linux-stable/drivers/regulator/rtmv20-regulator.c
Bo Liu 43edba6b67
regulator: rtmv20: convert to use maple tree register cache
The maple tree register cache is based on a much more modern data structure
than the rbtree cache and makes optimisation choices which are probably
more appropriate for modern systems than those made by the rbtree cache.

Signed-off-by: Bo Liu <liubo03@inspur.com>
Link: https://msgid.link/r/20240320085740.4604-10-liubo03@inspur.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2024-03-25 00:48:23 +00:00

439 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0+
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/driver.h>
#define RTMV20_REG_DEVINFO 0x00
#define RTMV20_REG_PULSEDELAY 0x01
#define RTMV20_REG_PULSEWIDTH 0x03
#define RTMV20_REG_LDCTRL1 0x05
#define RTMV20_REG_ESPULSEWIDTH 0x06
#define RTMV20_REG_ESLDCTRL1 0x08
#define RTMV20_REG_LBP 0x0A
#define RTMV20_REG_LDCTRL2 0x0B
#define RTMV20_REG_FSIN1CTRL1 0x0D
#define RTMV20_REG_FSIN1CTRL3 0x0F
#define RTMV20_REG_FSIN2CTRL1 0x10
#define RTMV20_REG_FSIN2CTRL3 0x12
#define RTMV20_REG_ENCTRL 0x13
#define RTMV20_REG_STRBVSYNDLYL 0x29
#define RTMV20_REG_LDIRQ 0x30
#define RTMV20_REG_LDSTAT 0x40
#define RTMV20_REG_LDMASK 0x50
#define RTMV20_MAX_REGS (RTMV20_REG_LDMASK + 1)
#define RTMV20_VID_MASK GENMASK(7, 4)
#define RICHTEK_VID 0x80
#define RTMV20_LDCURR_MASK GENMASK(7, 0)
#define RTMV20_DELAY_MASK GENMASK(9, 0)
#define RTMV20_WIDTH_MASK GENMASK(13, 0)
#define RTMV20_WIDTH2_MASK GENMASK(7, 0)
#define RTMV20_LBPLVL_MASK GENMASK(3, 0)
#define RTMV20_LBPEN_MASK BIT(7)
#define RTMV20_STROBEPOL_MASK BIT(0)
#define RTMV20_VSYNPOL_MASK BIT(1)
#define RTMV20_FSINEN_MASK BIT(7)
#define RTMV20_ESEN_MASK BIT(6)
#define RTMV20_FSINOUT_MASK BIT(2)
#define LDENABLE_MASK (BIT(3) | BIT(0))
#define OTPEVT_MASK BIT(4)
#define SHORTEVT_MASK BIT(3)
#define OPENEVT_MASK BIT(2)
#define LBPEVT_MASK BIT(1)
#define OCPEVT_MASK BIT(0)
#define FAILEVT_MASK (SHORTEVT_MASK | OPENEVT_MASK | LBPEVT_MASK)
#define RTMV20_LSW_MINUA 0
#define RTMV20_LSW_MAXUA 6000000
#define RTMV20_LSW_STEPUA 30000
#define RTMV20_LSW_DEFAULTUA 3000000
#define RTMV20_I2CRDY_TIMEUS 200
#define RTMV20_CSRDY_TIMEUS 2000
struct rtmv20_priv {
struct device *dev;
struct regmap *regmap;
struct gpio_desc *enable_gpio;
struct regulator_dev *rdev;
};
static int rtmv20_lsw_enable(struct regulator_dev *rdev)
{
struct rtmv20_priv *priv = rdev_get_drvdata(rdev);
int ret;
gpiod_set_value(priv->enable_gpio, 1);
/* Wait for I2C can be accessed */
usleep_range(RTMV20_I2CRDY_TIMEUS, RTMV20_I2CRDY_TIMEUS + 100);
/* HW re-enable, disable cache only and sync regcache here */
regcache_cache_only(priv->regmap, false);
ret = regcache_sync(priv->regmap);
if (ret)
return ret;
return regulator_enable_regmap(rdev);
}
static int rtmv20_lsw_disable(struct regulator_dev *rdev)
{
struct rtmv20_priv *priv = rdev_get_drvdata(rdev);
int ret;
