Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

364 lines
8.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Interrupt request handling routines. On the
* Sparc the IRQs are basically 'cast in stone'
* and you are supposed to probe the prom's device
* node trees to find out who's got which IRQ.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
* Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
* Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
* Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
*/
#include <linux/kernel_stat.h>
#include <linux/seq_file.h>
#include <linux/export.h>
#include <asm/cacheflush.h>
#include <asm/cpudata.h>
#include <asm/setup.h>
#include <asm/pcic.h>
#include <asm/leon.h>
#include "kernel.h"
#include "irq.h"
/* platform specific irq setup */
struct sparc_config sparc_config;
unsigned long arch_local_irq_save(void)
{
unsigned long retval;
unsigned long tmp;
__asm__ __volatile__(
"rd %%psr, %0\n\t"
"or %0, %2, %1\n\t"
"wr %1, 0, %%psr\n\t"
"nop; nop; nop\n"
: "=&r" (retval), "=r" (tmp)
: "i" (PSR_PIL)
: "memory");
return retval;
}
EXPORT_SYMBOL(arch_local_irq_save);
void arch_local_irq_enable(void)
{
unsigned long tmp;
__asm__ __volatile__(
"rd %%psr, %0\n\t"
"andn %0, %1, %0\n\t"
"wr %0, 0, %%psr\n\t"
"nop; nop; nop\n"
: "=&r" (tmp)
: "i" (PSR_PIL)
: "memory");
}
EXPORT_SYMBOL(arch_local_irq_enable);
void arch_local_irq_restore(unsigned long old_psr)
{
unsigned long tmp;
__asm__ __volatile__(
"rd %%psr, %0\n\t"
"and %2, %1, %2\n\t"
"andn %0, %1, %0\n\t"
"wr %0, %2, %%psr\n\t"
"nop; nop; nop\n"
: "=&r" (tmp)
: "i" (PSR_PIL), "r" (old_psr)
: "memory");
}
EXPORT_SYMBOL(arch_local_irq_restore);
/*
* Dave Redman (djhr@tadpole.co.uk)
*
* IRQ numbers.. These are no longer restricted to 15..
*
* this is done to enable SBUS cards and onboard IO to be masked
* correctly. using the interrupt level isn't good enough.
*
* For example:
* A device interrupting at sbus level6 and the Floppy both come in
* at IRQ11, but enabling and disabling them requires writing to
* different bits in the SLAVIO/SEC.
*
* As a result of these changes sun4m machines could now support
* directed CPU interrupts using the existing enable/disable irq code
* with tweaks.
*
* Sun4d complicates things even further. IRQ numbers are arbitrary
* 32-bit values in that case. Since this is similar to sparc64,
* we adopt a virtual IRQ numbering scheme as is done there.
* Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS
* just becomes a limit of how many interrupt sources we can handle in
* a single system. Even fully loaded SS2000 machines top off at
* about 32 interrupt sources or so, therefore a NR_IRQS value of 64
* is more than enough.
*
* We keep a map of per-PIL enable interrupts. These get wired
* up via the irq_chip->startup() method which gets invoked by
* the generic IRQ layer during request_irq().
*/
/* Table of allocated irqs. Unused entries has irq == 0 */
static struct irq_bucket irq_table[NR_IRQS];
/* Protect access to irq_table */
static DEFINE_SPINLOCK(irq_table_lock);
/* Map between the irq identifier used in hw to the irq_bucket. */
struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
/* Protect access to irq_map */
static DEFINE_SPINLOCK(irq_map_lock);
/* Allocate a new irq from the irq_table */
unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
{
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&irq_table_lock, flags);
for (i = 1; i < NR_IRQS; i++) {
if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
goto found;
}
for (i = 1; i < NR_IRQS; i++) {
if (!irq_table[i].irq)
break;
}
if (i < NR_IRQS) {
irq_table[i].real_irq = real_irq;
irq_table[i].irq = i;
irq_table[i].pil = pil;
} else {
printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
i = 0;
}
found:
spin_unlock_irqrestore(&irq_table_lock, flags);
return i;
}
/* Based on a single pil handler_irq may need to call several
* interrupt handlers. Use irq_map as entry to irq_table,
* and let each entry in irq_table point to the next entry.
