOCK_SIZE - 1
|
|
bfi x22, x21, #0, #SWAPPER_BLOCK_SHIFT // remapped FDT address
|
|
add x3, x2, #MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE
|
|
bic x4, x21, #SWAPPER_BLOCK_SIZE - 1
|
|
mov x5, SWAPPER_RW_MMUFLAGS
|
|
mov x6, #SWAPPER_BLOCK_SHIFT
|
|
bl remap_region
|
|
|
|
/*
|
|
* Since the page tables have been populated with non-cacheable
|
|
* accesses (MMU disabled), invalidate those tables again to
|
|
* remove any speculatively loaded cache lines.
|
|
*/
|
|
dmb sy
|
|
|
|
adrp x0, init_idmap_pg_dir
|
|
adrp x1, init_idmap_pg_end
|
|
bl dcache_inval_poc
|
|
ret x28
|
|
SYM_FUNC_END(create_idmap)
|
|
|
|
SYM_FUNC_START_LOCAL(create_kernel_mapping)
|
|
adrp x0, init_pg_dir
|
|
mov_q x5, KIMAGE_VADDR // compile time __va(_text)
|
|
add x5, x5, x23 // add KASLR displacement
|
|
adrp x6, _end // runtime __pa(_end)
|
|
adrp x3, _text // runtime __pa(_text)
|
|
sub x6, x6, x3 // _end - _text
|
|
add x6, x6, x5 // runtime __va(_end)
|
|
mov x7, SWAPPER_RW_MMUFLAGS
|
|
|
|
map_memory x0, x1, x5, x6, x7, x3, (VA_BITS - PGDIR_SHIFT), x10, x11, x12, x13, x14
|
|
|
|
dsb ishst // sync with page table walker
|
|
ret
|
|
SYM_FUNC_END(create_kernel_mapping)
|
|
|
|
/*
|
|
* Initialize CPU registers with task-specific and cpu-specific context.
|
|
*
|
|
* Create a final frame record at task_pt_regs(current)->stackframe, so
|
|
* that the unwinder can identify the final frame record of any task by
|
|
* its location in the task stack. We reserve the entire pt_regs space
|
|
* for consistency with user tasks and kthreads.
|
|
*/
|
|
.macro init_cpu_task tsk, tmp1, tmp2
|
|
msr sp_el0, \tsk
|
|
|
|
ldr \tmp1, [\tsk, #TSK_STACK]
|
|
add sp, \tmp1, #THREAD_SIZE
|
|
sub sp, sp, #PT_REGS_SIZE
|
|
|
|
stp xzr, xzr, [sp, #S_STACKFRAME]
|
|
add x29, sp, #S_STACKFRAME
|
|
|
|
scs_load \tsk
|
|
|
|
adr_l \tmp1, __per_cpu_offset
|
|
ldr w\tmp2, [\tsk, #TSK_TI_CPU]
|
|
ldr \tmp1, [\tmp1, \tmp2, lsl #3]
|
|
set_this_cpu_offset \tmp1
|
|
.endm
|
|
|
|
/*
|
|
* The following fragment of code is executed with the MMU enabled.
|
|
*
|
|
* x0 = __pa(KERNEL_START)
|
|
*/
|
|
SYM_FUNC_START_LOCAL(__primary_switched)
|
|
adr_l x4, init_task
|
|
init_cpu_task x4, x5, x6
|
|
|
|
adr_l x8, vectors // load VBAR_EL1 with virtual
|
|
msr vbar_el1, x8 // vector table address
|
|
isb
|
|
|
|
stp x29, x30, [sp, #-16]!
