mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-16 18:26:42 +00:00
Sean Christopherson
1201f226c8
KVM: x86: Cache CPUID.0xD XSTATE offsets+sizes during module init
Snapshot the output of CPUID.0xD.[1..n] during kvm.ko initiliaization to avoid the overead of CPUID during runtime. The offset, size, and metadata for CPUID.0xD.[1..n] sub-leaves does not depend on XCR0 or XSS values, i.e. is constant for a given CPU, and thus can be cached during module load. On Intel's Emerald Rapids, CPUID is *wildly* expensive, to the point where recomputing XSAVE offsets and sizes results in a 4x increase in latency of nested VM-Enter and VM-Exit (nested transitions can trigger xstate_required_size() multiple times per transition), relative to using cached values. The issue is easily visible by running `perf top` while triggering nested transitions: kvm_update_cpuid_runtime() shows up at a whopping 50%. As measured via RDTSC from L2 (using KVM-Unit-Test's CPUID VM-Exit test and a slightly modified L1 KVM to handle CPUID in the fastpath), a nested roundtrip to emulate CPUID on Skylake (SKX), Icelake (ICX), and Emerald Rapids (EMR) takes: SKX 11650 ICX 22350 EMR 28850 Using cached values, the latency drops to: SKX 6850 ICX 9000 EMR 7900 The underlying issue is that CPUID itself is slow on ICX, and comically slow on EMR. The problem is exacerbated on CPUs which support XSAVES and/or XSAVEC, as KVM invokes xstate_required_size() twice on each runtime CPUID update, and because there are more supported XSAVE features (CPUID for supported XSAVE feature sub-leafs is significantly slower). SKX: CPUID.0xD.2 = 348 cycles CPUID.0xD.3 = 400 cycles CPUID.0xD.4 = 276 cycles CPUID.0xD.5 = 236 cycles <other sub-leaves are similar> EMR: CPUID.0xD.2 = 1138 cycles CPUID.0xD.3 = 1362 cycles CPUID.0xD.4 = 1068 cycles CPUID.0xD.5 = 910 cycles CPUID.0xD.6 = 914 cycles CPUID.0xD.7 = 1350 cycles CPUID.0xD.8 = 734 cycles CPUID.0xD.9 = 766 cycles CPUID.0xD.10 = 732 cycles CPUID.0xD.11 = 718 cycles CPUID.0xD.12 = 734 cycles CPUID.0xD.13 = 1700 cycles CPUID.0xD.14 = 1126 cycles CPUID.0xD.15 = 898 cycles CPUID.0xD.16 = 716 cycles CPUID.0xD.17 = 748 cycles CPUID.0xD.18 = 776 cycles Note, updating runtime CPUID information multiple times per nested transition is itself a flaw, especially since CPUID is a mandotory intercept on both Intel and AMD. E.g. KVM doesn't need to ensure emulated CPUID state is up-to-date while running L2. That flaw will be fixed in a future patch, as deferring runtime CPUID updates is more subtle than it appears at first glance, the benefits aren't super critical to have once the XSAVE issue is resolved, and caching CPUID output is desirable even if KVM's updates are deferred. Cc: Jim Mattson <jmattson@google.com> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20241211013302.1347853-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the reStructuredText markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.
Description
Languages
C
97.5%
Assembly
1%
Shell
0.6%
Python
0.3%
Makefile
0.3%