*/
void irq_link(unsigned int irq)
{
struct irq_bucket *p;
unsigned long flags;
unsigned int pil;
BUG_ON(irq >= NR_IRQS);
spin_lock_irqsave(&irq_map_lock, flags);
p = &irq_table[irq];
pil = p->pil;
BUG_ON(pil >= SUN4D_MAX_IRQ);
p->next = irq_map[pil];
irq_map[pil] = p;
spin_unlock_irqrestore(&irq_map_lock, flags);
}
void irq_unlink(unsigned int irq)
{
struct irq_bucket *p, **pnext;
unsigned long flags;
BUG_ON(irq >= NR_IRQS);
spin_lock_irqsave(&irq_map_lock, flags);
p = &irq_table[irq];
BUG_ON(p->pil >= SUN4D_MAX_IRQ);
pnext = &irq_map[p->pil];
while (*pnext != p)
pnext = &(*pnext)->next;
*pnext = p->next;
spin_unlock_irqrestore(&irq_map_lock, flags);
}
/* /proc/interrupts printing */
int arch_show_interrupts(struct seq_file *p, int prec)
{
int j;
#ifdef CONFIG_SMP
seq_printf(p, "RES: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
seq_printf(p, " IPI rescheduling interrupts\n");
seq_printf(p, "CAL: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
seq_printf(p, " IPI function call interrupts\n");
#endif
seq_printf(p, "NMI: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).counter);
seq_printf(p, " Non-maskable interrupts\n");
return 0;
}
void handler_irq(unsigned int pil, struct pt_regs *regs)
{
struct pt_regs *old_regs;
struct irq_bucket *p;
BUG_ON(pil > 15);
old_regs = set_irq_regs(regs);
irq_enter();
p = irq_map[pil];
while (p) {
struct irq_bucket *next = p->next;
generic_handle_irq(p->irq);
p = next;
}
irq_exit();
set_irq_regs(old_regs);
}
#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
static unsigned int floppy_irq;
int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
{
unsigned int cpu_irq;
int err;
err = request_irq(irq, irq_handler, 0, "floppy", NULL);
if (err)
return -1;
/* Save for later use in floppy interrupt handler */
floppy_irq = irq;
cpu_irq = (irq & (NR_IRQS - 1));
/* Dork with trap table if we get this far. */
#define INSTANTIATE(table) \
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
SPARC_BRANCH((unsigned long) floppy_hardint, \
(unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
INSTANTIATE(sparc_ttable)
#if defined CONFIG_SMP
if (sparc_cpu_model != sparc_leon) {
struct tt_entry *trap_table;
trap_table = &trapbase_cpu1;
INSTANTIATE(trap_table)
trap_table = &trapbase_cpu2;
INSTANTIATE(trap_table)
trap_table = &trapbase_cpu3;
INSTANTIATE(trap_table)
}
#endif
#undef INSTANTIATE
/*
* XXX Correct thing whould be to flush only I- and D-cache lines
* which contain the handler in question. But as of time of the
* writing we have no CPU-neutral interface to fine-grained flushes.
*/
flush_cache_all();
return 0;
}
EXPORT_SYMBOL(sparc_floppy_request_irq);
/*
* These variables are used to access state from the assembler
* interrupt handler, floppy_hardint, so we cannot put these in
* the floppy driver image because that would not work in the
* modular case.
*/
volatile unsigned char *fdc_status;
EXPORT_SYMBOL(fdc_status);
char *pdma_vaddr;
EXPORT_SYMBOL(pdma_vaddr);
unsigned long pdma_size;
EXPORT_SYMBOL(pdma_size);
volatile int doing_pdma;
EXPORT_SYMBOL(doing_pdma);
char *pdma_base;
EXPORT_SYMBOL(pdma_base);
unsigned long pdma_areasize;
EXPORT_SYMBOL(pdma_areasize);
/* Use the generic irq support to call floppy_interrupt
* which was setup using request_irq() in sparc_floppy_request_irq().
* We only have one floppy interrupt so we do not need to check
* for additional handlers being wired up by irq_link()
*/
void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
{
struct pt_regs *old_regs;
old_regs = set_irq_regs(regs);
irq_enter();
generic_handle_irq(floppy_irq);
irq_exit();
set_irq_regs(old_regs);
}
#endif
/* djhr
* This could probably be made indirect too and assigned in the CPU
* bits of the code. That would be much nicer I think and would also
* fit in with the idea of being able to tune your kernel for your machine
* by removing unrequired machine and device support.
*
*/
void __init init_IRQ(void)
{
switch (sparc_cpu_model) {
case sun4m:
pcic_probe();
if (pcic_present())
sun4m_pci_init_IRQ();
else
sun4m_init_IRQ();
break;
case sun4d:
sun4d_init_IRQ();
break;
case sparc_leon:
leon_init_IRQ();
break;
default:
prom_printf("Cannot initialize IRQs on this Sun machine...");
break;
}
}