ret = regulator_disable_regmap(rdev);
if (ret)
return ret;
/* Mark the regcache as dirty and cache only before HW disabled */
regcache_cache_only(priv->regmap, true);
regcache_mark_dirty(priv->regmap);
gpiod_set_value(priv->enable_gpio, 0);
return 0;
}
static int rtmv20_lsw_set_current_limit(struct regulator_dev *rdev, int min_uA,
int max_uA)
{
int sel;
if (min_uA > RTMV20_LSW_MAXUA || max_uA < RTMV20_LSW_MINUA)
return -EINVAL;
if (max_uA > RTMV20_LSW_MAXUA)
max_uA = RTMV20_LSW_MAXUA;
sel = (max_uA - RTMV20_LSW_MINUA) / RTMV20_LSW_STEPUA;
/* Ensure the selected setting is still in range */
if ((sel * RTMV20_LSW_STEPUA + RTMV20_LSW_MINUA) < min_uA)
return -EINVAL;
sel <<= ffs(rdev->desc->csel_mask) - 1;
return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
rdev->desc->csel_mask, sel);
}
static int rtmv20_lsw_get_current_limit(struct regulator_dev *rdev)
{
unsigned int val;
int ret;
ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
if (ret)
return ret;
val &= rdev->desc->csel_mask;
val >>= ffs(rdev->desc->csel_mask) - 1;
return val * RTMV20_LSW_STEPUA + RTMV20_LSW_MINUA;
}
static const struct regulator_ops rtmv20_regulator_ops = {
.set_current_limit = rtmv20_lsw_set_current_limit,
.get_current_limit = rtmv20_lsw_get_current_limit,
.enable = rtmv20_lsw_enable,
.disable = rtmv20_lsw_disable,
.is_enabled = regulator_is_enabled_regmap,
};
static const struct regulator_desc rtmv20_lsw_desc = {
.name = "rtmv20,lsw",
.of_match = of_match_ptr("lsw"),
.type = REGULATOR_CURRENT,
.owner = THIS_MODULE,
.ops = &rtmv20_regulator_ops,
.csel_reg = RTMV20_REG_LDCTRL1,
.csel_mask = RTMV20_LDCURR_MASK,
.enable_reg = RTMV20_REG_ENCTRL,
.enable_mask = LDENABLE_MASK,
.enable_time = RTMV20_CSRDY_TIMEUS,
};
static irqreturn_t rtmv20_irq_handler(int irq, void *data)
{
struct rtmv20_priv *priv = data;
unsigned int val;
int ret;
ret = regmap_read(priv->regmap, RTMV20_REG_LDIRQ, &val);
if (ret) {
dev_err(priv->dev, "Failed to get irq flags\n");
return IRQ_NONE;
}
if (val & OTPEVT_MASK)
regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_OVER_TEMP, NULL);
if (val & OCPEVT_MASK)
regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_OVER_CURRENT, NULL);
if (val & FAILEVT_MASK)
regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_FAIL, NULL);
return IRQ_HANDLED;
}
static u32 clamp_to_selector(u32 val, u32 min, u32 max, u32 step)
{
u32 retval = clamp_val(val, min, max);
return (retval - min) / step;
}
static int rtmv20_properties_init(struct rtmv20_priv *priv)
{
const struct {
const char *name;
u32 def;
u32 min;
u32 max;
u32 step;
u32 addr;
u32 mask;
} props[] = {
{ "richtek,ld-pulse-delay-us", 0, 0, 100000, 100, RTMV20_REG_PULSEDELAY,
RTMV20_DELAY_MASK },
{ "richtek,ld-pulse-width-us", 1200, 0, 10000, 1, RTMV20_REG_PULSEWIDTH,
RTMV20_WIDTH_MASK },
{ "richtek,fsin1-delay-us", 23000, 0, 100000, 100, RTMV20_REG_FSIN1CTRL1,
RTMV20_DELAY_MASK },
{ "richtek,fsin1-width-us", 160, 40, 10000, 40, RTMV20_REG_FSIN1CTRL3,
