mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 13:43:51 +00:00
3c164eb946
Right now the nested code allows unmap operations on a shadow stage-2 to block unconditionally. This is wrong in a couple places, such as a non-blocking MMU notifier or on the back of a sched_in() notifier as part of shadow MMU recycling. Carry through whether or not blocking is allowed to kvm_pgtable_stage2_unmap(). This 'fixes' an issue where stage-2 MMU reclaim would precipitate a stack overflow from a pile of kvm_sched_in() callbacks, all trying to recycle a stage-2 MMU. Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20241007233028.2236133-3-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2255 lines
59 KiB
C
2255 lines
59 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/mman.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/io.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <trace/events/kvm.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_pgtable.h>
|
|
#include <asm/kvm_ras.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/virt.h>
|
|
|
|
#include "trace.h"
|
|
|
|
static struct kvm_pgtable *hyp_pgtable;
|
|
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
|
|
|
|
static unsigned long __ro_after_init hyp_idmap_start;
|
|
static unsigned long __ro_after_init hyp_idmap_end;
|
|
static phys_addr_t __ro_after_init hyp_idmap_vector;
|
|
|
|
static unsigned long __ro_after_init io_map_base;
|
|
|
|
static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
|
|
phys_addr_t size)
|
|
{
|
|
phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
|
|
|
|
return (boundary - 1 < end - 1) ? boundary : end;
|
|
}
|
|
|
|
static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
|
|
|
|
return __stage2_range_addr_end(addr, end, size);
|
|
}
|
|
|
|
/*
|
|
* Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
|
|
* we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
|
|
* CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
|
|
* long will also starve other vCPUs. We have to also make sure that the page
|
|
* tables are not freed while we released the lock.
|
|
*/
|
|
static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
|
|
phys_addr_t end,
|
|
int (*fn)(struct kvm_pgtable *, u64, u64),
|
|
bool resched)
|
|
{
|
|
struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
|
|
int ret;
|
|
u64 next;
|
|
|
|
do {
|
|
struct kvm_pgtable *pgt = mmu->pgt;
|
|
if (!pgt)
|
|
return -EINVAL;
|
|
|
|
next = stage2_range_addr_end(addr, end);
|
|
ret = fn(pgt, addr, next - addr);
|
|
if (ret)
|
|
break;
|
|
|
|
if (resched && next != end)
|
|
cond_resched_rwlock_write(&kvm->mmu_lock);
|
|
} while (addr = next, addr != end);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define stage2_apply_range_resched(mmu, addr, end, fn) \
|
|
stage2_apply_range(mmu, addr, end, fn, true)
|
|
|
|
/*
|
|
* Get the maximum number of page-tables pages needed to split a range
|
|
* of blocks into PAGE_SIZE PTEs. It assumes the range is already
|
|
* mapped at level 2, or at level 1 if allowed.
|
|
*/
|
|
static int kvm_mmu_split_nr_page_tables(u64 range)
|
|
{
|
|
int n = 0;
|
|
|
|
if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
|
|
n += DIV_ROUND_UP(range, PUD_SIZE);
|
|
n += DIV_ROUND_UP(range, PMD_SIZE);
|
|
return n;
|
|
}
|
|
|
|
static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
|
|
{
|
|
struct kvm_mmu_memory_cache *cache;
|
|
u64 chunk_size, min;
|
|
|
|
if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
|
|
return true;
|
|
|
|
chunk_size = kvm->arch.mmu.split_page_chunk_size;
|
|
min = kvm_mmu_split_nr_page_tables(chunk_size);
|
|
cache = &kvm->arch.mmu.split_page_cache;
|
|
return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
|
|
}
|
|
|
|
static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
|
|
phys_addr_t end)
|
|
{
|
|
struct kvm_mmu_memory_cache *cache;
|
|
struct kvm_pgtable *pgt;
|
|
int ret, cache_capacity;
|
|
u64 next, chunk_size;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
chunk_size = kvm->arch.mmu.split_page_chunk_size;
|
|
cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
|
|
|
|
if (chunk_size == 0)
|
|
return 0;
|
|
|
|
cache = &kvm->arch.mmu.split_page_cache;
|
|
|
|
do {
|
|
if (need_split_memcache_topup_or_resched(kvm)) {
|
|
write_unlock(&kvm->mmu_lock);
|
|
cond_resched();
|
|
/* Eager page splitting is best-effort. */
|
|
ret = __kvm_mmu_topup_memory_cache(cache,
|
|
cache_capacity,
|
|
cache_capacity);
|
|
write_lock(&kvm->mmu_lock);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
pgt = kvm->arch.mmu.pgt;
|
|
if (!pgt)
|
|
return -EINVAL;
|
|
|
|
next = __stage2_range_addr_end(addr, end, chunk_size);
|
|
ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
|
|
if (ret)
|
|
break;
|
|
} while (addr = next, addr != end);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
|
|
{
|
|
return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
|
|
* @kvm: pointer to kvm structure.
|
|
*
|
|
* Interface to HYP function to flush all VM TLB entries
|
|
*/
|
|
int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
|
|
{
|
|
kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
|
|
gfn_t gfn, u64 nr_pages)
|
|
{
|
|
kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
|
|
gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
static bool kvm_is_device_pfn(unsigned long pfn)
|
|
{
|
|
return !pfn_is_map_memory(pfn);
|
|
}
|
|
|
|
static void *stage2_memcache_zalloc_page(void *arg)
|
|
{
|
|
struct kvm_mmu_memory_cache *mc = arg;
|
|
void *virt;
|
|
|
|
/* Allocated with __GFP_ZERO, so no need to zero */
|
|
virt = kvm_mmu_memory_cache_alloc(mc);
|
|
if (virt)
|
|
kvm_account_pgtable_pages(virt, 1);
|
|
return virt;
|
|
}
|
|
|
|
static void *kvm_host_zalloc_pages_exact(size_t size)
|
|
{
|
|
return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
}
|
|
|
|
static void *kvm_s2_zalloc_pages_exact(size_t size)
|
|
{
|
|
void *virt = kvm_host_zalloc_pages_exact(size);
|
|
|
|
if (virt)
|
|
kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
|
|
return virt;
|
|
}
|
|
|
|
static void kvm_s2_free_pages_exact(void *virt, size_t size)
|
|
{
|
|
kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
|
|
free_pages_exact(virt, size);
|
|
}
|
|
|
|
static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
|
|
|
|
static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
|
|
{
|
|
struct page *page = container_of(head, struct page, rcu_head);
|
|
void *pgtable = page_to_virt(page);
|
|
s8 level = page_private(page);
|
|
|
|
kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
|
|
}
|
|
|
|
static void stage2_free_unlinked_table(void *addr, s8 level)
|
|
{
|
|
struct page *page = virt_to_page(addr);
|
|
|
|
set_page_private(page, (unsigned long)level);
|
|
call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
|
|
}
|
|
|
|
static void kvm_host_get_page(void *addr)
|
|
{
|
|
get_page(virt_to_page(addr));
|
|
}
|
|
|
|
static void kvm_host_put_page(void *addr)
|
|
{
|
|
put_page(virt_to_page(addr));
|
|
}
|
|
|
|
static void kvm_s2_put_page(void *addr)
|
|
{
|
|
struct page *p = virt_to_page(addr);
|
|
/* Dropping last refcount, the page will be freed */
|
|
if (page_count(p) == 1)
|
|
kvm_account_pgtable_pages(addr, -1);
|
|
put_page(p);
|
|
}
|
|
|
|
static int kvm_host_page_count(void *addr)
|
|
{
|
|
return page_count(virt_to_page(addr));
|
|
}
|
|
|
|
static phys_addr_t kvm_host_pa(void *addr)
|
|
{
|
|
return __pa(addr);
|
|
}
|
|
|
|
static void *kvm_host_va(phys_addr_t phys)
|
|
{
|
|
return __va(phys);
|
|
}
|
|
|
|
static void clean_dcache_guest_page(void *va, size_t size)
|
|
{
|
|
__clean_dcache_guest_page(va, size);
|
|
}
|
|
|
|
static void invalidate_icache_guest_page(void *va, size_t size)
|
|
{
|
|
__invalidate_icache_guest_page(va, size);
|
|
}
|
|
|
|
/*
|
|
* Unmapping vs dcache management:
|
|
*
|
|
* If a guest maps certain memory pages as uncached, all writes will
|
|
* bypass the data cache and go directly to RAM. However, the CPUs
|
|
* can still speculate reads (not writes) and fill cache lines with
|
|
* data.