|
|
mov x29, sp
|
|
|
|
str_l x21, __fdt_pointer, x5 // Save FDT pointer
|
|
|
|
ldr_l x4, kimage_vaddr // Save the offset between
|
|
sub x4, x4, x0 // the kernel virtual and
|
|
str_l x4, kimage_voffset, x5 // physical mappings
|
|
|
|
mov x0, x20
|
|
bl set_cpu_boot_mode_flag
|
|
|
|
// Clear BSS
|
|
adr_l x0, __bss_start
|
|
mov x1, xzr
|
|
adr_l x2, __bss_stop
|
|
sub x2, x2, x0
|
|
bl __pi_memset
|
|
dsb ishst // Make zero page visible to PTW
|
|
|
|
#if VA_BITS > 48
|
|
adr_l x8, vabits_actual // Set this early so KASAN early init
|
|
str x25, [x8] // ... observes the correct value
|
|
dc civac, x8 // Make visible to booting secondaries
|
|
#endif
|
|
|
|
#ifdef CONFIG_RANDOMIZE_BASE
|
|
adrp x5, memstart_offset_seed // Save KASLR linear map seed
|
|
strh w24, [x5, :lo12:memstart_offset_seed]
|
|
#endif
|
|
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
|
|
bl kasan_early_init
|
|
#endif
|
|
mov x0, x22 // pass FDT address in x0
|
|
bl init_feature_override // Parse cpu feature overrides
|
|
mov x0, x20
|
|
bl switch_to_vhe // Prefer VHE if possible
|
|
ldp x29, x30, [sp], #16
|
|
bl start_kernel
|
|
ASM_BUG()
|
|
SYM_FUNC_END(__primary_switched)
|
|
|
|
/*
|
|
* end early head section, begin head code that is also used for
|
|
* hotplug and needs to have the same protections as the text region
|
|
*/
|
|
.section ".idmap.text","awx"
|
|
|
|
/*
|
|
* Starting from EL2 or EL1, configure the CPU to execute at the highest
|
|
* reachable EL supported by the kernel in a chosen default state. If dropping
|
|
* from EL2 to EL1, configure EL2 before configuring EL1.
|
|
*
|
|
* Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
|
|
* SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
|
|
*
|
|
* Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
|
|
* booted in EL1 or EL2 respectively.
|
|
*/
|
|
SYM_FUNC_START(init_kernel_el)
|
|
mrs x0, CurrentEL
|
|
cmp x0, #CurrentEL_EL2
|
|
b.eq init_el2
|
|
|
|
SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
|
|
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
|
|
msr sctlr_el1, x0
|
|
isb
|
|
mov_q x0, INIT_PSTATE_EL1
|
|
msr spsr_el1, x0
|
|
msr elr_el1, lr
|
|
mov w0, #BOOT_CPU_MODE_EL1
|
|
eret
|
|
|
|
SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
|
|
mov_q x0, HCR_HOST_NVHE_FLAGS
|
|
msr hcr_el2, x0
|
|
isb
|
|
|
|
init_el2_state
|
|
|
|
/* Hypervisor stub */
|
|
adr_l x0, __hyp_stub_vectors
|
|
msr vbar_el2, x0
|
|
isb
|
|
|
|
/*
|
|
* Fruity CPUs seem to have HCR_EL2.E2H set to RES1,
|
|
* making it impossible to start in nVHE mode. Is that
|
|
* compliant with the architecture? Absolutely not!
|
|
*/
|
|
mrs x0, hcr_el2
|
|
and x0, x0, #HCR_E2H
|
|
cbz x0, 1f
|
|
|
|
/* Switching to VHE requires a sane SCTLR_EL1 as a start */
|
|
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
|
|
msr_s SYS_SCTLR_EL12, x0
|
|
|
|
/*
|
|
* Force an eret into a helper "function", and let it return
|
|
* to our original caller... This makes sure that we have
|
|
* initialised the basic PSTATE state.
|
|
*/
|
|
mov x0, #INIT_PSTATE_EL2
|
|
msr spsr_el1, x0
|
|
adr x0, __cpu_stick_to_vhe
|
|
msr elr_el1, x0
|
|
eret
|
|
|
|
1:
|
|
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
|
|
msr sctlr_el1, x0
|
|
|
|
msr elr_el2, lr
|
|
mov w0, #BOOT_CPU_MODE_EL2
|
|
eret
|
|
|
|
__cpu_stick_to_vhe:
|
|
mov x0, #HVC_VHE_RESTART
|
|
hvc #0
|
|
mov x0, #BOOT_CPU_MODE_EL2
|
|
ret
|
|
SYM_FUNC_END(init_kernel_el)
|
|
|
|
/*
|
|
* Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
|
|
* in w0. See arch/arm64/include/asm/virt.h for more info.