RTMV20_WIDTH2_MASK },
{ "richtek,fsin2-delay-us", 23000, 0, 100000, 100, RTMV20_REG_FSIN2CTRL1,
RTMV20_DELAY_MASK },
{ "richtek,fsin2-width-us", 160, 40, 10000, 40, RTMV20_REG_FSIN2CTRL3,
RTMV20_WIDTH2_MASK },
{ "richtek,es-pulse-width-us", 1200, 0, 10000, 1, RTMV20_REG_ESPULSEWIDTH,
RTMV20_WIDTH_MASK },
{ "richtek,es-ld-current-microamp", 3000000, 0, 6000000, 30000,
RTMV20_REG_ESLDCTRL1, RTMV20_LDCURR_MASK },
{ "richtek,lbp-level-microvolt", 2700000, 2400000, 3700000, 100000, RTMV20_REG_LBP,
RTMV20_LBPLVL_MASK },
{ "richtek,lbp-enable", 0, 0, 1, 1, RTMV20_REG_LBP, RTMV20_LBPEN_MASK },
{ "richtek,strobe-polarity-high", 1, 0, 1, 1, RTMV20_REG_LDCTRL2,
RTMV20_STROBEPOL_MASK },
{ "richtek,vsync-polarity-high", 1, 0, 1, 1, RTMV20_REG_LDCTRL2,
RTMV20_VSYNPOL_MASK },
{ "richtek,fsin-enable", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_FSINEN_MASK },
{ "richtek,fsin-output", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_FSINOUT_MASK },
{ "richtek,es-enable", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_ESEN_MASK },
};
int i, ret;
for (i = 0; i < ARRAY_SIZE(props); i++) {
__be16 bval16;
u16 val16;
u32 temp;
int significant_bit = fls(props[i].mask);
int shift = ffs(props[i].mask) - 1;
if (props[i].max > 1) {
ret = device_property_read_u32(priv->dev, props[i].name, &temp);
if (ret)
temp = props[i].def;
} else
temp = device_property_read_bool(priv->dev, props[i].name);
temp = clamp_to_selector(temp, props[i].min, props[i].max, props[i].step);
/* If significant bit is over 8, two byte access, others one */
if (significant_bit > 8) {
ret = regmap_raw_read(priv->regmap, props[i].addr, &bval16, sizeof(bval16));
if (ret)
return ret;
val16 = be16_to_cpu(bval16);
val16 &= ~props[i].mask;
val16 |= (temp << shift);
bval16 = cpu_to_be16(val16);
ret = regmap_raw_write(priv->regmap, props[i].addr, &bval16,
sizeof(bval16));
} else {
ret = regmap_update_bits(priv->regmap, props[i].addr, props[i].mask,
temp << shift);
}
if (ret)
return ret;
}
return 0;
}
static int rtmv20_check_chip_exist(struct rtmv20_priv *priv)
{
unsigned int val;
int ret;
ret = regmap_read(priv->regmap, RTMV20_REG_DEVINFO, &val);
if (ret)
return ret;
if ((val & RTMV20_VID_MASK) != RICHTEK_VID)
return -ENODEV;
return 0;
}
static bool rtmv20_is_accessible_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case RTMV20_REG_DEVINFO ... RTMV20_REG_STRBVSYNDLYL:
case RTMV20_REG_LDIRQ:
case RTMV20_REG_LDSTAT:
case RTMV20_REG_LDMASK:
return true;
}
return false;
}
static bool rtmv20_is_volatile_reg(struct device *dev, unsigned int reg)
{
if (reg == RTMV20_REG_LDIRQ || reg == RTMV20_REG_LDSTAT)
return true;
return false;
}
static const struct regmap_config rtmv20_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_MAPLE,
.max_register = RTMV20_REG_LDMASK,
.num_reg_defaults_raw = RTMV20_MAX_REGS,
.writeable_reg = rtmv20_is_accessible_reg,
.readable_reg = rtmv20_is_accessible_reg,