|
|
*
|
|
* Those cache lines will be *clean* cache lines though, so a
|
|
* clean+invalidate operation is equivalent to an invalidate
|
|
* operation, because no cache lines are marked dirty.
|
|
*
|
|
* Those clean cache lines could be filled prior to an uncached write
|
|
* by the guest, and the cache coherent IO subsystem would therefore
|
|
* end up writing old data to disk.
|
|
*
|
|
* This is why right after unmapping a page/section and invalidating
|
|
* the corresponding TLBs, we flush to make sure the IO subsystem will
|
|
* never hit in the cache.
|
|
*
|
|
* This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
|
|
* we then fully enforce cacheability of RAM, no matter what the guest
|
|
* does.
|
|
*/
|
|
/**
|
|
* __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
|
|
* @mmu: The KVM stage-2 MMU pointer
|
|
* @start: The intermediate physical base address of the range to unmap
|
|
* @size: The size of the area to unmap
|
|
* @may_block: Whether or not we are permitted to block
|
|
*
|
|
* Clear a range of stage-2 mappings, lowering the various ref-counts. Must
|
|
* be called while holding mmu_lock (unless for freeing the stage2 pgd before
|
|
* destroying the VM), otherwise another faulting VCPU may come in and mess
|
|
* with things behind our backs.
|
|
*/
|
|
static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
|
|
bool may_block)
|
|
{
|
|
struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
|
|
phys_addr_t end = start + size;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
WARN_ON(size & ~PAGE_MASK);
|
|
WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
|
|
may_block));
|
|
}
|
|
|
|
void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
|
|
u64 size, bool may_block)
|
|
{
|
|
__unmap_stage2_range(mmu, start, size, may_block);
|
|
}
|
|
|
|
void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_flush);
|
|
}
|
|
|
|
static void stage2_flush_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
|
|
|
|
kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
|
|
}
|
|
|
|
/**
|
|
* stage2_flush_vm - Invalidate cache for pages mapped in stage 2
|
|
* @kvm: The struct kvm pointer
|
|
*
|
|
* Go through the stage 2 page tables and invalidate any cache lines
|
|
* backing memory already mapped to the VM.
|
|
*/
|
|
static void stage2_flush_vm(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int idx, bkt;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
write_lock(&kvm->mmu_lock);
|
|
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, bkt, slots)
|
|
stage2_flush_memslot(kvm, memslot);
|
|
|
|
kvm_nested_s2_flush(kvm);
|
|
|
|
write_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
/**
|
|
* free_hyp_pgds - free Hyp-mode page tables
|
|
*/
|
|
void __init free_hyp_pgds(void)
|
|
{
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
if (hyp_pgtable) {
|
|
kvm_pgtable_hyp_destroy(hyp_pgtable);
|
|
kfree(hyp_pgtable);
|
|
hyp_pgtable = NULL;
|
|
}
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
}
|
|
|
|
static bool kvm_host_owns_hyp_mappings(void)
|
|
{
|
|
if (is_kernel_in_hyp_mode())
|
|
return false;
|
|
|
|
if (static_branch_likely(&kvm_protected_mode_initialized))
|
|
return false;
|
|
|
|
/*
|
|
* This can happen at boot time when __create_hyp_mappings() is called
|
|
* after the hyp protection has been enabled, but the static key has
|
|
* not been flipped yet.
|
|
*/
|
|
if (!hyp_pgtable && is_protected_kvm_enabled())
|
|
return false;
|
|
|
|
WARN_ON(!hyp_pgtable);
|
|
|
|
return true;
|
|
}
|
|
|
|
int __create_hyp_mappings(unsigned long start, unsigned long size,
|
|
unsigned long phys, enum kvm_pgtable_prot prot)
|
|
{
|
|
int err;
|
|
|
|
if (WARN_ON(!kvm_host_owns_hyp_mappings()))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
|
|
{
|
|
if (!is_vmalloc_addr(kaddr)) {
|
|
BUG_ON(!virt_addr_valid(kaddr));
|
|
return __pa(kaddr);
|
|
} else {
|
|
return page_to_phys(vmalloc_to_page(kaddr)) +
|
|
offset_in_page(kaddr);
|
|
}
|
|
}
|
|
|
|
struct hyp_shared_pfn {
|
|
u64 pfn;
|
|
int count;
|
|
struct rb_node node;
|
|
};
|
|
|
|
static DEFINE_MUTEX(hyp_shared_pfns_lock);
|
|
static struct rb_root hyp_shared_pfns = RB_ROOT;
|
|
|
|
static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
|
|
struct rb_node **parent)
|
|
{
|
|
struct hyp_shared_pfn *this;
|
|
|
|
*node = &hyp_shared_pfns.rb_node;
|
|
*parent = NULL;
|
|
while (**node) {
|
|
this = container_of(**node, struct hyp_shared_pfn, node);
|
|
*parent = **node;
|
|
if (this->pfn < pfn)
|
|
*node = &((**node)->rb_left);
|
|
else if (this->pfn > pfn)
|
|
*node = &((**node)->rb_right);
|
|
else
|
|
return this;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int share_pfn_hyp(u64 pfn)
|
|
{
|
|
struct rb_node **node, *parent;
|
|
struct hyp_shared_pfn *this;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&hyp_shared_pfns_lock);
|
|
this = find_shared_pfn(pfn, &node, &parent);
|
|
if (this) {
|
|
this->count++;
|
|
goto unlock;
|
|
}
|
|
|
|
this = kzalloc(sizeof(*this), GFP_KERNEL);
|
|
if (!this) {
|
|
ret = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
|
|
this->pfn = pfn;
|
|
this->count = 1;
|
|
rb_link_node(&this->node, parent, node);
|
|
rb_insert_color(&this->node, &hyp_shared_pfns);
|
|
ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
|
|
unlock:
|
|
mutex_unlock(&hyp_shared_pfns_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int unshare_pfn_hyp(u64 pfn)
|
|
{
|
|
struct rb_node **node, *parent;
|
|
struct hyp_shared_pfn *this;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&hyp_shared_pfns_lock);
|
|
this = find_shared_pfn(pfn, &node, &parent);
|
|
if (WARN_ON(!this)) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
this->count--;
|
|
if (this->count)
|
|
goto unlock;
|
|
|
|
rb_erase(&this->node, &hyp_shared_pfns);
|
|
kfree(this);
|
|
ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
|
|
unlock:
|
|
mutex_unlock(&hyp_shared_pfns_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_share_hyp(void *from, void *to)
|
|
{
|
|
phys_addr_t start, end, cur;
|
|
u64 pfn;
|
|
int ret;
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
return 0;
|
|
|
|
/*
|
|
* The share hcall maps things in the 'fixed-offset' region of the hyp
|
|
* VA space, so we can only share physically contiguous data-structures
|
|
* for now.
|
|
*/
|
|
if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
|
|
return -EINVAL;
|
|
|
|
if (kvm_host_owns_hyp_mappings())
|
|
return create_hyp_mappings(from, to, PAGE_HYP);
|
|
|
|
start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
|
|
end = PAGE_ALIGN(__pa(to));
|
|
for (cur = start; cur < end; cur += PAGE_SIZE) {
|
|
pfn = __phys_to_pfn(cur);
|
|
ret = share_pfn_hyp(pfn);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_unshare_hyp(void *from, void *to)
|
|
{
|
|
phys_addr_t start, end, cur;
|
|
u64 pfn;
|
|
|
|
if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
|
|
return;
|
|
|
|
start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
|
|
end = PAGE_ALIGN(__pa(to));
|
|
for (cur = start; cur < end; cur += PAGE_SIZE) {
|
|
pfn = __phys_to_pfn(cur);
|
|
WARN_ON(unshare_pfn_hyp(pfn));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
|
|
* @from: The virtual kernel start address of the range
|
|
* @to: The virtual kernel end address of the range (exclusive)
|
|
* @prot: The protection to be applied to this range
|
|
*
|
|
* The same virtual address as the kernel virtual address is also used
|
|
* in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
|
|
* physical pages.
|
|
*/
|
|
int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
|
|
{
|
|
phys_addr_t phys_addr;
|
|
unsigned long virt_addr;
|
|
unsigned long start = kern_hyp_va((unsigned long)from);
|
|
unsigned long end = kern_hyp_va((unsigned long)to);
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
return 0;
|
|
|
|
if (!kvm_host_owns_hyp_mappings())
|
|
return -EPERM;
|
|
|
|
start = start & PAGE_MASK;
|
|
end = PAGE_ALIGN(end);
|
|
|
|
for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
|
|
int err;
|
|
|
|
phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
|
|
err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
|
|
prot);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __hyp_alloc_private_va_range(unsigned long base)
|
|
{
|
|
lockdep_assert_held(&kvm_hyp_pgd_mutex);
|
|
|
|
if (!PAGE_ALIGNED(base))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Verify that BIT(VA_BITS - 1) hasn't been flipped by
|
|
* allocating the new area, as it would indicate we've
|
|
* overflowed the idmap/IO address range.