|
|
*/
|
|
SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
|
|
adr_l x1, __boot_cpu_mode
|
|
cmp w0, #BOOT_CPU_MODE_EL2
|
|
b.ne 1f
|
|
add x1, x1, #4
|
|
1: str w0, [x1] // Save CPU boot mode
|
|
ret
|
|
SYM_FUNC_END(set_cpu_boot_mode_flag)
|
|
|
|
/*
|
|
* This provides a "holding pen" for platforms to hold all secondary
|
|
* cores are held until we're ready for them to initialise.
|
|
*/
|
|
SYM_FUNC_START(secondary_holding_pen)
|
|
bl init_kernel_el // w0=cpu_boot_mode
|
|
mrs x2, mpidr_el1
|
|
mov_q x1, MPIDR_HWID_BITMASK
|
|
and x2, x2, x1
|
|
adr_l x3, secondary_holding_pen_release
|
|
pen: ldr x4, [x3]
|
|
cmp x4, x2
|
|
b.eq secondary_startup
|
|
wfe
|
|
b pen
|
|
SYM_FUNC_END(secondary_holding_pen)
|
|
|
|
/*
|
|
* Secondary entry point that jumps straight into the kernel. Only to
|
|
* be used where CPUs are brought online dynamically by the kernel.
|
|
*/
|
|
SYM_FUNC_START(secondary_entry)
|
|
bl init_kernel_el // w0=cpu_boot_mode
|
|
b secondary_startup
|
|
SYM_FUNC_END(secondary_entry)
|
|
|
|
SYM_FUNC_START_LOCAL(secondary_startup)
|
|
/*
|
|
* Common entry point for secondary CPUs.
|
|
*/
|
|
mov x20, x0 // preserve boot mode
|
|
bl switch_to_vhe
|
|
bl __cpu_secondary_check52bitva
|
|
#if VA_BITS > 48
|
|
ldr_l x0, vabits_actual
|
|
#endif
|
|
bl __cpu_setup // initialise processor
|
|
adrp x1, swapper_pg_dir
|
|
adrp x2, idmap_pg_dir
|
|
bl __enable_mmu
|
|
ldr x8, =__secondary_switched
|
|
br x8
|
|
SYM_FUNC_END(secondary_startup)
|
|
|
|
SYM_FUNC_START_LOCAL(__secondary_switched)
|
|
mov x0, x20
|
|
bl set_cpu_boot_mode_flag
|
|
str_l xzr, __early_cpu_boot_status, x3
|
|
adr_l x5, vectors
|
|
msr vbar_el1, x5
|
|
isb
|
|
|
|
adr_l x0, secondary_data
|
|
ldr x2, [x0, #CPU_BOOT_TASK]
|
|
cbz x2, __secondary_too_slow
|
|
|
|
init_cpu_task x2, x1, x3
|
|
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
ptrauth_keys_init_cpu x2, x3, x4, x5
|
|
#endif
|
|
|
|
bl secondary_start_kernel
|
|
ASM_BUG()
|
|
SYM_FUNC_END(__secondary_switched)
|
|
|
|
SYM_FUNC_START_LOCAL(__secondary_too_slow)
|
|
wfe
|
|
wfi
|
|
b __secondary_too_slow
|
|
SYM_FUNC_END(__secondary_too_slow)
|
|
|
|
/*
|
|
* The booting CPU updates the failed status @__early_cpu_boot_status,
|
|
* with MMU turned off.