.volatile_reg = rtmv20_is_volatile_reg,
};
static int rtmv20_probe(struct i2c_client *i2c)
{
struct rtmv20_priv *priv;
struct regulator_config config = {};
int ret;
priv = devm_kzalloc(&i2c->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = &i2c->dev;
/* Before regmap register, configure HW enable to make I2C accessible */
priv->enable_gpio = devm_gpiod_get(&i2c->dev, "enable", GPIOD_OUT_HIGH);
if (IS_ERR(priv->enable_gpio)) {
dev_err(&i2c->dev, "Failed to get enable gpio\n");
return PTR_ERR(priv->enable_gpio);
}
/* Wait for I2C can be accessed */
usleep_range(RTMV20_I2CRDY_TIMEUS, RTMV20_I2CRDY_TIMEUS + 100);
priv->regmap = devm_regmap_init_i2c(i2c, &rtmv20_regmap_config);
if (IS_ERR(priv->regmap)) {
dev_err(&i2c->dev, "Failed to allocate register map\n");
return PTR_ERR(priv->regmap);
}
ret = rtmv20_check_chip_exist(priv);
if (ret) {
dev_err(&i2c->dev, "Chip vendor info is not matched\n");
return ret;
}
ret = rtmv20_properties_init(priv);
if (ret) {
dev_err(&i2c->dev, "Failed to init properties\n");
return ret;
}
/*
* keep in shutdown mode to minimize the current consumption
* and also mark regcache as dirty
*/
regcache_cache_only(priv->regmap, true);
regcache_mark_dirty(priv->regmap);
gpiod_set_value(priv->enable_gpio, 0);
config.dev = &i2c->dev;
config.regmap = priv->regmap;
config.driver_data = priv;
priv->rdev = devm_regulator_register(&i2c->dev, &rtmv20_lsw_desc, &config);
if (IS_ERR(priv->rdev)) {
dev_err(&i2c->dev, "Failed to register regulator\n");
return PTR_ERR(priv->rdev);
}
/* Unmask all events before IRQ registered */
ret = regmap_write(priv->regmap, RTMV20_REG_LDMASK, 0);
if (ret)
return ret;
return devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL, rtmv20_irq_handler,
IRQF_ONESHOT, dev_name(&i2c->dev), priv);
}
static int __maybe_unused rtmv20_suspend(struct device *dev)
{
struct i2c_client *i2c = to_i2c_client(dev);
/*
* When system suspend, disable irq to prevent interrupt trigger
* during I2C bus suspend
*/
disable_irq(i2c->irq);
if (device_may_wakeup(dev))
enable_irq_wake(i2c->irq);
return 0;
}
static int __maybe_unused rtmv20_resume(struct device *dev)
{
struct i2c_client *i2c = to_i2c_client(dev);
/* Enable irq after I2C bus already resume */
enable_irq(i2c->irq);
if (device_may_wakeup(dev))
disable_irq_wake(i2c->irq);
return 0;
}
static SIMPLE_DEV_PM_OPS(rtmv20_pm, rtmv20_suspend, rtmv20_resume);
static const struct of_device_id __maybe_unused rtmv20_of_id[] = {
{ .compatible = "richtek,rtmv20", },
{}
};
MODULE_DEVICE_TABLE(of, rtmv20_of_id);
static struct i2c_driver rtmv20_driver = {
.driver = {
.name = "rtmv20",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = of_match_ptr(rtmv20_of_id),
.pm = &rtmv20_pm,
},
.probe = rtmv20_probe,
};
module_i2c_driver(rtmv20_driver);
MODULE_AUTHOR("ChiYuan Huang <cy_huang@richtek.com>");
MODULE_DESCRIPTION("Richtek RTMV20 Regulator Driver");
MODULE_LICENSE("GPL v2");