|
|
*/
|
|
if ((base ^ io_map_base) & BIT(VA_BITS - 1))
|
|
return -ENOMEM;
|
|
|
|
io_map_base = base;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hyp_alloc_private_va_range - Allocates a private VA range.
|
|
* @size: The size of the VA range to reserve.
|
|
* @haddr: The hypervisor virtual start address of the allocation.
|
|
*
|
|
* The private virtual address (VA) range is allocated below io_map_base
|
|
* and aligned based on the order of @size.
|
|
*
|
|
* Return: 0 on success or negative error code on failure.
|
|
*/
|
|
int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
|
|
{
|
|
unsigned long base;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
|
|
/*
|
|
* This assumes that we have enough space below the idmap
|
|
* page to allocate our VAs. If not, the check in
|
|
* __hyp_alloc_private_va_range() will kick. A potential
|
|
* alternative would be to detect that overflow and switch
|
|
* to an allocation above the idmap.
|
|
*
|
|
* The allocated size is always a multiple of PAGE_SIZE.
|
|
*/
|
|
size = PAGE_ALIGN(size);
|
|
base = io_map_base - size;
|
|
ret = __hyp_alloc_private_va_range(base);
|
|
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
|
|
if (!ret)
|
|
*haddr = base;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
|
|
unsigned long *haddr,
|
|
enum kvm_pgtable_prot prot)
|
|
{
|
|
unsigned long addr;
|
|
int ret = 0;
|
|
|
|
if (!kvm_host_owns_hyp_mappings()) {
|
|
addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
|
|
phys_addr, size, prot);
|
|
if (IS_ERR_VALUE(addr))
|
|
return addr;
|
|
*haddr = addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
size = PAGE_ALIGN(size + offset_in_page(phys_addr));
|
|
ret = hyp_alloc_private_va_range(size, &addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = __create_hyp_mappings(addr, size, phys_addr, prot);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*haddr = addr + offset_in_page(phys_addr);
|
|
return ret;
|
|
}
|
|
|
|
int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
|
|
{
|
|
unsigned long base;
|
|
size_t size;
|
|
int ret;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
/*
|
|
* Efficient stack verification using the PAGE_SHIFT bit implies
|
|
* an alignment of our allocation on the order of the size.
|
|
*/
|
|
size = PAGE_SIZE * 2;
|
|
base = ALIGN_DOWN(io_map_base - size, size);
|
|
|
|
ret = __hyp_alloc_private_va_range(base);
|
|
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
|
|
if (ret) {
|
|
kvm_err("Cannot allocate hyp stack guard page\n");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Since the stack grows downwards, map the stack to the page
|
|
* at the higher address and leave the lower guard page
|
|
* unbacked.
|
|
*
|
|
* Any valid stack address now has the PAGE_SHIFT bit as 1
|
|
* and addresses corresponding to the guard page have the
|
|
* PAGE_SHIFT bit as 0 - this is used for overflow detection.
|
|
*/
|
|
ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
|
|
PAGE_HYP);
|
|
if (ret)
|
|
kvm_err("Cannot map hyp stack\n");
|
|
|
|
*haddr = base + size;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* create_hyp_io_mappings - Map IO into both kernel and HYP
|
|
* @phys_addr: The physical start address which gets mapped
|
|
* @size: Size of the region being mapped
|
|
* @kaddr: Kernel VA for this mapping
|
|
* @haddr: HYP VA for this mapping
|
|
*/
|
|
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
|
|
void __iomem **kaddr,
|
|
void __iomem **haddr)
|
|
{
|
|
unsigned long addr;
|
|
int ret;
|
|
|
|
if (is_protected_kvm_enabled())
|
|
return -EPERM;
|
|
|
|
*kaddr = ioremap(phys_addr, size);
|
|
if (!*kaddr)
|
|
return -ENOMEM;
|
|
|
|
if (is_kernel_in_hyp_mode()) {
|
|
*haddr = *kaddr;
|
|
return 0;
|
|
}
|
|
|
|
ret = __create_hyp_private_mapping(phys_addr, size,
|
|
&addr, PAGE_HYP_DEVICE);
|
|
if (ret) {
|
|
iounmap(*kaddr);
|
|
*kaddr = NULL;
|
|
*haddr = NULL;
|
|
return ret;
|
|
}
|
|
|
|
*haddr = (void __iomem *)addr;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* create_hyp_exec_mappings - Map an executable range into HYP
|
|
* @phys_addr: The physical start address which gets mapped
|
|
* @size: Size of the region being mapped
|
|
* @haddr: HYP VA for this mapping
|
|
*/
|
|
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
|
|
void **haddr)
|
|
{
|
|
unsigned long addr;
|
|
int ret;
|
|
|
|
BUG_ON(is_kernel_in_hyp_mode());
|
|
|
|
ret = __create_hyp_private_mapping(phys_addr, size,
|
|
&addr, PAGE_HYP_EXEC);
|
|
if (ret) {
|
|
*haddr = NULL;
|
|
return ret;
|
|
}
|
|
|
|
*haddr = (void *)addr;
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
|
|
/* We shouldn't need any other callback to walk the PT */
|
|
.phys_to_virt = kvm_host_va,
|
|
};
|
|
|
|
static int get_user_mapping_size(struct kvm *kvm, u64 addr)
|
|
{
|
|
struct kvm_pgtable pgt = {
|
|
.pgd = (kvm_pteref_t)kvm->mm->pgd,
|
|
.ia_bits = vabits_actual,
|
|
.start_level = (KVM_PGTABLE_LAST_LEVEL -
|
|
ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
|
|
.mm_ops = &kvm_user_mm_ops,
|
|
};
|
|
unsigned long flags;
|
|
kvm_pte_t pte = 0; /* Keep GCC quiet... */
|
|
s8 level = S8_MAX;
|
|
int ret;
|
|
|
|
/*
|
|
* Disable IRQs so that we hazard against a concurrent
|
|
* teardown of the userspace page tables (which relies on
|
|
* IPI-ing threads).
|
|
*/
|
|
local_irq_save(flags);
|
|
ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
|
|
local_irq_restore(flags);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Not seeing an error, but not updating level? Something went
|
|
* deeply wrong...
|
|
*/
|
|
if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
|
|
return -EFAULT;
|
|
if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
|
|
return -EFAULT;
|
|
|
|
/* Oops, the userspace PTs are gone... Replay the fault */
|
|
if (!kvm_pte_valid(pte))
|
|
return -EAGAIN;
|
|
|
|
return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
|
|
}
|
|
|
|
static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
|
|
.zalloc_page = stage2_memcache_zalloc_page,
|
|
.zalloc_pages_exact = kvm_s2_zalloc_pages_exact,
|
|
.free_pages_exact = kvm_s2_free_pages_exact,
|
|
.free_unlinked_table = stage2_free_unlinked_table,
|
|
.get_page = kvm_host_get_page,
|
|
.put_page = kvm_s2_put_page,
|
|
.page_count = kvm_host_page_count,
|
|
.phys_to_virt = kvm_host_va,
|
|
.virt_to_phys = kvm_host_pa,
|
|
.dcache_clean_inval_poc = clean_dcache_guest_page,
|
|
.icache_inval_pou = invalidate_icache_guest_page,
|
|
};
|
|
|
|
static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
|
|
{
|
|
u32 kvm_ipa_limit = get_kvm_ipa_limit();
|
|
u64 mmfr0, mmfr1;
|
|
u32 phys_shift;
|
|
|
|
if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
|
|
return -EINVAL;
|
|
|
|
phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
|
|
if (is_protected_kvm_enabled()) {
|
|
phys_shift = kvm_ipa_limit;
|
|
} else if (phys_shift) {
|
|
if (phys_shift > kvm_ipa_limit ||
|
|
phys_shift < ARM64_MIN_PARANGE_BITS)
|
|
return -EINVAL;
|
|
} else {
|
|
phys_shift = KVM_PHYS_SHIFT;
|
|
if (phys_shift > kvm_ipa_limit) {
|
|
pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
|
|
current->comm);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
|
|
mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
|
|
mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_init_stage2_mmu - Initialise a S2 MMU structure
|
|
* @kvm: The pointer to the KVM structure
|
|
* @mmu: The pointer to the s2 MMU structure
|
|
* @type: The machine type of the virtual machine
|
|
*
|
|
* Allocates only the stage-2 HW PGD level table(s).