|
|
*
|
|
* update_early_cpu_boot_status tmp, status
|
|
* - Corrupts tmp1, tmp2
|
|
* - Writes 'status' to __early_cpu_boot_status and makes sure
|
|
* it is committed to memory.
|
|
*/
|
|
|
|
.macro update_early_cpu_boot_status status, tmp1, tmp2
|
|
mov \tmp2, #\status
|
|
adr_l \tmp1, __early_cpu_boot_status
|
|
str \tmp2, [\tmp1]
|
|
dmb sy
|
|
dc ivac, \tmp1 // Invalidate potentially stale cache line
|
|
.endm
|
|
|
|
/*
|
|
* Enable the MMU.
|
|
*
|
|
* x0 = SCTLR_EL1 value for turning on the MMU.
|
|
* x1 = TTBR1_EL1 value
|
|
* x2 = ID map root table address
|
|
*
|
|
* Returns to the caller via x30/lr. This requires the caller to be covered
|
|
* by the .idmap.text section.
|
|
*
|
|
* Checks if the selected granule size is supported by the CPU.
|
|
* If it isn't, park the CPU
|
|
*/
|
|
SYM_FUNC_START(__enable_mmu)
|
|
mrs x3, ID_AA64MMFR0_EL1
|
|
ubfx x3, x3, #ID_AA64MMFR0_TGRAN_SHIFT, 4
|
|
cmp x3, #ID_AA64MMFR0_TGRAN_SUPPORTED_MIN
|
|
b.lt __no_granule_support
|
|
cmp x3, #ID_AA64MMFR0_TGRAN_SUPPORTED_MAX
|
|
b.gt __no_granule_support
|
|
phys_to_ttbr x2, x2
|
|
msr ttbr0_el1, x2 // load TTBR0
|
|
load_ttbr1 x1, x1, x3
|
|
|
|
set_sctlr_el1 x0
|
|
|
|
ret
|
|
SYM_FUNC_END(__enable_mmu)
|
|
|
|
SYM_FUNC_START(__cpu_secondary_check52bitva)
|
|
#if VA_BITS > 48
|
|
ldr_l x0, vabits_actual
|
|
cmp x0, #52
|
|
b.ne 2f
|
|
|
|
mrs_s x0, SYS_ID_AA64MMFR2_EL1
|
|
and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
|
|
cbnz x0, 2f
|
|
|
|
update_early_cpu_boot_status \
|
|
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
|
|
1: wfe
|
|
wfi
|
|
b 1b
|
|
|
|
#endif
|
|
2: ret
|
|
SYM_FUNC_END(__cpu_secondary_check52bitva)
|
|
|
|
SYM_FUNC_START_LOCAL(__no_granule_support)
|
|
/* Indicate that this CPU can't boot and is stuck in the kernel */
|
|
update_early_cpu_boot_status \
|
|
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
|
|
1:
|
|
wfe
|
|
wfi
|
|
b 1b
|
|
SYM_FUNC_END(__no_granule_support)
|
|
|
|
#ifdef CONFIG_RELOCATABLE
|
|
SYM_FUNC_START_LOCAL(__relocate_kernel)
|
|
/*
|
|
* Iterate over each entry in the relocation table, and apply the
|
|
* relocations in place.
|
|
*/
|
|
adr_l x9, __rela_start
|
|
adr_l x10, __rela_end
|
|
mov_q x11, KIMAGE_VADDR // default virtual offset
|
|
add x11, x11, x23 // actual virtual offset
|
|
|
|
0: cmp x9, x10
|
|
b.hs 1f
|
|
ldp x12, x13, [x9], #24
|
|
ldr x14, [x9, #-8]
|
|
cmp w13, #R_AARCH64_RELATIVE
|
|
b.ne 0b
|
|
add x14, x14, x23 // relocate
|
|
str x14, [x12, x23]
|
|
b 0b
|
|
|
|
1:
|
|
#ifdef CONFIG_RELR
|
|
/*
|
|
* Apply RELR relocations.