|
|
* Note we don't need locking here as this is only called in two cases:
|
|
*
|
|
* - when the VM is created, which can't race against anything
|
|
*
|
|
* - when secondary kvm_s2_mmu structures are initialised for NV
|
|
* guests, and the caller must hold kvm->lock as this is called on a
|
|
* per-vcpu basis.
|
|
*/
|
|
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
|
|
{
|
|
int cpu, err;
|
|
struct kvm_pgtable *pgt;
|
|
|
|
/*
|
|
* If we already have our page tables in place, and that the
|
|
* MMU context is the canonical one, we have a bug somewhere,
|
|
* as this is only supposed to ever happen once per VM.
|
|
*
|
|
* Otherwise, we're building nested page tables, and that's
|
|
* probably because userspace called KVM_ARM_VCPU_INIT more
|
|
* than once on the same vcpu. Since that's actually legal,
|
|
* don't kick a fuss and leave gracefully.
|
|
*/
|
|
if (mmu->pgt != NULL) {
|
|
if (kvm_is_nested_s2_mmu(kvm, mmu))
|
|
return 0;
|
|
|
|
kvm_err("kvm_arch already initialized?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = kvm_init_ipa_range(mmu, type);
|
|
if (err)
|
|
return err;
|
|
|
|
pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
|
|
if (!pgt)
|
|
return -ENOMEM;
|
|
|
|
mmu->arch = &kvm->arch;
|
|
err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
|
|
if (err)
|
|
goto out_free_pgtable;
|
|
|
|
mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
|
|
if (!mmu->last_vcpu_ran) {
|
|
err = -ENOMEM;
|
|
goto out_destroy_pgtable;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu)
|
|
*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
|
|
|
|
/* The eager page splitting is disabled by default */
|
|
mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
|
|
mmu->split_page_cache.gfp_zero = __GFP_ZERO;
|
|
|
|
mmu->pgt = pgt;
|
|
mmu->pgd_phys = __pa(pgt->pgd);
|
|
|
|
if (kvm_is_nested_s2_mmu(kvm, mmu))
|
|
kvm_init_nested_s2_mmu(mmu);
|
|
|
|
return 0;
|
|
|
|
out_destroy_pgtable:
|
|
kvm_pgtable_stage2_destroy(pgt);
|
|
out_free_pgtable:
|
|
kfree(pgt);
|
|
return err;
|
|
}
|
|
|
|
void kvm_uninit_stage2_mmu(struct kvm *kvm)
|
|
{
|
|
kvm_free_stage2_pgd(&kvm->arch.mmu);
|
|
kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
|
|
}
|
|
|
|
static void stage2_unmap_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
hva_t hva = memslot->userspace_addr;
|
|
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t size = PAGE_SIZE * memslot->npages;
|
|
hva_t reg_end = hva + size;
|
|
|
|
/*
|
|
* A memory region could potentially cover multiple VMAs, and any holes
|
|
* between them, so iterate over all of them to find out if we should
|
|
* unmap any of them.
|
|
*
|
|
* +--------------------------------------------+
|
|
* +---------------+----------------+ +----------------+
|
|
* | : VMA 1 | VMA 2 | | VMA 3 : |
|
|
* +---------------+----------------+ +----------------+
|
|
* | memory region |
|
|
* +--------------------------------------------+
|
|
*/
|
|
do {
|
|
struct vm_area_struct *vma;
|
|
hva_t vm_start, vm_end;
|
|
|
|
vma = find_vma_intersection(current->mm, hva, reg_end);
|
|
if (!vma)
|
|
break;
|
|
|
|
/*
|
|
* Take the intersection of this VMA with the memory region
|
|
*/
|
|
vm_start = max(hva, vma->vm_start);
|
|
vm_end = min(reg_end, vma->vm_end);
|
|
|
|
if (!(vma->vm_flags & VM_PFNMAP)) {
|
|
gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
|
|
kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start, true);
|
|
}
|
|
hva = vm_end;
|
|
} while (hva < reg_end);
|
|
}
|
|
|
|
/**
|
|
* stage2_unmap_vm - Unmap Stage-2 RAM mappings
|
|
* @kvm: The struct kvm pointer
|
|
*
|
|
* Go through the memregions and unmap any regular RAM
|
|
* backing memory already mapped to the VM.
|
|
*/
|
|
void stage2_unmap_vm(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int idx, bkt;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
mmap_read_lock(current->mm);
|
|
write_lock(&kvm->mmu_lock);
|
|
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, bkt, slots)
|
|
stage2_unmap_memslot(kvm, memslot);
|
|
|
|
kvm_nested_s2_unmap(kvm, true);
|
|
|
|
write_unlock(&kvm->mmu_lock);
|
|
mmap_read_unlock(current->mm);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
|
|
{
|
|
struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
|
|
struct kvm_pgtable *pgt = NULL;
|
|
|
|
write_lock(&kvm->mmu_lock);
|
|
pgt = mmu->pgt;
|
|
if (pgt) {
|
|
mmu->pgd_phys = 0;
|
|
mmu->pgt = NULL;
|
|
free_percpu(mmu->last_vcpu_ran);
|
|
}
|
|
write_unlock(&kvm->mmu_lock);
|
|
|
|
if (pgt) {
|
|
kvm_pgtable_stage2_destroy(pgt);
|
|
kfree(pgt);
|
|
}
|
|
}
|
|
|
|
static void hyp_mc_free_fn(void *addr, void *unused)
|
|
{
|
|
free_page((unsigned long)addr);
|
|
}
|
|
|
|
static void *hyp_mc_alloc_fn(void *unused)
|
|
{
|
|
return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
|
|
}
|
|
|
|
void free_hyp_memcache(struct kvm_hyp_memcache *mc)
|
|
{
|
|
if (is_protected_kvm_enabled())
|
|
__free_hyp_memcache(mc, hyp_mc_free_fn,
|
|
kvm_host_va, NULL);
|
|
}
|
|
|
|
int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
|
|
{
|
|
if (!is_protected_kvm_enabled())
|
|
return 0;
|
|
|
|
return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
|
|
kvm_host_pa, NULL);
|
|
}
|
|
|
|
/**
|
|
* kvm_phys_addr_ioremap - map a device range to guest IPA
|
|
*
|
|
* @kvm: The KVM pointer
|
|
* @guest_ipa: The IPA at which to insert the mapping
|
|
* @pa: The physical address of the device
|
|
* @size: The size of the mapping
|
|
* @writable: Whether or not to create a writable mapping
|
|
*/
|
|
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
|
|
phys_addr_t pa, unsigned long size, bool writable)
|
|
{
|
|
phys_addr_t addr;
|
|
int ret = 0;
|
|
struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
|
|
struct kvm_pgtable *pgt = mmu->pgt;
|
|
enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
|
|
KVM_PGTABLE_PROT_R |
|
|
(writable ? KVM_PGTABLE_PROT_W : 0);
|
|
|
|
if (is_protected_kvm_enabled())
|
|
return -EPERM;
|
|
|
|
size += offset_in_page(guest_ipa);
|
|
guest_ipa &= PAGE_MASK;
|
|
|
|
for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
|
|
ret = kvm_mmu_topup_memory_cache(&cache,
|
|
kvm_mmu_cache_min_pages(mmu));
|
|
if (ret)
|
|
break;
|
|
|
|
write_lock(&kvm->mmu_lock);
|
|
ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
|
|
&cache, 0);
|
|
write_unlock(&kvm->mmu_lock);
|
|
if (ret)
|
|
break;
|
|
|
|
pa += PAGE_SIZE;
|
|
}
|
|
|
|
kvm_mmu_free_memory_cache(&cache);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_stage2_wp_range() - write protect stage2 memory region range
|
|
* @mmu: The KVM stage-2 MMU pointer
|
|
* @addr: Start address of range
|
|
* @end: End address of range
|
|
*/
|
|
void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
|
|
}
|
|
|
|
/**
|
|
* kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
|
|
* @kvm: The KVM pointer
|
|
* @slot: The memory slot to write protect
|
|
*
|
|
* Called to start logging dirty pages after memory region
|
|
* KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
|
|
* all present PUD, PMD and PTEs are write protected in the memory region.
|
|
* Afterwards read of dirty page log can be called.
|
|
*
|
|
* Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
|
|
* serializing operations for VM memory regions.
|
|
*/
|
|
static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
|
|
phys_addr_t start, end;
|
|
|
|
if (WARN_ON_ONCE(!memslot))
|
|
return;
|
|
|
|
start = memslot->base_gfn << PAGE_SHIFT;
|
|
end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
|
|
|
|
write_lock(&kvm->mmu_lock);
|
|
kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
|
|
kvm_nested_s2_wp(kvm);
|
|
write_unlock(&kvm->mmu_lock);
|
|
kvm_flush_remote_tlbs_memslot(kvm, memslot);
|
|
}
|
|
|
|
/**
|
|
* kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
|
|
* pages for memory slot
|
|
* @kvm: The KVM pointer
|
|
* @slot: The memory slot to split
|
|
*
|
|
* Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
|
|
* serializing operations for VM memory regions.
|
|
*/
|
|
static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
phys_addr_t start, end;
|
|
|
|
lockdep_assert_held(&kvm->slots_lock);
|
|
|
|
slots = kvm_memslots(kvm);
|
|
memslot = id_to_memslot(slots, slot);
|
|
|
|
start = memslot->base_gfn << PAGE_SHIFT;
|
|
end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
|
|
|
|
write_lock(&kvm->mmu_lock);
|
|
kvm_mmu_split_huge_pages(kvm, start, end);
|
|
write_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
/*
|
|
* kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
|
|
* @kvm: The KVM pointer
|
|
* @slot: The memory slot associated with mask
|
|
* @gfn_offset: The gfn offset in memory slot
|
|
* @mask: The mask of pages at offset 'gfn_offset' in this memory
|
|
* slot to enable dirty logging on
|
|
*
|
|
* Writes protect selected pages to enable dirty logging, and then
|
|
* splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
|
|
*/
|
|
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn_offset, unsigned long mask)
|
|
{
|
|
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
|
|
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
|
|
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
|
|
|
|
/*
|
|
* Eager-splitting is done when manual-protect is set. We
|
|
* also check for initially-all-set because we can avoid
|
|
* eager-splitting if initially-all-set is false.
|
|
* Initially-all-set equal false implies that huge-pages were
|
|
* already split when enabling dirty logging: no need to do it
|
|
* again.
|
|
*/
|
|
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
|
|
kvm_mmu_split_huge_pages(kvm, start, end);
|
|
|
|
kvm_nested_s2_wp(kvm);
|
|
}
|
|
|
|
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
|
|
{
|
|
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
|
|
}
|
|
|
|
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
|
|
unsigned long hva,
|
|
unsigned long map_size)
|
|
{
|
|
gpa_t gpa_start;
|
|
hva_t uaddr_start, uaddr_end;
|
|
size_t size;
|
|
|
|
/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
|
|
if (map_size == PAGE_SIZE)
|
|
return true;
|
|
|
|
size = memslot->npages * PAGE_SIZE;
|
|
|
|
gpa_start = memslot->base_gfn << PAGE_SHIFT;
|
|
|
|
uaddr_start = memslot->userspace_addr;
|
|
uaddr_end = uaddr_start + size;
|
|
|
|
/*
|
|
* Pages belonging to memslots that don't have the same alignment
|
|
* within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
|
|
* PMD/PUD entries, because we'll end up mapping the wrong pages.
|
|
*
|
|
* Consider a layout like the following:
|
|
*
|
|
* memslot->userspace_addr:
|
|
* +-----+--------------------+--------------------+---+
|
|
* |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
|
|
* +-----+--------------------+--------------------+---+
|
|
*
|
|
* memslot->base_gfn << PAGE_SHIFT:
|
|
* +---+--------------------+--------------------+-----+
|
|
* |abc|def Stage-2 block | Stage-2 block |tvxyz|
|
|
* +---+--------------------+--------------------+-----+
|
|
*
|
|
* If we create those stage-2 blocks, we'll end up with this incorrect
|
|
* mapping:
|
|
* d -> f
|
|
* e -> g
|
|
* f -> h
|
|
*/
|
|
if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
|
|
return false;
|
|
|
|
/*
|
|
* Next, let's make sure we're not trying to map anything not covered
|
|
* by the memslot. This means we have to prohibit block size mappings
|
|
* for the beginning and end of a non-block aligned and non-block sized
|
|
* memory slot (illustrated by the head and tail parts of the
|
|
* userspace view above containing pages 'abcde' and 'xyz',
|
|
* respectively).
|
|
*
|
|
* Note that it doesn't matter if we do the check using the
|
|
* userspace_addr or the base_gfn, as both are equally aligned (per
|
|
* the check above) and equally sized.
|
|
*/
|
|
return (hva & ~(map_size - 1)) >= uaddr_start &&
|
|
(hva & ~(map_size - 1)) + map_size <= uaddr_end;
|
|
}
|
|
|
|
/*
|
|
* Check if the given hva is backed by a transparent huge page (THP) and
|
|
* whether it can be mapped using block mapping in stage2. If so, adjust
|
|
* the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
|
|
* supported. This will need to be updated to support other THP sizes.
|
|
*
|
|
* Returns the size of the mapping.
|
|
*/
|
|
static long
|
|
transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long hva, kvm_pfn_t *pfnp,
|
|
phys_addr_t *ipap)
|
|
{
|
|
kvm_pfn_t pfn = *pfnp;
|
|
|
|
/*
|
|
* Make sure the adjustment is done only for THP pages. Also make
|
|
* sure that the HVA and IPA are sufficiently aligned and that the
|
|
* block map is contained within the memslot.
|
|
*/
|
|
if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
|
|
int sz = get_user_mapping_size(kvm, hva);
|
|
|
|
if (sz < 0)
|
|
return sz;
|
|
|
|
if (sz < PMD_SIZE)
|
|
return PAGE_SIZE;
|
|
|
|
*ipap &= PMD_MASK;
|
|
pfn &= ~(PTRS_PER_PMD - 1);
|
|
*pfnp = pfn;
|
|
|
|
return PMD_SIZE;
|
|
}
|
|
|
|
/* Use page mapping if we cannot use block mapping. */
|
|
return PAGE_SIZE;
|
|
}
|
|
|
|
static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
|
|
{
|
|
unsigned long pa;
|
|
|
|
if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
|
|
return huge_page_shift(hstate_vma(vma));
|
|
|
|
if (!(vma->vm_flags & VM_PFNMAP))
|
|
return PAGE_SHIFT;
|
|
|
|
VM_BUG_ON(is_vm_hugetlb_page(vma));
|
|
|
|
pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
|
|
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
|
|
ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
|
|
ALIGN(hva, PUD_SIZE) <= vma->vm_end)
|
|
return PUD_SHIFT;
|
|
#endif
|
|
|
|
if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
|
|
ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
|
|
ALIGN(hva, PMD_SIZE) <= vma->vm_end)
|
|
return PMD_SHIFT;
|
|
|
|
return PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
|
|
* able to see the page's tags and therefore they must be initialised first. If
|
|
* PG_mte_tagged is set, tags have already been initialised.
|
|
*
|
|
* The race in the test/set of the PG_mte_tagged flag is handled by:
|
|
* - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
|
|
* racing to santise the same page
|
|
* - mmap_lock protects between a VM faulting a page in and the VMM performing
|
|
* an mprotect() to add VM_MTE
|
|
*/
|
|
static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
|
|
unsigned long size)
|
|
{
|
|
unsigned long i, nr_pages = size >> PAGE_SHIFT;
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
if (!kvm_has_mte(kvm))
|
|
return;
|
|
|
|
for (i = 0; i < nr_pages; i++, page++) {
|
|
if (try_page_mte_tagging(page)) {
|
|
mte_clear_page_tags(page_address(page));
|
|
set_page_mte_tagged(page);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
|
|
{
|
|
return vma->vm_flags & VM_MTE_ALLOWED;
|
|
}
|
|
|
|
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
|
struct kvm_s2_trans *nested,
|
|
struct kvm_memory_slot *memslot, unsigned long hva,
|
|
bool fault_is_perm)
|
|
{
|
|
int ret = 0;
|
|
bool write_fault, writable, force_pte = false;
|
|
bool exec_fault, mte_allowed;
|
|
bool device = false, vfio_allow_any_uc = false;
|
|
unsigned long mmu_seq;
|
|
phys_addr_t ipa = fault_ipa;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
struct vm_area_struct *vma;
|
|
short vma_shift;
|
|
gfn_t gfn;
|
|
kvm_pfn_t pfn;
|
|
bool logging_active = memslot_is_logging(memslot);
|
|
long vma_pagesize, fault_granule;
|
|
enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
|
|
struct kvm_pgtable *pgt;
|
|
|
|
if (fault_is_perm)
|
|
fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
|
|
write_fault = kvm_is_write_fault(vcpu);
|
|
exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
|
|
VM_BUG_ON(write_fault && exec_fault);
|
|
|
|
if (fault_is_perm && !write_fault && !exec_fault) {
|
|
kvm_err("Unexpected L2 read permission error\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* Permission faults just need to update the existing leaf entry,
|
|
* and so normally don't require allocations from the memcache. The
|
|
* only exception to this is when dirty logging is enabled at runtime
|
|
* and a write fault needs to collapse a block entry into a table.