|
|
*
|
|
* RELR is a compressed format for storing relative relocations. The
|
|
* encoded sequence of entries looks like:
|
|
* [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
|
|
*
|
|
* i.e. start with an address, followed by any number of bitmaps. The
|
|
* address entry encodes 1 relocation. The subsequent bitmap entries
|
|
* encode up to 63 relocations each, at subsequent offsets following
|
|
* the last address entry.
|
|
*
|
|
* The bitmap entries must have 1 in the least significant bit. The
|
|
* assumption here is that an address cannot have 1 in lsb. Odd
|
|
* addresses are not supported. Any odd addresses are stored in the RELA
|
|
* section, which is handled above.
|
|
*
|
|
* Excluding the least significant bit in the bitmap, each non-zero
|
|
* bit in the bitmap represents a relocation to be applied to
|
|
* a corresponding machine word that follows the base address
|
|
* word. The second least significant bit represents the machine
|
|
* word immediately following the initial address, and each bit
|
|
* that follows represents the next word, in linear order. As such,
|
|
* a single bitmap can encode up to 63 relocations in a 64-bit object.
|
|
*
|
|
* In this implementation we store the address of the next RELR table
|
|
* entry in x9, the address being relocated by the current address or
|
|
* bitmap entry in x13 and the address being relocated by the current
|
|
* bit in x14.
|
|
*/
|
|
adr_l x9, __relr_start
|
|
adr_l x10, __relr_end
|
|
|
|
2: cmp x9, x10
|
|
b.hs 7f
|
|
ldr x11, [x9], #8
|
|
tbnz x11, #0, 3f // branch to handle bitmaps
|
|
add x13, x11, x23
|
|
ldr x12, [x13] // relocate address entry
|
|
add x12, x12, x23
|
|
str x12, [x13], #8 // adjust to start of bitmap
|
|
b 2b
|
|
|
|
3: mov x14, x13
|
|
4: lsr x11, x11, #1
|
|
cbz x11, 6f
|
|
tbz x11, #0, 5f // skip bit if not set
|
|
ldr x12, [x14] // relocate bit
|
|
add x12, x12, x23
|
|
str x12, [x14]
|
|
|
|
5: add x14, x14, #8 // move to next bit's address
|
|
b 4b
|
|
|
|
6: /*
|
|
* Move to the next bitmap's address. 8 is the word size, and 63 is the
|
|
* number of significant bits in a bitmap entry.
|
|
*/
|
|
add x13, x13, #(8 * 63)
|
|
b 2b
|
|
|
|
7:
|
|
#endif
|
|
ret
|
|
|
|
SYM_FUNC_END(__relocate_kernel)
|
|
#endif
|
|
|
|
SYM_FUNC_START_LOCAL(__primary_switch)
|
|
adrp x1, reserved_pg_dir
|
|
adrp x2, init_idmap_pg_dir
|
|
bl __enable_mmu
|
|
#ifdef CONFIG_RELOCATABLE
|
|
adrp x23, KERNEL_START
|
|
and x23, x23, MIN_KIMG_ALIGN - 1
|
|
#ifdef CONFIG_RANDOMIZE_BASE
|
|
mov x0, x22
|
|
adrp x1, init_pg_end
|
|
mov sp, x1
|
|
mov x29, xzr
|
|
bl __pi_kaslr_early_init
|
|
and x24, x0, #SZ_2M - 1 // capture memstart offset seed
|
|
bic x0, x0, #SZ_2M - 1
|
|
orr x23, x23, x0 // record kernel offset
|
|
#endif
|
|
#endif
|
|
bl clear_page_tables
|
|
bl create_kernel_mapping
|
|
|
|
adrp x1, init_pg_dir
|
|
load_ttbr1 x1, x1, x2
|
|
#ifdef CONFIG_RELOCATABLE
|
|
bl __relocate_kernel
|
|
#endif
|
|
ldr x8, =__primary_switched
|
|
adrp x0, KERNEL_START // __pa(KERNEL_START)
|
|
br x8
|
|
SYM_FUNC_END(__primary_switch)
|