|
|
*/
|
|
if (!fault_is_perm || (logging_active && write_fault)) {
|
|
ret = kvm_mmu_topup_memory_cache(memcache,
|
|
kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Let's check if we will get back a huge page backed by hugetlbfs, or
|
|
* get block mapping for device MMIO region.
|
|
*/
|
|
mmap_read_lock(current->mm);
|
|
vma = vma_lookup(current->mm, hva);
|
|
if (unlikely(!vma)) {
|
|
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
|
|
mmap_read_unlock(current->mm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* logging_active is guaranteed to never be true for VM_PFNMAP
|
|
* memslots.
|
|
*/
|
|
if (logging_active) {
|
|
force_pte = true;
|
|
vma_shift = PAGE_SHIFT;
|
|
} else {
|
|
vma_shift = get_vma_page_shift(vma, hva);
|
|
}
|
|
|
|
switch (vma_shift) {
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
case PUD_SHIFT:
|
|
if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
|
|
break;
|
|
fallthrough;
|
|
#endif
|
|
case CONT_PMD_SHIFT:
|
|
vma_shift = PMD_SHIFT;
|
|
fallthrough;
|
|
case PMD_SHIFT:
|
|
if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
|
|
break;
|
|
fallthrough;
|
|
case CONT_PTE_SHIFT:
|
|
vma_shift = PAGE_SHIFT;
|
|
force_pte = true;
|
|
fallthrough;
|
|
case PAGE_SHIFT:
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
|
|
}
|
|
|
|
vma_pagesize = 1UL << vma_shift;
|
|
|
|
if (nested) {
|
|
unsigned long max_map_size;
|
|
|
|
max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
|
|
|
|
ipa = kvm_s2_trans_output(nested);
|
|
|
|
/*
|
|
* If we're about to create a shadow stage 2 entry, then we
|
|
* can only create a block mapping if the guest stage 2 page
|
|
* table uses at least as big a mapping.
|
|
*/
|
|
max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
|
|
|
|
/*
|
|
* Be careful that if the mapping size falls between
|
|
* two host sizes, take the smallest of the two.
|
|
*/
|
|
if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
|
|
max_map_size = PMD_SIZE;
|
|
else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
|
|
max_map_size = PAGE_SIZE;
|
|
|
|
force_pte = (max_map_size == PAGE_SIZE);
|
|
vma_pagesize = min(vma_pagesize, (long)max_map_size);
|
|
}
|
|
|
|
/*
|
|
* Both the canonical IPA and fault IPA must be hugepage-aligned to
|
|
* ensure we find the right PFN and lay down the mapping in the right
|
|
* place.
|
|
*/
|
|
if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) {
|
|
fault_ipa &= ~(vma_pagesize - 1);
|
|
ipa &= ~(vma_pagesize - 1);
|
|
}
|
|
|
|
gfn = ipa >> PAGE_SHIFT;
|
|
mte_allowed = kvm_vma_mte_allowed(vma);
|
|
|
|
vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
|
|
|
|
/* Don't use the VMA after the unlock -- it may have vanished */
|
|
vma = NULL;
|
|
|
|
/*
|
|
* Read mmu_invalidate_seq so that KVM can detect if the results of
|
|
* vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
|
|
* acquiring kvm->mmu_lock.
|
|
*
|
|
* Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
|
|
* with the smp_wmb() in kvm_mmu_invalidate_end().
|
|
*/
|
|
mmu_seq = vcpu->kvm->mmu_invalidate_seq;
|
|
mmap_read_unlock(current->mm);
|
|
|
|
pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
|
|
write_fault, &writable, NULL);
|
|
if (pfn == KVM_PFN_ERR_HWPOISON) {
|
|
kvm_send_hwpoison_signal(hva, vma_shift);
|
|
return 0;
|
|
}
|
|
if (is_error_noslot_pfn(pfn))
|
|
return -EFAULT;
|
|
|
|
if (kvm_is_device_pfn(pfn)) {
|
|
/*
|
|
* If the page was identified as device early by looking at
|
|
* the VMA flags, vma_pagesize is already representing the
|
|
* largest quantity we can map. If instead it was mapped
|
|
* via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
|
|
* and must not be upgraded.
|
|
*
|
|
* In both cases, we don't let transparent_hugepage_adjust()
|
|
* change things at the last minute.
|
|
*/
|
|
device = true;
|
|
} else if (logging_active && !write_fault) {
|
|
/*
|
|
* Only actually map the page as writable if this was a write
|
|
* fault.
|
|
*/
|
|
writable = false;
|
|
}
|
|
|
|
if (exec_fault && device)
|
|
return -ENOEXEC;
|
|
|
|
/*
|
|
* Potentially reduce shadow S2 permissions to match the guest's own
|
|
* S2. For exec faults, we'd only reach this point if the guest
|
|
* actually allowed it (see kvm_s2_handle_perm_fault).
|
|
*
|
|
* Also encode the level of the original translation in the SW bits
|
|
* of the leaf entry as a proxy for the span of that translation.
|
|
* This will be retrieved on TLB invalidation from the guest and
|
|
* used to limit the invalidation scope if a TTL hint or a range
|
|
* isn't provided.
|
|
*/
|
|
if (nested) {
|
|
writable &= kvm_s2_trans_writable(nested);
|
|
if (!kvm_s2_trans_readable(nested))
|
|
prot &= ~KVM_PGTABLE_PROT_R;
|
|
|
|
prot |= kvm_encode_nested_level(nested);
|
|
}
|
|
|
|
read_lock(&kvm->mmu_lock);
|
|
pgt = vcpu->arch.hw_mmu->pgt;
|
|
if (mmu_invalidate_retry(kvm, mmu_seq)) {
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If we are not forced to use page mapping, check if we are
|
|
* backed by a THP and thus use block mapping if possible.
|
|
*/
|
|
if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
|
|
if (fault_is_perm && fault_granule > PAGE_SIZE)
|
|
vma_pagesize = fault_granule;
|
|
else
|
|
vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
|
|
hva, &pfn,
|
|
&fault_ipa);
|
|
|
|
if (vma_pagesize < 0) {
|
|
ret = vma_pagesize;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if (!fault_is_perm && !device && kvm_has_mte(kvm)) {
|
|
/* Check the VMM hasn't introduced a new disallowed VMA */
|
|
if (mte_allowed) {
|
|
sanitise_mte_tags(kvm, pfn, vma_pagesize);
|
|
} else {
|
|
ret = -EFAULT;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if (writable)
|
|
prot |= KVM_PGTABLE_PROT_W;
|
|
|
|
if (exec_fault)
|
|
prot |= KVM_PGTABLE_PROT_X;
|
|
|
|
if (device) {
|
|
if (vfio_allow_any_uc)
|
|
prot |= KVM_PGTABLE_PROT_NORMAL_NC;
|
|
else
|
|
prot |= KVM_PGTABLE_PROT_DEVICE;
|
|
} else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) &&
|
|
(!nested || kvm_s2_trans_executable(nested))) {
|
|
prot |= KVM_PGTABLE_PROT_X;
|
|
}
|
|
|
|
/*
|
|
* Under the premise of getting a FSC_PERM fault, we just need to relax
|
|
* permissions only if vma_pagesize equals fault_granule. Otherwise,
|
|
* kvm_pgtable_stage2_map() should be called to change block size.
|
|
*/
|
|
if (fault_is_perm && vma_pagesize == fault_granule) {
|
|
/*
|
|
* Drop the SW bits in favour of those stored in the
|
|
* PTE, which will be preserved.
|
|
*/
|
|
prot &= ~KVM_NV_GUEST_MAP_SZ;
|
|
ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
|
|
} else {
|
|
ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
|
|
__pfn_to_phys(pfn), prot,
|
|
memcache,
|
|
KVM_PGTABLE_WALK_HANDLE_FAULT |
|
|
KVM_PGTABLE_WALK_SHARED);
|
|
}
|
|
|
|
out_unlock:
|
|
read_unlock(&kvm->mmu_lock);
|
|
|
|
/* Mark the page dirty only if the fault is handled successfully */
|
|
if (writable && !ret) {
|
|
kvm_set_pfn_dirty(pfn);
|
|
mark_page_dirty_in_slot(kvm, memslot, gfn);
|
|
}
|
|
|
|
kvm_release_pfn_clean(pfn);
|
|
return ret != -EAGAIN ? ret : 0;
|
|
}
|
|
|
|
/* Resolve the access fault by making the page young again. */
|
|
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
|
|
{
|
|
kvm_pte_t pte;
|
|
struct kvm_s2_mmu *mmu;
|
|
|
|
trace_kvm_access_fault(fault_ipa);
|
|
|
|
read_lock(&vcpu->kvm->mmu_lock);
|
|
mmu = vcpu->arch.hw_mmu;
|
|
pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
|
|
read_unlock(&vcpu->kvm->mmu_lock);
|
|
|
|
if (kvm_pte_valid(pte))
|
|
kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_guest_abort - handles all 2nd stage aborts
|
|
* @vcpu: the VCPU pointer
|
|
*
|
|
* Any abort that gets to the host is almost guaranteed to be caused by a
|
|
* missing second stage translation table entry, which can mean that either the
|
|
* guest simply needs more memory and we must allocate an appropriate page or it
|
|
* can mean that the guest tried to access I/O memory, which is emulated by user
|
|
* space. The distinction is based on the IPA causing the fault and whether this
|
|
* memory region has been registered as standard RAM by user space.
|
|
*/
|
|
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_s2_trans nested_trans, *nested = NULL;
|
|
unsigned long esr;
|
|
phys_addr_t fault_ipa; /* The address we faulted on */
|
|
phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long hva;
|
|
bool is_iabt, write_fault, writable;
|
|
gfn_t gfn;
|
|
int ret, idx;
|
|
|
|
esr = kvm_vcpu_get_esr(vcpu);
|
|
|
|
ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
|
|
is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
|
|
|
|
if (esr_fsc_is_translation_fault(esr)) {
|
|
/* Beyond sanitised PARange (which is the IPA limit) */
|
|
if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
|
|
kvm_inject_size_fault(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
/* Falls between the IPA range and the PARange? */
|
|
if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
|
|
fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
|
|
|
|
if (is_iabt)
|
|
kvm_inject_pabt(vcpu, fault_ipa);
|
|
else
|
|
kvm_inject_dabt(vcpu, fault_ipa);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Synchronous External Abort? */
|
|
if (kvm_vcpu_abt_issea(vcpu)) {
|
|
/*
|
|
* For RAS the host kernel may handle this abort.
|
|
* There is no need to pass the error into the guest.
|
|
*/
|
|
if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
|
|
kvm_inject_vabt(vcpu);
|
|
|
|
return 1;
|
|
}
|
|
|
|
trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
|
|
kvm_vcpu_get_hfar(vcpu), fault_ipa);
|
|
|
|
/* Check the stage-2 fault is trans. fault or write fault */
|
|
if (!esr_fsc_is_translation_fault(esr) &&
|
|
!esr_fsc_is_permission_fault(esr) &&
|
|
!esr_fsc_is_access_flag_fault(esr)) {
|
|
kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
|
|
kvm_vcpu_trap_get_class(vcpu),
|
|
(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
|
|
(unsigned long)kvm_vcpu_get_esr(vcpu));
|
|
return -EFAULT;
|
|
}
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
/*
|
|
* We may have faulted on a shadow stage 2 page table if we are
|
|
* running a nested guest. In this case, we have to resolve the L2
|
|
* IPA to the L1 IPA first, before knowing what kind of memory should
|
|
* back the L1 IPA.
|
|
*
|
|
* If the shadow stage 2 page table walk faults, then we simply inject
|
|
* this to the guest and carry on.
|
|
*
|
|
* If there are no shadow S2 PTs because S2 is disabled, there is
|
|
* nothing to walk and we treat it as a 1:1 before going through the
|
|
* canonical translation.
|
|
*/
|
|
if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
|
|
vcpu->arch.hw_mmu->nested_stage2_enabled) {
|
|
u32 esr;
|
|
|
|
ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
|
|
if (ret) {
|
|
esr = kvm_s2_trans_esr(&nested_trans);
|
|
kvm_inject_s2_fault(vcpu, esr);
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
|
|
if (ret) {
|
|
esr = kvm_s2_trans_esr(&nested_trans);
|
|
kvm_inject_s2_fault(vcpu, esr);
|
|
goto out_unlock;
|
|
}
|
|
|
|
ipa = kvm_s2_trans_output(&nested_trans);
|
|
nested = &nested_trans;
|
|
}
|
|
|
|
gfn = ipa >> PAGE_SHIFT;
|
|
memslot = gfn_to_memslot(vcpu->kvm, gfn);
|
|
hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
|
|
write_fault = kvm_is_write_fault(vcpu);
|
|
if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
|
|
/*
|
|
* The guest has put either its instructions or its page-tables
|
|
* somewhere it shouldn't have. Userspace won't be able to do
|
|
* anything about this (there's no syndrome for a start), so
|
|
* re-inject the abort back into the guest.
|
|
*/
|
|
if (is_iabt) {
|
|
ret = -ENOEXEC;
|
|
goto out;
|
|
}
|
|
|
|
if (kvm_vcpu_abt_iss1tw(vcpu)) {
|
|
kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Check for a cache maintenance operation. Since we
|
|
* ended-up here, we know it is outside of any memory
|
|
* slot. But we can't find out if that is for a device,
|
|
* or if the guest is just being stupid. The only thing
|
|
* we know for sure is that this range cannot be cached.
|
|
*
|
|
* So let's assume that the guest is just being
|
|
* cautious, and skip the instruction.
|
|
*/
|
|
if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
|
|
kvm_incr_pc(vcpu);
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* The IPA is reported as [MAX:12], so we need to
|
|
* complement it with the bottom 12 bits from the
|
|
* faulting VA. This is always 12 bits, irrespective
|
|
* of the page size.
|
|
*/
|
|
ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
|
|
ret = io_mem_abort(vcpu, ipa);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Userspace should not be able to register out-of-bounds IPAs */
|
|
VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
|
|
|
|
if (esr_fsc_is_access_flag_fault(esr)) {
|
|
handle_access_fault(vcpu, fault_ipa);
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
|
|
esr_fsc_is_permission_fault(esr));
|
|
if (ret == 0)
|
|
ret = 1;
|
|
out:
|
|
if (ret == -ENOEXEC) {
|
|
kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
|
|
ret = 1;
|
|
}
|
|
out_unlock:
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
if (!kvm->arch.mmu.pgt)
|
|
return false;
|
|
|
|
__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
|
|
(range->end - range->start) << PAGE_SHIFT,
|
|
range->may_block);
|
|
|
|
kvm_nested_s2_unmap(kvm, range->may_block);
|
|
return false;
|
|
}
|
|
|
|
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
u64 size = (range->end - range->start) << PAGE_SHIFT;
|
|
|
|
if (!kvm->arch.mmu.pgt)
|
|
return false;
|
|
|
|
return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
|
|
range->start << PAGE_SHIFT,
|
|
size, true);
|
|
/*
|
|
* TODO: Handle nested_mmu structures here using the reverse mapping in
|
|
* a later version of patch series.
|
|
*/
|
|
}
|
|
|
|
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
u64 size = (range->end - range->start) << PAGE_SHIFT;
|
|
|
|
if (!kvm->arch.mmu.pgt)
|
|
return false;
|
|
|
|
return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
|
|
range->start << PAGE_SHIFT,
|
|
size, false);
|
|
}
|
|
|
|
phys_addr_t kvm_mmu_get_httbr(void)
|
|
{
|
|
return __pa(hyp_pgtable->pgd);
|
|
}
|
|
|
|
phys_addr_t kvm_get_idmap_vector(void)
|
|
{
|
|
return hyp_idmap_vector;
|
|
}
|
|
|
|
static int kvm_map_idmap_text(void)
|
|
{
|
|
unsigned long size = hyp_idmap_end - hyp_idmap_start;
|
|
int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
|
|
PAGE_HYP_EXEC);
|
|
if (err)
|
|
kvm_err("Failed to idmap %lx-%lx\n",
|
|
hyp_idmap_start, hyp_idmap_end);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void *kvm_hyp_zalloc_page(void *arg)
|
|
{
|
|
return (void *)get_zeroed_page(GFP_KERNEL);
|
|
}
|
|
|
|
static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
|
|
.zalloc_page = kvm_hyp_zalloc_page,
|
|
.get_page = kvm_host_get_page,
|
|
.put_page = kvm_host_put_page,
|
|
.phys_to_virt = kvm_host_va,
|
|
.virt_to_phys = kvm_host_pa,
|
|
};
|
|
|
|
int __init kvm_mmu_init(u32 *hyp_va_bits)
|
|
{
|
|
int err;
|
|
u32 idmap_bits;
|
|
u32 kernel_bits;
|
|
|
|
hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
|
|
hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
|
|
hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
|
|
hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
|
|
hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
|
|
|
|
/*
|
|
* We rely on the linker script to ensure at build time that the HYP
|
|
* init code does not cross a page boundary.
|
|
*/
|
|
BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
|
|
|
|
/*
|
|
* The ID map is always configured for 48 bits of translation, which
|
|
* may be fewer than the number of VA bits used by the regular kernel
|
|
* stage 1, when VA_BITS=52.
|
|
*
|
|
* At EL2, there is only one TTBR register, and we can't switch between
|
|
* translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
|
|
* line: we need to use the extended range with *both* our translation
|
|
* tables.
|
|
*
|
|
* So use the maximum of the idmap VA bits and the regular kernel stage
|
|
* 1 VA bits to assure that the hypervisor can both ID map its code page
|
|
* and map any kernel memory.
|
|
*/
|
|
idmap_bits = IDMAP_VA_BITS;
|
|
kernel_bits = vabits_actual;
|
|
*hyp_va_bits = max(idmap_bits, kernel_bits);
|
|
|
|
kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
|
|
kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
|
|
kvm_debug("HYP VA range: %lx:%lx\n",
|
|
kern_hyp_va(PAGE_OFFSET),
|
|
kern_hyp_va((unsigned long)high_memory - 1));
|
|
|
|
if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
|
|
hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
|
|
hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
|
|
/*
|
|
* The idmap page is intersecting with the VA space,
|
|
* it is not safe to continue further.
|
|
*/
|
|
kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
|
|
if (!hyp_pgtable) {
|
|
kvm_err("Hyp mode page-table not allocated\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
|
|
if (err)
|
|
goto out_free_pgtable;
|
|
|
|
err = kvm_map_idmap_text();
|
|
if (err)
|
|
goto out_destroy_pgtable;
|
|
|
|
io_map_base = hyp_idmap_start;
|
|
return 0;
|
|
|
|
out_destroy_pgtable:
|
|
kvm_pgtable_hyp_destroy(hyp_pgtable);
|
|
out_free_pgtable:
|
|
kfree(hyp_pgtable);
|
|
hyp_pgtable = NULL;
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *old,
|
|
const struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
|
|
|
|
/*
|
|
* At this point memslot has been committed and there is an
|
|
* allocated dirty_bitmap[], dirty pages will be tracked while the
|
|
* memory slot is write protected.
|
|
*/
|
|
if (log_dirty_pages) {
|
|
|
|
if (change == KVM_MR_DELETE)
|
|
return;
|
|
|
|
/*
|
|
* Huge and normal pages are write-protected and split
|
|
* on either of these two cases:
|
|
*
|
|
* 1. with initial-all-set: gradually with CLEAR ioctls,
|
|
*/
|
|
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
|
|
return;
|
|
/*
|
|
* or
|
|
* 2. without initial-all-set: all in one shot when
|
|
* enabling dirty logging.
|
|
*/
|
|
kvm_mmu_wp_memory_region(kvm, new->id);
|
|
kvm_mmu_split_memory_region(kvm, new->id);
|
|
} else {
|
|
/*
|
|
* Free any leftovers from the eager page splitting cache. Do
|
|
* this when deleting, moving, disabling dirty logging, or
|
|
* creating the memslot (a nop). Doing it for deletes makes
|
|
* sure we don't leak memory, and there's no need to keep the
|
|
* cache around for any of the other cases.
|
|
*/
|
|
kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
|
|
}
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
const struct kvm_memory_slot *old,
|
|
struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
hva_t hva, reg_end;
|
|
int ret = 0;
|
|
|
|
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
|
|
change != KVM_MR_FLAGS_ONLY)
|
|
return 0;
|
|
|
|
/*
|
|
* Prevent userspace from creating a memory region outside of the IPA
|
|
* space addressable by the KVM guest IPA space.
|
|
*/
|
|
if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
|
|
return -EFAULT;
|
|
|
|
hva = new->userspace_addr;
|
|
reg_end = hva + (new->npages << PAGE_SHIFT);
|
|
|
|
mmap_read_lock(current->mm);
|
|
/*
|
|
* A memory region could potentially cover multiple VMAs, and any holes
|
|
* between them, so iterate over all of them.
|
|
*
|
|
* +--------------------------------------------+
|
|
* +---------------+----------------+ +----------------+
|
|
* | : VMA 1 | VMA 2 | | VMA 3 : |
|
|
* +---------------+----------------+ +----------------+
|
|
* | memory region |
|
|
* +--------------------------------------------+
|
|
*/
|
|
do {
|
|
struct vm_area_struct *vma;
|
|
|
|
vma = find_vma_intersection(current->mm, hva, reg_end);
|
|
if (!vma)
|
|
break;
|
|
|
|
if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (vma->vm_flags & VM_PFNMAP) {
|
|
/* IO region dirty page logging not allowed */
|
|
if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
hva = min(reg_end, vma->vm_end);
|
|
} while (hva < reg_end);
|
|
|
|
mmap_read_unlock(current->mm);
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot)
|
|
{
|
|
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t size = slot->npages << PAGE_SHIFT;
|
|
|
|
write_lock(&kvm->mmu_lock);
|
|
kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size, true);
|
|
kvm_nested_s2_unmap(kvm, true);
|
|
write_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
/*
|
|
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
|
|
*
|
|
* Main problems:
|
|
* - S/W ops are local to a CPU (not broadcast)
|
|
* - We have line migration behind our back (speculation)
|
|
* - System caches don't support S/W at all (damn!)
|
|
*
|
|
* In the face of the above, the best we can do is to try and convert
|
|
* S/W ops to VA ops. Because the guest is not allowed to infer the
|
|
* S/W to PA mapping, it can only use S/W to nuke the whole cache,
|
|
* which is a rather good thing for us.
|
|
*
|
|
* Also, it is only used when turning caches on/off ("The expected
|
|
* usage of the cache maintenance instructions that operate by set/way
|
|
* is associated with the cache maintenance instructions associated
|
|
* with the powerdown and powerup of caches, if this is required by
|
|
* the implementation.").
|
|
*
|
|
* We use the following policy:
|
|
*
|
|
* - If we trap a S/W operation, we enable VM trapping to detect
|
|
* caches being turned on/off, and do a full clean.
|
|
*
|
|
* - We flush the caches on both caches being turned on and off.
|
|
*
|
|
* - Once the caches are enabled, we stop trapping VM ops.
|
|
*/
|
|
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long hcr = *vcpu_hcr(vcpu);
|
|
|
|
/*
|
|
* If this is the first time we do a S/W operation
|
|
* (i.e. HCR_TVM not set) flush the whole memory, and set the
|
|
* VM trapping.
|
|
*
|
|
* Otherwise, rely on the VM trapping to wait for the MMU +
|
|
* Caches to be turned off. At that point, we'll be able to
|
|
* clean the caches again.
|
|
*/
|
|
if (!(hcr & HCR_TVM)) {
|
|
trace_kvm_set_way_flush(*vcpu_pc(vcpu),
|
|
vcpu_has_cache_enabled(vcpu));
|
|
stage2_flush_vm(vcpu->kvm);
|
|
*vcpu_hcr(vcpu) = hcr | HCR_TVM;
|
|
}
|
|
}
|
|
|
|
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
|
|
{
|
|
bool now_enabled = vcpu_has_cache_enabled(vcpu);
|
|
|
|
/*
|
|
* If switching the MMU+caches on, need to invalidate the caches.
|
|
* If switching it off, need to clean the caches.
|
|
* Clean + invalidate does the trick always.
|
|
*/
|
|
if (now_enabled != was_enabled)
|
|
stage2_flush_vm(vcpu->kvm);
|
|
|
|
/* Caches are now on, stop trapping VM ops (until a S/W op) */
|
|
if (now_enabled)
|
|
*vcpu_hcr(vcpu) &= ~HCR_TVM;
|
|
|
|
trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
|
|
}
|